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ABSTRACT 

Our purpose is to provide different parameters of control from which one can identify a sick plant before 
the appearance of the first symptoms. We made a stochastic analysis and an analysis according to the 
theory of information, to deduce those characteristics parameters.  It came out from our analysis that the 
DSP of health plant is above the DSP of the sick plant. Generally, the DSP of health and treated plant is 
above the DSP of sick and treated plant. However there is an overlapping between the DSP of sick and 
treated plant, and the health one for the whole value of the normalized reduced frequency. The average 
conductance of health plant is higher than the average conductance of sick plant. We also observed that, 
average conductance of health and treated plant is lower than the average conductance of sick and 
treated plant. The standard deviation of health plant is higher than the standard deviation of sick plant. 
We also observed that, standard deviation of health and treated plant is lower than the standard deviation 
of sick and treated plant. The electric conductance signal G(ω,t) of Solanum lycopersicum leaf plant is not 
a statistics process in the broad sense (SSL). Electric conductance G(ω,t)  of the plant is a non ergotic signal. 
The entropy of the sick plant is higher than the entropy of the health one. Those parameters can be used 
during the development of informatics application, and can be used in I.O.T. (internet of thing) 

Key words: Statistics in the broad sense (SSL); ergotic; Solanum lycopersicum; spectral density of power 
(DSP); mildew; electric conductance; entropy. 

1 Introduction 
Now our days, organic matter is usually study by using electrical circuit [1-4]. Generally, one can identify 
the sick plants i.e. plants which had undergone a biotic or abiotic stress starting from the appearance of 
the symptoms on the plants; however the appearance of the symptoms supposes that the plant already 
underwent a certain number of damages inside their tissues; which could have an influence on the quality 
and quantity of resulting product produced from these plants [5]. Teuma et al measured the electrical 
resistance of tomato (Solanum lycopersicum) sheets infected by the mildew and untreated with the 

mailto:3michelteuma@gmail.com
mailto:zachambang@yahoo.fr
mailto:hekobena@gmail.com
mailto:tckofane@yahoo.com
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ridomil MC, of the infected and treated sheets; treated sheets but not infected and the pilot plants with 
an aim of using the biophysics methods to diagnose the physiological state of the plants subjected to the 
disease and the fungicidal treatent [4]. This study aims to firstly make a stochastic analysis [6]; secondly, 
an analysis according to the information theory, and to deduce from those analysis a characteristics 
parameters from which one can identify a sick plant to the health one before the apparition of visible 
symptoms.   

2 Materials and Methods 
 

 Matlab software was used to analyze data.  

Methods of analysis 

- Spectral density of power (DSP) 
 
The spectral density of power ϒG(ν)    of G(t) signal is expressed as: 

 ϒG (ν) =   �G�(ν)2�                                                                         (1)   
 

Where      G�(𝜈𝜈) = ∑ 𝐺𝐺(𝑛𝑛)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑁𝑁
𝜋𝜋=1    ;       𝐺𝐺(𝑛𝑛) = 1

𝑅𝑅(𝜋𝜋)
                                    (2)      

 
G�(𝜈𝜈) is the discrete time Fourier transformation of the electric conductance G(t) signal; N the number of 
G(t) sample ; ν  is the normalized reduced  frequency ; 𝜈𝜈 ∈ [0; 1[ .  

The spectral density   ϒG (ν)    was evaluated firstly for the pilot plant (health plant); secondly for the health 
and treated plant with the ridomil MC; thirdly for the plant infected by the mildew and untreated with 
the ridomil MC; and fourthly, for the infected and treated plant. The resulting evaluations of the spectral 
density ϒG (ν)   were each time plotted.  

2.1 Stochastic process analysis  
Since the measure value of G(t) is unpredictable  during the 26 hours, we define a probabilized space 

(Ω,@,P), where    𝛺𝛺 = �𝜔𝜔1 ,,𝜔𝜔2,𝜔𝜔3 ,  𝜔𝜔4�  is the universe space, @=p(Ω) the entire parts of Ω and P the 

probability of the plant to be health,  or to be sick, or to be health and treated, or to be sick and treated. 
 We define the random variable ω which takes values: 
 𝜔𝜔 = 𝜔𝜔1 = 1, when the plant is health, 
  𝜔𝜔 = 𝜔𝜔2 = 2, when the plant is sick, 
𝜔𝜔 = 𝜔𝜔3 = 3, when the plant is health and treated, 
 𝜔𝜔 = 𝜔𝜔4 = 4, when the plant is sick and treated. 

We consider that P is equiprobable on Ω; so we have: 

 𝑃𝑃 = 1
4

= 0.25   i.e 

P(ω=ω1=1)= P(ω=ω2= 2) = P(ω=ω3=3)= P(ω=ω4= 4) = 0.25 

We also define E as the whole possible states of the process, and E1, E2, E3, E4 as: 

http://dx.doi.org/10.14738/tmlai.82.6799
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 𝐸𝐸 = ⋃ 𝐸𝐸𝑖𝑖4
𝑖𝑖=1     , 

where E1 , E2,  E3 and E4   are respectively the whole possible state of the process to be: health, sick, health 
and treated, sick and treated. 

T represents the whole discrete time. 

We now define the electric conductance process G(ω,t) as: 

G:   Ω × T → E 

                                                                       (𝜔𝜔, 𝑡𝑡) → G(ω, t) 

Where   G(ω, t) = 𝐺𝐺𝑡𝑡(𝜔𝜔)  = �
E1  𝑖𝑖𝑖𝑖 𝜔𝜔 = 𝜔𝜔1 ,∀𝑡𝑡 ∈ 𝑇𝑇
𝐸𝐸2  𝑖𝑖𝑖𝑖  𝜔𝜔 = 𝜔𝜔2,    ∀𝑡𝑡 ∈ 𝑇𝑇 

 G(ω, t) = 𝐺𝐺𝑡𝑡(𝜔𝜔)  = �
E3  𝑖𝑖𝑖𝑖 𝜔𝜔 = 𝜔𝜔3 ,∀𝑡𝑡 ∈ 𝑇𝑇
𝐸𝐸4  𝑖𝑖𝑖𝑖  𝜔𝜔 = 𝜔𝜔4,    ∀𝑡𝑡 ∈ 𝑇𝑇 

𝑇𝑇 = {1,2,3,4,5,6,7,8,9,10 … ,16} ;   g i,j  is the jem  element  of Ei ; 
 

 𝑖𝑖 ∈ {1,2,3,4};   𝑗𝑗 ∈ {1,2,3,4,5,6,7,8,9,10 … ,16} ; 

Let us suppose:  ĝ m, n the m×n matrix of extra- cellular space conductance, and g i,j   one of its element; 
with m=4, n=26. We then have: 

ĝ𝑚𝑚,𝑚𝑚 = �𝑔𝑔𝑖𝑖,𝑗𝑗�1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 ≤ 𝑗𝑗 ≤ 𝑛𝑛    with  �𝑔𝑔𝑖𝑖,𝑗𝑗� = 𝐺𝐺(𝜔𝜔 = 𝜔𝜔𝑖𝑖, 𝑡𝑡 = 𝑗𝑗)                                   (3) 

 Statistical properties: 

 
Average :     𝑴𝑴𝑹𝑹 (𝒕𝒕) = ∑ 𝐺𝐺𝑡𝑡(𝜔𝜔𝑖𝑖) × 𝑃𝑃(𝜔𝜔 = 𝜔𝜔𝑖𝑖)𝟒𝟒

𝒊𝒊=𝟏𝟏    i.e                                                  (4) 

𝑴𝑴𝑹𝑹 (𝒕𝒕 = 𝒋𝒋) =  ∑ 𝑔𝑔𝑖𝑖,𝑗𝑗 × 𝑃𝑃(𝜔𝜔 = 𝜔𝜔𝑖𝑖)𝟒𝟒
𝒊𝒊=𝟏𝟏   i.e 

                                 𝑴𝑴𝑹𝑹 (𝒕𝒕 = 𝒋𝒋) = 𝟏𝟏
𝟒𝟒
�𝑔𝑔1,𝑗𝑗 + 𝑔𝑔2,𝑗𝑗 + 𝑔𝑔3,𝑗𝑗 + 𝑔𝑔4,𝑗𝑗�                                                         (5) 

- Autocorrelation function:  
 

     𝜏𝜏𝐺𝐺(𝑡𝑡 = 𝑖𝑖, 𝑡𝑡 = 𝑖𝑖 + 𝑘𝑘) = ∑ ∑ 𝑔𝑔𝑖𝑖,𝑗𝑗 × 𝑔𝑔𝑙𝑙+𝑘𝑘,𝑗𝑗
4
𝑙𝑙=1

4
𝑖𝑖=1 × 𝑃𝑃(𝜔𝜔 = 𝜔𝜔𝑖𝑖,𝜔𝜔 = 𝜔𝜔𝑙𝑙)                            (6)   

Where: 

 𝑃𝑃(𝜔𝜔 = 𝜔𝜔1,𝜔𝜔 = 𝜔𝜔2) =  𝑃𝑃(𝜔𝜔 = 𝜔𝜔1,𝜔𝜔 = 𝜔𝜔4) =  𝑃𝑃(𝜔𝜔 = 𝜔𝜔2,𝜔𝜔 = 𝜔𝜔3) = 0  , 
𝑃𝑃(𝜔𝜔 = 𝜔𝜔2,𝜔𝜔 = 𝜔𝜔1) =  𝑃𝑃(𝜔𝜔 = 𝜔𝜔4,𝜔𝜔 = 𝜔𝜔1) =  𝑃𝑃(𝜔𝜔 = 𝜔𝜔3,𝜔𝜔 = 𝜔𝜔2) = 0  
𝑃𝑃(𝜔𝜔 = 𝜔𝜔4,𝜔𝜔 = 𝜔𝜔3) = 𝑃𝑃(𝜔𝜔 = 𝜔𝜔3,𝜔𝜔 = 𝜔𝜔4) = 0      
 because the plant can’t be in health and sick at the same time, and 

 𝑃𝑃(𝜔𝜔 = 𝜔𝜔1,𝜔𝜔 = 𝜔𝜔3) =  𝑃𝑃(𝜔𝜔 = 𝜔𝜔2,𝜔𝜔 = 𝜔𝜔4) = 2
16

 ,  

𝑃𝑃(𝜔𝜔 = 𝜔𝜔3,𝜔𝜔 = 𝜔𝜔1) =  𝑃𝑃(𝜔𝜔 = 𝜔𝜔4,𝜔𝜔 = 𝜔𝜔2) =  2
16

  
The conjoint probability of plant to be respectively healthy and treated, sick and treated 

𝑃𝑃(𝜔𝜔 = 𝜔𝜔1,𝜔𝜔 = 𝜔𝜔1) = 𝑃𝑃(𝜔𝜔 = 𝜔𝜔2,𝜔𝜔 = 𝜔𝜔2) = 2
16

,  

 𝑃𝑃(𝜔𝜔 = 𝜔𝜔3,𝜔𝜔 = 𝜔𝜔3) = 𝑃𝑃(𝜔𝜔 = 𝜔𝜔2,𝜔𝜔 = 𝜔𝜔3) = 2
16

 ;  
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k∈ 𝑁𝑁 ;i + k ≤ 4, and l + k ≤ 4. 
Considering the above assumption, we then have: 

 

 (7) 

 

 Temporal properties: 
 

- Temporal average: 
 

                𝜇𝜇𝐺𝐺(𝜔𝜔 = 𝜔𝜔𝑖𝑖) =  𝟏𝟏
𝑵𝑵
�∑ 𝑔𝑔𝑖𝑖,𝑗𝑗𝟏𝟏𝟏𝟏

𝒋𝒋=𝟏𝟏 �                                                     (8) 
 

We deduced the average vector M (𝜇𝜇𝐺𝐺(𝜔𝜔 = 1), 𝜇𝜇𝐺𝐺(𝜔𝜔 = 2),𝜇𝜇𝐺𝐺(𝜔𝜔 = 3), 𝜇𝜇𝐺𝐺(𝜔𝜔 = 4)) and the standard 
deviation vector 𝝈𝝈(𝜎𝜎(𝜔𝜔 = 1),𝜎𝜎(𝜔𝜔 = 2),𝜎𝜎(𝜔𝜔 = 3),𝜎𝜎(𝜔𝜔 = 4)) 

- Temporal autocorrelation function:  
  

𝜇𝜇𝐺𝐺𝐺𝐺(𝜔𝜔 = 𝜔𝜔𝑖𝑖) =  𝟏𝟏
𝑵𝑵
�∑ 𝑔𝑔𝑖𝑖,𝑗𝑗𝟏𝟏𝟏𝟏

𝒋𝒋=𝟏𝟏 × 𝑔𝑔𝑖𝑖,𝑗𝑗+𝑘𝑘�                                               (9) 
k∈ 𝑁𝑁 ;  j + k ≤ 26 

2.2 Analysis according to information theory 

evaluation of the entropy  

The average information quantity is evaluated by the entropy, expressed as: 

𝐻𝐻(𝑋𝑋) = −∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑙𝑙𝑔𝑔𝑁𝑁
𝑖𝑖=1 (𝑃𝑃𝑖𝑖)                                                                 (10) 

Where 𝑃𝑃𝑖𝑖  is the probability of obtaining alphabet xi. 

The entropy was evaluated for two states of tomato plant. 

3 Results and Discussion 
We observe an oscillation of the electric conductance G(t)   whether the plant is health, sick, health and 
treated, or sick and treated (Figure1). The picks of conductance of sick and treated plant are higher than 
the conductance picks of sick and untreated plant. The conductance picks of sick and untreated plant are 
generally up to the electric conductance of the health plant.  

- Spectral density of power of the electric conductance. 
By using equations 1, 2, 3, we have: 
 

ϒ𝐺𝐺(𝜈𝜈) = �  �𝐴𝐴2(𝜈𝜈) + 𝐵𝐵2(𝜈𝜈)�
2

+ 4�𝐴𝐴2(𝜈𝜈)𝐵𝐵2(𝜈𝜈)�                               (11) 

 

Concerning the health plant, we have: 
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𝐴𝐴(𝜈𝜈) = �𝑔𝑔1,𝑗𝑗 cos 2𝜋𝜋𝜈𝜈𝑗𝑗
16

𝑗𝑗=1

 

𝐵𝐵(𝜈𝜈) = �𝑔𝑔1,𝑗𝑗 sin 2𝜋𝜋𝜈𝜈𝑗𝑗
16

𝑗𝑗=1

 

 

 
Figure 1: Behavior of electric conductance of plan under biotic stress. We observe an oscillation of the electric 
conductance G(t)   whether the plant is health, sick, health and treated, or sick and treated. The picks of 
conductance of sick and treated plant are higher than the conductance picks of sick and untreated plant. The 
conductance picks of sick and untreated plant are generally up to the electric conductance of the health, and sick 
plant. The conductance maxima of sick plant are also generally up the health one. 

Concerning the sick plant, we have: 

𝐴𝐴(𝜈𝜈) = �𝑔𝑔2,𝑗𝑗 cos 2𝜋𝜋𝜈𝜈𝑗𝑗
16

𝑗𝑗=1

 

𝐵𝐵(𝜈𝜈) = �𝑔𝑔2,𝑗𝑗 sin 2𝜋𝜋𝜈𝜈𝑗𝑗
16

𝑗𝑗=1

 

  
Concerning the health and treated plant, we have: 

𝐴𝐴(𝜈𝜈) = �𝑔𝑔3,𝑗𝑗 cos 2𝜋𝜋𝜈𝜈𝑗𝑗
16

𝑗𝑗=1

 

𝐵𝐵(𝜈𝜈) = �𝑔𝑔3,𝑗𝑗 sin 2𝜋𝜋𝜈𝜈𝑗𝑗
16

𝑗𝑗=1

 

 
Concerning sick and treated plant, we have: 

𝐴𝐴(𝜈𝜈) = �𝑔𝑔4,𝑗𝑗 cos 2𝜋𝜋𝜈𝜈𝑗𝑗
16

𝑗𝑗=1

 

𝐵𝐵(𝜈𝜈) = �𝑔𝑔4,𝑗𝑗 sin 2𝜋𝜋𝜈𝜈𝑗𝑗
16

𝑗𝑗=1
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We can observe on Figure2 that the DSP of health plant (green curve) is above the DSP of the sick plant 
(red curve). We can also observe that generally, the DSP of health and treated plant (yellow curve) is 
above the DSP of sick and treated plant (blue curve). However there is an overlapping between the DSP 
of sick and treated plant, and the health one for the whole value of the normalized reduced frequency. 

 
Figure 2. Spectral density of power of the electric conductance process G(ω,t) of  Solanum lycopersicum  leaf plant.  
We can observe that the DSP of health plant (green curve) is above the DSP of the sick plant (red curve). We can 
also observe that generally, the DSP of health and treated plant (yellow curve) is above the DSP of sick and treated 
plant (blue curve). However there is an overlapping between the DSP of sick and treated plant, and the health one 
for the whole value of the normalized reduced frequency. 

 Statistical properties: 
- Statistical average 

In Figure3, the curve reveals that the electric conductance process G(ω,t) is non-statistics in the broad 
sense (non SSL) ; due to the fact that the statistical average of the G(ω,t) process Is not constant during 
the time of evolution. The statistical average has an oscillatory behavior which decreases according to 
time. 

 
Figure 3.  Statistical average of electric conductance signal G(ω,t) according to time  of Solanum lycopersicum  leaf 
plant. The curve reveals that the electric conductance process G(ω,t) is non-statistics in the broad sense (non SSL) 
; due to the fact that the statistical average of the G(ω,t) process Is not constant during the time evolution. The 
statistical average has an oscillatory behavior which decreases according to time.  
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- Autocorrelation function 
The autocorrelation decreases when we pass from the state 1 to the state 4. The signal G(ω,t) of the health 
plant (state 1 ) is more correlate to the signal G(ω,t) of the sick plant (state 2) than the signal G(ω,t) of the 
sick and treated (state 3), and the health and treated (state 4) plant. The signal G(ω,t)  doesn’t depend 
only to displacement parameter k when passing from the health plant (state 1)  to the health and treated 
plant (state 4), but also  on time; it is not stationary as it is shown in the Figure 4. This implies that the 
electric conductance signal G(ω,t) of Solanum lycopersicum leaf plant is not a statistics process in the 
broad sense (SSL). 
 

 Temporal properties: 
 

- Temporal average and standard deviation    
 
The obtained average vector of electric conductance signal G(ω,t)  is:  

 M (0.423𝜇𝜇𝜇𝜇, 0.342𝜇𝜇𝜇𝜇, 0.453𝜇𝜇𝜇𝜇, 0.492𝜇𝜇𝜇𝜇)   

 
 
Figure 4. Statistical autocorrelation of electric conductance signal G(ω,t) according to time and the state of  
Solanum lycopersicum  leaf plant. The autocorrelation decreases when we pass from the state 1 to the state 4. 
The signal G(ω,t) of the health plant (state 1 ) is more correlate to the signal G(ω,t) of the sick plant (state 2) than 
the signal G(ω,t) of the sick and treated (state 3), and the health and treated (state 4) plant. The signal G(ω,t)  
doesn’t depend only to displacement parameter k when passing from the health plant (state 1)  to the health and 
treated plant (state 4), but also  on time; it is not stationary as it is shown in the figure. This implies that the 
electric conductance signal G(ω,t) of Solanum lycopersicum leaf plant is not a statistics process in the broad sense 
(SSL).  

The average conductance of health plant is higher than the average conductance of sick plant. We also 
observed that, average conductance of health and treated plant is lower than the average conductance 
of sick and treated plant. 

The standard deviation vector of the process is: 

 𝝈𝝈(0.255,0.239,0.276,0.337) 
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The standard deviation of health plant is higher than the standard deviation of sick plant. We also 
observed that, standard deviation of health and treated plant is lower than the standard deviation of sick 
and treated plant. 

- Temporal autocorrelation function 

Autocorrelation has an oscillatory behavior according to time. Autocorrelation is higher for the health 
plant (state 1) than the other states. The lower autocorrelation is observed for the sick plant (state 2). 
Autocorrelation depends at the same time of the parameter of time evolution and the state of the plant; 
this implies that electric conductance G(ω,t)   of the plant is a non ergotic signal (Figure5). 

 
Figure 5. Temporal autocorrelation function according to time and the state of Solanum lycopersicum  leaf plant. 
Autocorrelation has an oscillatory behavior according to time. Autocorrelation is higher for the health plant (state 
1) than the other states. The lower autocorrelation is observed for the sick plant (state 2). Autocorrelation 
depends at the same time of the parameter of time evolution and the state of the plant; this implies that electric 
conductance G(ω,t)   of the plant is a non ergotic signal. 

 evaluation of the entropy  
- Entropy of the health plant 

  

Alphabet xi 0.625 1.111 0.666 0.357 0.555 0.5 0.312 0.303 0.344 0.322 0.384 0.37 
P(X=xi) 2/16 2/16 2/16 1/16 2/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 

 

 
𝐻𝐻(𝑋𝑋) = −∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑙𝑙𝑔𝑔𝑁𝑁=12

𝑖𝑖=1 (𝑃𝑃𝑖𝑖)     =     1.520𝑠𝑠ℎ                                          (12) 
 

- Entropy of the sick plant 
  

Alphabet xi 0.454 0.833 0.312 1.0 0.434 0.588 0.277 0.714 0.303 0.204 0.243 0.227 0.161 
P(X=xi) 1/16 1/16 2/16 1/16 3/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 

 
 𝐻𝐻(𝑋𝑋) = −∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑙𝑙𝑔𝑔𝑁𝑁=13

𝑖𝑖=1 (𝑃𝑃𝑖𝑖)     =      3.577𝑠𝑠ℎ                                            (13) 

Knowing that the passive electric characteristics reflect the degree of viability of life cells [7], one can say 
that electric conductance reveals the level of viability and vitality of a life cells. The fact that the means 
conductance of health plant (0.423𝜇𝜇𝜇𝜇) is higher than the means conductance of the sick one(0.342𝜇𝜇𝜇𝜇) 
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revealed that the infection has decreased the vitality of the plant. One can also say that the infection of 
the plant by phytophthora (pathogenic agent of the mildew) perturbs the electric fluctuation of plant; 
what results in the lower standard deviation of the sick plant (0.239 )than the health one (0.255). 
However the treatment of the sick plant with the ridomil MC fungicide increases the vitality and viability 
of plant which is revealed through the higher values of conductance means (0.492𝜇𝜇𝜇𝜇) and standard 
deviation (0.337). The ridomil MC fungicide also increases the vitality and viability of the health plant due 
to the higher values of conductance means (0.453𝜇𝜇𝜇𝜇) and standard deviation (0.276) of the health and 
treated plant than conductance means  and standard deviation  of the health and no treated plant with 
ridomil.  

When the plant was infected, a self-defense mechanism is started by the plant, which results in the higher 
conductance picks of the sick plant than the health plant (Figure 1). However the highest conductance 
picks observed in sick and treated plant can be due to the combine action of the self-defense mechanism 
and the addition of ions in the plant which came from ridomil.  

The fact that the DSP of health plant is above the DSP of the sick plant reveals that, the infection of the 
plant decreases its electrical energy. The treatment of health and sick plant which ridomil increases their 
DSP i.e. their electrical energy. However, ridomil increases the energy of sick plant to the level of health 
plant. That is why we can observe there an overlapping between the DSP of sick and treated plant and the 
health one (Figure 2). 

The fact that the statistical average of the G(ω,t) process is not constant during the time evolution may 
be explained by life nature of plant, i.e. the plant is not an inert matter. The physiological process of our 
four groups of plants is not uniform during the time evolution (Figure3).  

The statistical autocorrelation, when there exists, is accentuated  between the health plant and the sick 
one (Figure4). It reveals the level of reciprocal dependence between the conductance of health plant and 
the conductance of the sick one. The temporal autocorrelation is higher for the health plant than the sick 
one (Figure5). The weak correlation observed in the electric conductance may be due to the perturbation 
of phytophthora (pathogenic agent of the mildew). 

Knowing that, the entropy reveals the information quantity, one can say that the entropy of the health 
plant (1.520) reveals the information quantity directly linked to the physiological activity of the health 
plant. However, when the plant is infected, the plant will activate a new physiological activity for it self-
defense; this will result to the additional information quantity (3.577). 

4 Conclusion 
The main concerned of our study was to provide different control parameters from which one can identify 
a sick plant before the appearance of the first symptoms. The tomato plants were set out in 4 groups. The 
first group was made up of plants into good health, the second group of the sick plants, the third group 
of plants into good health but treated by the ridomil, and the forth group was made up of sick plants 
which were treated by the ridomil MC fungicide. It came out from our analysis that the conductance picks 
of sick plant are generally up to the electric conductance of the health one. The picks of conductance of 
sick and treated plant are higher than the conductance picks of sick and untreated plant.  The DSP of 
health plant is above the DSP of the sick plant. Generally, the DSP of health and treated plant is above the 
DSP of sick and treated plant. However there is an overlapping between the DSP of sick and treated plant, 
and the health one for the whole value of the normalized reduced frequency. The average conductance 
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of health plant is higher than the average conductance of sick plant. We also observed that, average 
conductance of health and treated plant is lower than the average conductance of sick and treated plant. 
The standard deviation of health plant is higher than the standard deviation of sick plant. We also 
observed that, standard deviation of health and treated plant is lower than the standard deviation of sick 
and treated plant. The electric conductance signal G(ω,t) of Solanum lycopersicum leaf plant is not a 
statistics process in the broad sense (SSL). Electric conductance G(ω,t)  of the plant is a non ergotic signal. 
The entropy of the sick plant is higher than the entropy of the health one.  
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ABSTRACT 

Odd numbers can be indexed by the map 𝑘𝑘(𝑛𝑛) = (𝑛𝑛 − 3) 2⁄ ,𝑛𝑛 ∈ 2ℕ + 3 . We first propose a basic 
primality test using this index function that was first introduced in [8]. Input size of operations is reduced 
which improves computational time by a constant. We then apply similar techniques to Atkin’s prime-
numbers sieve which uses modulus operations and finally to Pritchard’s wheel sieve, in both case yielding 
similar results. 

Keywords: odd number index, primality test, primes enumeration, Atkin sieve, composite odd numbers, 
wheel sieve. 

1 Introduction 

1.1 Primality test and prime enumeration 

An odd number 𝑛𝑛 is prime when it is not divisble by any prime 𝑝𝑝 lower than or equal to √𝑛𝑛. This basic 
primality test requires too much computational time for large integers. Faster and more efficient 
deterministic and probabilistic primality tests have been designed for large numbers [1]. A deterministic 
polynomial primality test was proposed by M. Agrawal, N. Kayal and N. Saxena in 2002 [2]. 

Enumeration of primes up to a given limit can be done by using a primality test but prime number sieves 
are preferred from a performance point of view. A sieve is a type of fast algorithm to find all primes up to 
a given number. There exists many such algorithms, from the simple Erastosthenes’ sieve (invented more 
than 2000 years ago), to the wheel sieves of Paul Pritchard ([3], [4], [5]) and the sieve of Atkin [6]. In [7], 
Gabriel Paillard, Felipe Franca and Christian Lavault present another version of the wheel sieve and give 
an overview of all the existing prime-numbers sieves. 

In theory, indices are a way to represent odd numbers. By adapting results from [8], we show how odd 
number indices may be used in applied mathematics. In the last part, we apply [8] to Pritchard’s wheel 
sieve, which leads to a 𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑𝑙𝑙 wheel sieve. Using the linear diophantine equation resolution method 
first introduced in [9], we introduce an original way of “turning the wheel”. 

1.2 Notation 
We will use the following notations: 
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1. 𝐼𝐼 designates the set of odd integers greater than 1, i.e.: 

𝐼𝐼 = {𝑁𝑁𝑘𝑘 = 2𝑘𝑘 + 3|𝑘𝑘 ∈ ℕ}; 

2. 𝑃𝑃 the set of prime numbers, 𝑃𝑃𝜋𝜋 the set of prime numbers not greater than 𝑛𝑛; 

3. 𝐶𝐶 the set of composite odd integers, i.e.: 

𝐶𝐶 = 𝐼𝐼\𝑃𝑃 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|∃(𝑑𝑑, 𝑏𝑏) ∈ 𝐼𝐼,𝑁𝑁𝑘𝑘 = 𝑑𝑑𝑏𝑏} 

The function 𝑖𝑖: 𝑘𝑘 ∈ ℕ⟼ 𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼  is bijective. The inverse function is 𝑖𝑖−1:𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼 ⟼ 𝑘𝑘 = 𝑁𝑁𝑘𝑘−3
2

. 𝑘𝑘 =
𝑖𝑖−1(𝑁𝑁𝑘𝑘) is the index of 𝑁𝑁𝑘𝑘. The preimage of 𝐶𝐶 is denoted by 𝑊𝑊: 

𝑊𝑊 = 𝑖𝑖−1(𝐶𝐶) = {𝑘𝑘 ∈ ℕ| 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶} 

4. For 𝑥𝑥 and 𝑑𝑑 two integers, we denote by 𝑥𝑥 mod 𝑑𝑑 the remainder of the Euclidean division of 𝑥𝑥 by 𝑑𝑑, 
which belongs to ⟦0,𝑑𝑑 − 1⟧. 

 

5. 𝑁𝑁1 and 𝑁𝑁2 are the subsets of 𝐼𝐼 given by: 

𝑁𝑁1 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|𝑁𝑁𝑘𝑘  mod 4 = 1} 

𝑁𝑁2 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|𝑁𝑁𝑘𝑘  mod 4 = 3} 

Similarly: 

𝐶𝐶1 = 𝑁𝑁1 ∩ 𝐶𝐶 

𝐶𝐶2 = 𝑁𝑁2 ∩ 𝐶𝐶 

Finally, 𝜇𝜇1 and 𝜇𝜇2 designate the set of indices corresponding to elements of 𝐶𝐶1 and 𝐶𝐶2 respectively, i.e. 
𝜇𝜇1 = 𝑖𝑖−1(𝐶𝐶1) and 𝜇𝜇2 = 𝑖𝑖−1(𝐶𝐶2). 

 

2 Basic primality test and primes enumeration 

2.1 Two families of infinite sequences with arithmetic difference 
[8] shows that 𝑊𝑊  is the union of two families of finite sequences with arithmetic difference. Actually 
proposition 2-5 says that any composite odd number 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶  can be written as a difference of two 
squares, and more precisely that there exists 𝑗𝑗 ∈ ℕ and 𝑥𝑥 ∈ ⟦0, 𝑗𝑗⟧ such that: 

�
(𝟏𝟏) 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1 ⇒ 𝑁𝑁𝑘𝑘 = (2𝑗𝑗 + 3)2 − (2𝑥𝑥)2,       
(𝟐𝟐) 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2 ⇒ 𝑁𝑁𝑘𝑘 = (2𝑗𝑗 + 4)2 − (2𝑥𝑥 + 1)2 

 

Corollary 2-1: Let 𝑘𝑘𝑗𝑗(𝑛𝑛) = (2𝑗𝑗 + 3)𝑛𝑛 + 𝑗𝑗. One has: 

𝑊𝑊 = 𝜇𝜇1 ∪ 𝜇𝜇2 

and: 

𝜇𝜇1 = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥;  𝑖𝑖 ∈ ℕ, 𝑥𝑥 ∈ ℕ}
𝜇𝜇2 = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥; 𝑖𝑖 ∈ ℕ, 𝑥𝑥 ∈ ℕ}  
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Thus 𝑊𝑊 is the union of two families of infinite arithmetic sequences. The indices 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) of first type 
reference points (or remarkable points, see[8]) are the initial terms of sequences ranging in 𝜇𝜇1. Similarly, 
the indices 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) of second type reference points are the initial terms of sequences ranging in 𝜇𝜇2. 

Proof: We substitute 𝑗𝑗 by 𝑖𝑖 + 𝑥𝑥 in relations (1) and (2):  

(2𝑗𝑗 + 3)2 − (2𝑥𝑥)2 = (2𝑖𝑖 + 2𝑥𝑥 + 3)2 − (2𝑥𝑥)2 = (2𝑖𝑖 + 3)(2𝑖𝑖 + 4𝑥𝑥 + 3)
= 2[𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥] + 3 

and similarly: 

(2𝑗𝑗 + 4)2 − (2𝑥𝑥 + 1)2 = (2𝑖𝑖 + 2𝑥𝑥 + 4)2 − (2𝑥𝑥 + 1)2 = (2𝑖𝑖 + 3)(2𝑖𝑖 + 4𝑥𝑥 + 5)
= 2(2𝑖𝑖 + 3)(𝑖𝑖 + 2𝑥𝑥 + 2) + 2𝑖𝑖 + 3 = 2[𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥] + 3 

 

Proposition 2-1: For any 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶 there exists 𝑋𝑋 ∈ 𝑃𝑃, 𝑋𝑋 ≤ �𝑁𝑁𝑘𝑘  and 𝑥𝑥 ∈ ℕ such that: 

𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1 ⇒ 𝑁𝑁𝑘𝑘 = 𝑋𝑋(𝑋𝑋 + 4𝑥𝑥) 

𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2 ⇒ 𝑁𝑁𝑘𝑘 = 𝑋𝑋(𝑋𝑋 + 4𝑥𝑥 + 2) 

Thus, writing 𝑋𝑋 = 2𝑖𝑖 + 3, we get: 

𝑊𝑊 = 𝜇𝜇1′ ∪ 𝜇𝜇2′  

where: 

𝜇𝜇1′ = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥;  𝑖𝑖 ∈ ℕ ∖𝑊𝑊, 𝑥𝑥 ∈ ℕ}
𝜇𝜇2′ = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥; 𝑖𝑖 ∈ ℕ ∖𝑊𝑊, 𝑥𝑥 ∈ ℕ}  

Proof: Take 𝑋𝑋 the smallest prime dividing 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶. Thus 𝑋𝑋 ∈ 𝑃𝑃�𝑁𝑁𝑘𝑘  and if 𝑌𝑌 = 𝑁𝑁𝑘𝑘
𝑋𝑋

 then 𝑌𝑌 ≥ 𝑋𝑋 and 𝑌𝑌 − 𝑋𝑋 is 

even, and we can write it either 4𝑥𝑥 or 4𝑥𝑥 + 2. These two cases clearly correspond respectively to 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1 
and 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2. Thus the index 𝑘𝑘 can be decomposed as in corollary 2-1, but with 𝑖𝑖 the index of a prime 
number, hence in ℕ ∖𝑊𝑊. 

2.2 Basic primality test 
In this section, we describe a basic primality test using the previous infinite sequences. 

Definition 2-2: For any 𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃 and 𝑁𝑁 ∈ 𝐼𝐼 we let: 

1- 𝐴𝐴(𝑁𝑁,𝑝𝑝) = 𝑁𝑁 − 𝑝𝑝2 and 𝑖𝑖𝐴𝐴(𝑝𝑝) = 𝑝𝑝2. 
 

2- 𝐵𝐵(𝑁𝑁,𝑝𝑝) = 𝑁𝑁 − 𝑝𝑝(𝑝𝑝 + 2) and 𝑖𝑖𝐵𝐵(𝑝𝑝) = 𝑝𝑝(𝑝𝑝 + 2). 
 

Proposition 2-2: 𝑁𝑁 ∈ 𝑁𝑁1 is a prime number when: 

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√𝑁𝑁  ,
𝐴𝐴(𝑁𝑁,𝑝𝑝)

4
 mod 𝑝𝑝 ≠ 0 

𝑁𝑁 ∈ 𝑁𝑁2 is a prime number when: 

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√𝑁𝑁  ,
𝐵𝐵(𝑁𝑁,𝑝𝑝)

4
 mod 𝑝𝑝 ≠ 0 
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Proof: This follows from the fact that 𝐴𝐴(𝑁𝑁,𝑝𝑝) mod 𝑝𝑝 = 𝑁𝑁 mod 𝑝𝑝 and likewise for 𝐵𝐵(𝑁𝑁,𝑝𝑝). 

Remark 2-2: In order to reduce computation of 𝐴𝐴(𝑁𝑁,𝑝𝑝) and 𝐵𝐵(𝑁𝑁,𝑝𝑝) for two consecutive prime numbers, 
we only decrement the value. 

More precisely, if 𝑝𝑝 < 𝑝𝑝′ are two primes, we let 𝛼𝛼(𝑝𝑝,𝑝𝑝′) = 𝑝𝑝′ − 𝑝𝑝 and we compute: 

�
𝛥𝛥𝐴𝐴(𝑁𝑁,𝑝𝑝,𝑝𝑝′) = 𝐴𝐴(𝑁𝑁,𝑝𝑝) − 𝐴𝐴(𝑁𝑁,𝑝𝑝′) = 𝛼𝛼(𝛼𝛼 + 2𝑝𝑝)
𝛥𝛥𝐵𝐵(𝑁𝑁,𝑝𝑝,𝑝𝑝′) = 𝐵𝐵(𝑁𝑁,𝑝𝑝) − 𝐵𝐵(𝑁𝑁,𝑝𝑝′) = Δ𝐴𝐴(𝑁𝑁,𝑝𝑝, 𝑝𝑝′) + 2𝛼𝛼 

These two expressions are independent of 𝑁𝑁. 

2.3 Primality test with indices 
We adapt here the results of the previous section with indices. 

Definition 2-3: For any 𝑖𝑖 index of a prime number 𝑝𝑝 ∈ 𝑃𝑃 and 𝑘𝑘 ∈ ℕ, we let: 

1- 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) = (𝑘𝑘 − 3) 2⁄ − 𝑖𝑖(𝑖𝑖 + 3), 𝑖𝑖𝐴𝐴′(𝑖𝑖) = 𝑖𝑖(𝑖𝑖 + 3), 𝑔𝑔𝐴𝐴′ (𝑘𝑘) = (𝑘𝑘 − 3) 2⁄  
 

2- 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) = (𝑘𝑘 − 6) 2⁄ − 𝑖𝑖(𝑖𝑖 + 4) and 𝑖𝑖𝐵𝐵′(𝑖𝑖) = 𝑖𝑖(𝑖𝑖 + 4), 𝑔𝑔𝐵𝐵′ (𝑘𝑘) = (𝑘𝑘 − 6) 2⁄  
 

Proposition 2-3: 𝑘𝑘 ∈ 𝜇𝜇1 is a prime number index when: 

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√2𝑘𝑘+3 ,𝐴𝐴′(𝑘𝑘, 𝑖𝑖) mod 𝑝𝑝 ≠ 0 

𝑘𝑘 ∈ 𝜇𝜇2 is a prime number index when: 

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√2𝑘𝑘+3 ,𝐵𝐵′(𝑘𝑘, 𝑖𝑖) mod 𝑝𝑝 ≠ 0 

Proof: This follows from proposition 2-2 and definition 2-2 because if we let 𝑁𝑁 = 2𝑘𝑘 + 3 then 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) =
𝐴𝐴(𝑁𝑁,𝑝𝑝)

4
 and 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) = 𝐵𝐵(𝑁𝑁,𝑝𝑝)

4
. 

Remark 2-3: In order to reduce computation of 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) and 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) for two consecutive prime number 
indices, we only decrement their values. 

More precisely, if 𝑖𝑖 < 𝑖𝑖′ are two prime indices we let 𝛼𝛼′(𝑖𝑖, 𝑖𝑖′) = 𝑖𝑖′ − 𝑖𝑖 and we compute: 

Δ𝐴𝐴′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) = 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) − 𝐴𝐴′(𝑘𝑘, 𝑖𝑖′) = 𝛼𝛼′(𝛼𝛼′ + 2𝑖𝑖 + 3) 

 Δ𝐵𝐵′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) = 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) − 𝐵𝐵′(𝑘𝑘, 𝑖𝑖′) = Δ𝐴𝐴′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) + 𝛼𝛼′ 

These two expressions are independent of 𝑘𝑘. 

2.4 First algorithms of prime enumeration 
In this section, we present prime enumeration algorithms based on propostion 2-2 and 2-3. The first one 
manipulates numbers and the second one indices. 

2.4.1 Primality test using numbers 

This first algorithm named PrimeEnumeration consists in two functions: 

 The main function which determines primes in up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and returns them in a list, along 
with its size. 

 An auxiliary function which returns whether a number 𝑁𝑁 is prime, based on precomputed list 
of primes and values of Δ𝐴𝐴 and Δ𝐵𝐵. It is called LocalTest. It is also in charge of updating the 
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lists Δ𝐴𝐴 and Δ𝐵𝐵 if needed. 

Three zero-based lists are used and built recursively in this algorithm: the list of primes itself 𝐿𝐿𝑝𝑝, and the 
lists of values for Δ𝐴𝐴 and Δ𝐵𝐵 respective to 𝐿𝐿𝑝𝑝 (remember it is independent from 𝑁𝑁). Only numbers which 
are not multiples of 2 and 3 are tested. Thus we restrict to 𝑁𝑁 = 6𝑚𝑚 + 1 and 𝑁𝑁 = 6𝑚𝑚 + 5. The congruence 
of 𝑁𝑁  modulo 4  depends on the parity of 𝑚𝑚 , i.e. when 𝑚𝑚  is even, 𝑁𝑁 mod 4 = 1  and when 𝑚𝑚  is odd, 
𝑁𝑁 mod 4 = 3. 

 

Algorithm 2-4-1a Function PrimeEnumeration(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is an odd integer such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 7. This 
function returns the list of primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and its size. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {5}      List of primes from 5, initialized with one element 

𝑖𝑖𝑙𝑙 ← 1      Size of the list 𝐿𝐿𝑝𝑝 

      About the next two lists, see the remark 2-2 

Δ𝐴𝐴 ← {16}     Δ𝐴𝐴(𝑁𝑁, 3,5) = 2 × (2 + 6) = 16 

Δ𝐵𝐵 ← {20}     Δ𝐵𝐵(𝑁𝑁, 3,5) = Δ𝐴𝐴(𝑁𝑁, 3,5) + 2 × 2 = 20 

𝑖𝑖𝑟𝑟1 → 0  

𝐶𝐶𝑑𝑑𝑝𝑝1 ← 25  

𝑖𝑖𝑟𝑟2 → 0  

𝐶𝐶𝑑𝑑𝑝𝑝2 ← 35  

Second step : iteration 

(𝑚𝑚,𝑁𝑁) ← (1,7)  

𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒 ← False    𝑚𝑚 = 1 so (6𝑚𝑚 + 1) mod 4 = 3 

While 𝑁𝑁 ≤ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 Do    Loop to get odd primes in range ⟦5,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧ 

  If LocalTest(𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝑑𝑑𝑝𝑝1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝑑𝑑𝑝𝑝2,𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒) Do 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑁𝑁 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑁𝑁 ← 6𝑚𝑚 + 5 

  If 𝑁𝑁 ≤ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝑑𝑑𝑝𝑝1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝑑𝑑𝑝𝑝2,𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒) Do 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑁𝑁 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 
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  𝑚𝑚 ← 𝑚𝑚 + 1 

  𝑁𝑁 ← 6𝑚𝑚 + 1 

  𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒 ← !𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒  Switch the boolean value 

End While 

Return ({2,3} + 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 + 2)  Return the list of primes and the number of primes. 

 

 

Algorithm 2-4-1b Function LocalTest (𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝑑𝑑𝑝𝑝1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝑑𝑑𝑝𝑝2,𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒 ): 𝑁𝑁  is an odd 
integer. 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡  stands for 𝑖𝑖𝑟𝑟1 or 𝑖𝑖𝑟𝑟2 depending on 𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒. This function decides whether for all 𝑝𝑝 ∈
𝐿𝐿𝑝𝑝[0 … 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡], 𝐴𝐴(𝑁𝑁,𝑝𝑝)/4 or 𝐵𝐵(𝑁𝑁,𝑝𝑝)/4 is not divisible by 𝑝𝑝. It will also potentially update Δ𝐴𝐴, Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1, 𝑖𝑖𝑟𝑟2, 
𝐶𝐶𝑑𝑑𝑝𝑝1 and 𝐶𝐶𝑑𝑑𝑝𝑝2 which must be passed by reference. 

 

First step : intialisation of variables 

𝐴𝐴 ← 9      stands for 𝑖𝑖𝐴𝐴(3) = 32 

𝐵𝐵 ← 15     stands for 𝑖𝑖𝐵𝐵(3) = 3 × 5 

If 𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒 Do   initiate references that might be updated 

  𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ← 𝑖𝑖𝑟𝑟1 

  𝐶𝐶𝑑𝑑𝑝𝑝 ← 𝐶𝐶𝑑𝑑𝑝𝑝1 

  Δ ← Δ𝐴𝐴 

Else 

  𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ← 𝑖𝑖𝑟𝑟2 

  𝐶𝐶𝑑𝑑𝑝𝑝 ← 𝐶𝐶𝑑𝑑𝑝𝑝2 

  Δ = Δ𝐵𝐵 

End If 

If 𝑁𝑁 = 𝐶𝐶𝑑𝑑𝑝𝑝 Do 

  Return False    The cap is a composite number 

End If 

If 𝑁𝑁 > 𝐶𝐶𝑑𝑑𝑝𝑝 Do    update references because we always want 𝑁𝑁 ≤ 𝐶𝐶𝑑𝑑𝑝𝑝 

  𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ← 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 + 1 

  𝛼𝛼 ← �𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡)− 𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 − 1)� 

  If 𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒 Do 

    Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) ← 𝛼𝛼(𝛼𝛼 + 2𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 − 1))   Δ𝐴𝐴 
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  Else 

    Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) ← Δ𝐴𝐴(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) + 2𝛼𝛼    Δ𝐵𝐵, using Δ𝐴𝐴 which must already be updated 

  End If 

  𝐶𝐶𝑑𝑑𝑝𝑝 ← 𝐶𝐶𝑑𝑑𝑝𝑝 + Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) 

End If 

Second step : iteration 

If 𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒 Do 

  𝑁𝑁 ← 𝑁𝑁 − 𝐴𝐴 

Else 

  𝑁𝑁 ← 𝑁𝑁 − 𝐵𝐵 

End If 

𝑖𝑖 ← 0   

While 𝑖𝑖 ≤ 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 Do   Iteration at most up to 𝑖𝑖 = 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡  

  𝑁𝑁 ← 𝑁𝑁 − Δ(𝑖𝑖) 

  If (𝑁𝑁 4⁄ ) mod 𝐿𝐿𝑝𝑝(𝑖𝑖) = 0 Do  𝑁𝑁 is a multiple of 4, division by 4 can be done bitwise 

    Return False    Test is negative 

  End If 

  𝑖𝑖 ← 𝑖𝑖 + 1 

End While 

Return True    Test is positive 

 

2.4.2 Primality test using infinite sequences and indices 

This second algorithm IndexPrimeEnumeration also consists in two functions, mirroring the previous 
algorithm: 

 The main function which determines primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and returns them in a list along with 
its size. 

 An auxiliary function which returns whether a number 𝑁𝑁 is prime based on precomputed list 
of primes and values of Δ𝐴𝐴′ and Δ𝐵𝐵′. It is called LocalTest. 

Four zero-based lists are used and built recursively: the list of primes 𝐿𝐿𝑝𝑝, the corresponding indices 𝐼𝐼𝐿𝐿𝑝𝑝 
(indices of primes), and the lists Δ𝐴𝐴′ and Δ𝐵𝐵′ respective to 𝐿𝐿𝑝𝑝.  

Only numbers which are not multiple of 2 and 3 are tested, i.e. indices of the form 𝑘𝑘 = 3𝑚𝑚 − 1 and 𝑘𝑘 =
3𝑚𝑚 + 1. 

Remark 2-4-2: To avoid any division in the computation of 𝐴𝐴′ and 𝐵𝐵′ we will write 𝑚𝑚 = 2𝑡𝑡 + 1 or 2𝑡𝑡 + 2. 
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Algorithm 2-4-2a Function IndexPrimeEnumeration(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is an odd integer such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 7. 
This function returns the list of primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and its size. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {5}     List of primes from 5, initialized with one element 

𝐼𝐼𝐿𝐿𝑝𝑝 ← {1}    List of index of primes 

𝑖𝑖𝑙𝑙 ← 1     Size of the two lists 𝐿𝐿𝑝𝑝 and 𝐼𝐼𝐿𝐿𝑝𝑝 

     About the next two lists, see the remark 2-3 

Δ𝐴𝐴′ ← {4}    Δ𝐴𝐴′(𝑘𝑘, 0,1) = 1 × (1 + 3) = 4 

Δ𝐵𝐵′ ← {5}    Δ𝐵𝐵′(𝑘𝑘, 0,1) = Δ𝐴𝐴′(𝑘𝑘, 0,1) + 1 = 5 

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄  

𝑖𝑖𝑟𝑟1 → 0  

𝐶𝐶𝑑𝑑𝑝𝑝1 ← 11  

𝑖𝑖𝑟𝑟2 → 0  

𝐶𝐶𝑑𝑑𝑝𝑝2 ← 16  

Second step : iteration 

(𝑡𝑡, 𝑘𝑘,𝑔𝑔′) ← (0, 2,−2)    𝑘𝑘 starts at 3(2𝑡𝑡 + 1) − 1, 𝑔𝑔′ stands for 𝑔𝑔𝐴𝐴′ (𝑘𝑘) or 𝑔𝑔𝐵𝐵′ (𝑘𝑘) 

While 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 Do   Loop to get odd prime indices in range ⟦1,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧ 

  If LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝑑𝑑𝑝𝑝2,False) Do 

    𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑘𝑘 ← 𝑘𝑘 + 2    𝑘𝑘 = 3(2𝑡𝑡 + 1) + 1 

  𝑔𝑔′ ← 𝑔𝑔′ + 1 

  If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝑑𝑑𝑝𝑝2,False) Do 

    𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑘𝑘 ← 𝑘𝑘 + 1    𝑘𝑘 = 3(2𝑡𝑡 + 2) − 1 
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  𝑔𝑔′ ← 𝑔𝑔′ + 2 

  If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝑑𝑑𝑝𝑝1,True) Do 

    𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑘𝑘 ← 𝑘𝑘 + 2    𝑘𝑘 = 3(2𝑡𝑡 + 2) + 1 

  𝑔𝑔′ ← 𝑔𝑔′ + 1 

  If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝑑𝑑𝑝𝑝1,True) Do 

    𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑡𝑡 ← 𝑡𝑡 + 1    We do not use 𝑡𝑡 but keep it for the sake of readability 

  𝑘𝑘 ← 𝑘𝑘 + 1    𝑘𝑘 = 3(2𝑡𝑡 + 1) − 1 

  𝑔𝑔′ ← 𝑔𝑔′ − 1 

End While 

Return ({2,3} + 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 + 2)  Return the list of primes and the number of primes. 

 

 

Algorithm 2-4-2b Function LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ,𝐶𝐶𝑑𝑑𝑝𝑝,𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒): 𝑔𝑔′ stands for 𝑔𝑔𝐴𝐴′ (𝑘𝑘) 
or 𝑔𝑔𝐵𝐵′ (𝑘𝑘) depending on 𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒. This function decides whether for all 𝑝𝑝 ∈ 𝐿𝐿𝑝𝑝[0 … 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡], 𝐴𝐴′(𝑘𝑘, 𝑖𝑖)  or 
𝐵𝐵′(𝑘𝑘, 𝑖𝑖) is coprime with 𝑝𝑝. 

 

First step : intialisation of variables 

If 𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒 Do    initiate references that might be updated 

  Δ ← Δ𝐴𝐴′ 

Else 

  Δ = Δ𝐵𝐵′ 

End If 

If 𝑘𝑘 = 𝐶𝐶𝑑𝑑𝑝𝑝 Do 

  Return False    The cap is the index of a composite number 
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End If 

If 𝑘𝑘 > 𝐶𝐶𝑑𝑑𝑝𝑝 Do    update references because we always want 𝑘𝑘 ≤ 𝐶𝐶𝑑𝑑𝑝𝑝 

  𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ← 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 + 1 

  𝛼𝛼 ← �𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡)− 𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 − 1)� 

  If 𝑀𝑀𝑙𝑙𝑑𝑑𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒 Do 

    Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) ← 𝛼𝛼(𝛼𝛼 + 𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 − 1))   Δ𝐴𝐴′ 

  Else 

    Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) ← Δ𝐴𝐴′(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) + 𝛼𝛼    Δ𝐵𝐵′, using Δ𝐴𝐴′ which must already be updated 

  End If 

  𝐶𝐶𝑑𝑑𝑝𝑝 ← 𝐶𝐶𝑑𝑑𝑝𝑝 + Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) 

End If 

Second step : iteration 

𝑅𝑅 ← 𝑔𝑔′  

𝑖𝑖 ← 0   

While 𝑖𝑖 ≤ 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 Do   Iteration at most up to 𝑖𝑖 = 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡  

  𝑅𝑅 ← 𝑅𝑅 − Δ(𝑖𝑖) 

  If 𝑅𝑅 mod 𝐿𝐿𝑝𝑝(𝑖𝑖) = 0 Do 

    Return False    Test is negative 

  End If 

  𝑖𝑖 ← 𝑖𝑖 + 1 

End While 

Return True    Test is positive 

 

2.5 Performance of the algorithms 
In this section, we present the performance of the previous two algorithms of prime enumeration. We 
first give a theoretical complexity, followed by empirical results. 

Proposition 2-5: Time complexity (in terms of number of arithmetic operations) and space complexity are 
the same for both PrimeEnumeration and IndexPrimeEnumeration algorithms.  

Time complexity is:  

𝑀𝑀�
(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)

3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�. 
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Space complexity is: 

𝑀𝑀 �
�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� 

Proof: Any number 𝑛𝑛’s primality is tested with primes in �5,√𝑛𝑛�, in 𝑀𝑀(1) operations. There are  𝜋𝜋�√𝑛𝑛� −

2 ∼ √𝜋𝜋
ln�√𝜋𝜋�

= 𝑀𝑀 � √𝜋𝜋
ln(𝜋𝜋)�  such primes. We loop over range ⟦7,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧ , time complexity is thus 

∑ 𝑀𝑀 � √𝑡𝑡
ln(𝑡𝑡)�

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑡𝑡=7 = 𝑀𝑀 � (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)

3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�  (actually we skip two thirds of the terms in this sum by not testing 

multiples of 2 and 3, but complexity remains 𝑀𝑀� (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)
3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� albeit with smaller constant. 

The space complexity is related to the lists we keep in memory, which are at most of size 𝜋𝜋(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀). This 

space complexity is 𝑀𝑀 � �𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�. 

Both algorithms have been implemented in Visual Studio C++ 2012. We measured execution time for 
various values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and produced a regression using Maple 2017.3. Details of the Maple options used 
to get the regression are given in appendix 8.1. 

On the graph 2-5 below, we represent the computation time in seconds for both algorithms. Curve 𝑇𝑇1 
corresponds to the algorithm PrimeEnumeration and curve 𝑇𝑇2  to IndexPrimeEnumeration. The 
correlation coefficient R of each curve is given on the graph. We observe that computation time of both 
algorithms is consistent with theoretical complexity, although exponent is a bit smaller than 1.5. 

 

Figure 1: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Prime enumeration) 

 

Both algorithms PrimeEnumeration and IndexPrimeEnumeration have the same number of modulo 
operations. But the computation of the input of modulus operations is done with larger inputs for the 
former than for the latter, which allows to marginally save time for large values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

3 The sieve of Atkin 
The sieve of Atkin [6] is a modern and efficient algorithm for primes enumeration. We present two 
algorithms based on it, one using numbers and the other indices. Both are based on the version which has 
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a complexity 𝑀𝑀(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) in time and space. Modified versions achieve up to 𝑀𝑀 � 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
ln ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� in time and 

𝑀𝑀 �𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
1
2+𝑟𝑟(1)� in space. 

3.1 Atkin algorithm 
This algorithm is based on the following three results from [6]. 

Proposition 3-1 Let 𝑛𝑛 > 3 be a square-free integer. Then 𝑛𝑛 is prime if and only if one of the three following 
conditions is true: 

a. 𝑛𝑛 ∈ 1 + 4ℕ and there is an odd number of solutions to 𝑛𝑛 = 4𝑥𝑥2 + 𝑑𝑑2, (𝑥𝑥,𝑑𝑑) ∈ ℕ2, 
b. 𝑛𝑛 ∈ 7 + 12ℕ and there is an odd number of solutions to 𝑛𝑛 = 3𝑥𝑥2 + 𝑑𝑑2, (𝑥𝑥,𝑑𝑑) ∈ ℕ2, 
c. 𝑛𝑛 ∈ 11 + 12ℕ and there is an odd number of solutions to 𝑛𝑛 = 3𝑥𝑥2 − 𝑑𝑑2, 𝑥𝑥 > 𝑑𝑑, (𝑥𝑥,𝑑𝑑) ∈ ℕ2. 

 

We observe that the first congruence condition on 𝑛𝑛 can also be replaced by 𝑛𝑛 ∈ 1 + 12ℕ or 𝑛𝑛 ∈ 5 +
12ℕ. We also observe the following for an odd integer 𝑛𝑛: 

• If 𝑛𝑛 = 4𝑥𝑥2 + 𝑑𝑑2, 𝑑𝑑 must be odd. 
• If 𝑛𝑛 = 3𝑥𝑥2 + 𝑑𝑑2 or 𝑛𝑛 = 3𝑥𝑥2 − 𝑑𝑑2, 𝑥𝑥 and 𝑑𝑑 must have opposite parity. 

Furthermore if 𝑛𝑛 is square-free, 𝑥𝑥 and 𝑑𝑑 must be in ℕ∗, with 𝑥𝑥 < �𝑛𝑛/2  and 𝑑𝑑 < √𝑛𝑛. 

Remark 3-1 We can compute the remainder modulo 12 of 𝑑𝑑𝑥𝑥2 + 𝑏𝑏𝑑𝑑2 depending on remainders modulo 
12 of 𝑥𝑥 and 𝑑𝑑. This gives us the different cases to check in Atkin sieve. We present them in table 3-1, 
noting that there is no case for 𝑑𝑑 mod 12 = 0 and 𝑑𝑑 mod 12 = 6. 

Table 1: Atkin sieve cases depending on remainders modulo 𝟏𝟏𝟐𝟐 of 𝑴𝑴 and 𝒚𝒚. 

𝑥𝑥\𝑑𝑑 1 2 3 4 5 7 8 9 10 11 
0 4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2    4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 

4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2    4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 

1 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 

2 4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 
4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 

3 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 

4 4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 
4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 

5 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 

6 4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2    4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 
4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2    4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 

7 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 

8 4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 
4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 

9 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 

10 4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 
4𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2  4𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 

11 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 
3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 3𝑥𝑥2 + 𝑑𝑑2 

3𝑥𝑥2 − 𝑑𝑑2 4𝑥𝑥2 + 𝑑𝑑2 
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We could run the sieve looping through 12x12 blocks of (𝑥𝑥,𝑑𝑑) according to this table, but for readability 
we do not implement this optimization in the algorithms below. We note however that this would save 
all the modulo operations. 

 

Algorithm 3-1 SieveOfAtkin(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 3 is an integer. This function returns the list of all prime 
numbers less than 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {2, 3}     Dynamic list of odd primes 

𝑖𝑖𝑙𝑙 ← 2      Number of primes in the list 

Sieve[𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀] ← {False, …,False}  Array of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 entries all initialized to False 

 

𝑴𝑴𝒎𝒎𝑴𝑴𝑴𝑴 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀/2� − 1  Bound for 𝑥𝑥 

𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀� − 1    Bound for 𝑑𝑑 

 

Second step : iteration for first case 

For 𝑥𝑥 = 1 To 𝑴𝑴𝒎𝒎𝑴𝑴𝑴𝑴 

  For y = 1 To 𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 Step 2  𝑑𝑑 must be odd 

    𝑛𝑛 ← 4𝑥𝑥2 + 𝑑𝑑2 

    If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 1 Or 𝑛𝑛 mod 12 = 5) Do 

      Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]   Switch the boolean value Sieve[𝑛𝑛] 

    End If 

  End For 

End For 

Third step : iteration for second and third cases 

For 𝑥𝑥 = 1 To 𝑴𝑴𝒎𝒎𝑴𝑴𝑴𝑴 Step 2  

  For 𝑑𝑑 = 2 To 𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 Step 2  case where 𝑥𝑥 is odd and 𝑑𝑑 even 

    𝑛𝑛 ← 3𝑥𝑥2 + 𝑑𝑑2 

    If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 7) Do 

      Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

    End If 

    If 𝑥𝑥 > 𝑑𝑑 Do 
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      𝑛𝑛 ← 3𝑥𝑥2 − 𝑑𝑑2 

      If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  And (𝑛𝑛 mod 12 = 11) Do 

        Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

      End If 

    End If 

  End For 

End For 

For 𝑥𝑥 = 2 To 𝑴𝑴𝒎𝒎𝑴𝑴𝑴𝑴 Step 2  

  For y = 1 To 𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 Step 2  case where 𝑥𝑥 is even and 𝑑𝑑 is odd 

    𝑛𝑛 ← 3𝑥𝑥2 + 𝑑𝑑2 

    If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 7) Do 

     Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

    End If 

    If 𝑥𝑥 > 𝑑𝑑 Do 

      𝑛𝑛 ← 3𝑥𝑥2 − 𝑑𝑑2 

      If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  And (𝑛𝑛 mod 12 = 11) Do 

        Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

      End If 

    End If 

  End For 

End For 

Fourth step : remove multiples of prime squares 

For 𝑛𝑛 = 5 To 𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 Step 2  multiples of 2 and 3 are ignored by the previous iterations 

  If Sieve[𝑛𝑛] Do 

    For 𝑖𝑖 = 𝑛𝑛2 To 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step 2𝑛𝑛2 

      Sieve[𝑖𝑖] ← False 

    End For 

  End If 

End For 

Last step : return list of primes from the sieve 

For 𝑛𝑛 = 5 To 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step 2 
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  If Sieve[𝑛𝑛] Do 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑛𝑛 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

End For 

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙) 

 

3.2 Atkin algorithm with indices 
We can rewrite proposition 3-1 as: 

Corollary 3-2: 𝑘𝑘 is the index of a prime number if and only if 2𝑘𝑘 + 3 is square-free and one of the three 
following conditions is true: 

a. 𝑘𝑘 ∈ (1 + 6ℕ) ∪ (5 + 6ℕ) and there is an odd number of solutions to 𝑘𝑘 = 2𝑥𝑥2 + 𝑦𝑦2−3
2

, 

b. 𝑘𝑘 ∈ 2 + 6ℕ and there is an odd number of solutions to 𝑘𝑘 = 3𝑀𝑀2+𝑦𝑦2−3
2

, 

c. 𝑘𝑘 ∈ 4 + 6ℕ and there is an odd number of solutions to 𝑘𝑘 = 3𝑀𝑀2−𝑦𝑦2−3
2

 with 𝑑𝑑 < 𝑥𝑥. 
 

The relationships presented in the following remark are used in the next algorithm. 

Remark 3-2: For the fourth step (square multiples elimination), we note that if 𝑛𝑛 = 2𝑘𝑘 + 3, the index of 
𝑛𝑛2 is 2𝑘𝑘2 + 6𝑘𝑘 + 3 and that the step of 2𝑛𝑛2 translates into a step of 𝑛𝑛2 = (2𝑘𝑘 + 3)2 for indices. 

 

Algorithm 3-2 IndexSieveOfAtkin(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 3 is an odd integer. This function returns the list of all 
prime numbers less than 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {2, 3}     Dynamic list of primes 

𝑖𝑖𝑙𝑙 ← 2      Number of primes in the list 

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄     Index of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 

Sieve[𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀] ← {False, …,False}   Array of 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 entries all initialized to False 

𝑴𝑴𝒎𝒎𝑴𝑴𝑴𝑴 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀/2� − 1  Bound for 𝑥𝑥 

𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀� − 1    Bound for 𝑑𝑑 

Second step : iteration for first case 

For 𝑥𝑥 = 1 To 𝑴𝑴𝒎𝒎𝑴𝑴𝑴𝑴 

  For y = 1 To 𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 Step 2   𝑑𝑑 must be odd 
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    𝑘𝑘 ← 2𝑥𝑥2 + 𝑦𝑦2−3
2

 

    If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 1 Or 𝑘𝑘 mod 6 = 5) Do 

      Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]    Switch the boolean value Sieve[𝑛𝑛] 

    End If 

  End For 

End For 

Third step : iteration for second and third cases 

For 𝑥𝑥 = 1 To 𝑴𝑴𝒎𝒎𝑴𝑴𝑴𝑴 Step 2  

  For 𝑑𝑑 = 2 To 𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 Step 2   case where 𝑥𝑥 is odd and 𝑑𝑑 even 

    𝑘𝑘 ← 3𝑀𝑀2+𝑦𝑦2−3
2

 

    If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 2) Do 

      Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

    End If 

    If 𝑥𝑥 > 𝑑𝑑 Do 

      𝑘𝑘 ← 3𝑀𝑀2−𝑦𝑦2−3
2

 

      If 𝑘𝑘 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  And (𝑘𝑘 mod 6 = 4) Do 

        Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

      End If 

    End If 

  End For 

End For 

For 𝑥𝑥 = 2 To 𝑴𝑴𝒎𝒎𝑴𝑴𝑴𝑴 Step 2  

  For y = 1 To 𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴 Step 2   case where 𝑥𝑥 is even and 𝑑𝑑 is odd 

    𝑘𝑘 ← 3𝑀𝑀2+𝑦𝑦2−3
2

 

    If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 2) Do 

     Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

    End If 

    If 𝑥𝑥 > 𝑑𝑑 Do 

      𝑘𝑘 ← 3𝑀𝑀2−𝑦𝑦2−3
2
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      If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 4) Do 

        Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

      End If 

    End If 

  End For 

End For 

Fourth step : remove multiples of prime squares 

For 𝑘𝑘 = 1 To 𝒚𝒚𝒎𝒎𝑴𝑴𝑴𝑴−𝟑𝟑
𝟐𝟐

    multiples of 3 are ignored by the previous iterations 

  If Sieve[𝑘𝑘] Do 

    For 𝑖𝑖 = 2𝑘𝑘2 + 6𝑘𝑘 + 3 To 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step (2𝑘𝑘 + 3)2 

      Sieve[𝑖𝑖] ← False 

    End For 

  End If 

End For 

Last step : return list of primes from the sieve 

For 𝑘𝑘 = 1 To 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 − 1 

  If Sieve[𝑘𝑘] Do 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

End For 

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙) 

 

 
 

3.3 Performance of algorithms 
In this section, we discuss theoretical complexity and present our results with the two algorithms 
implementing the sieve of Atkin. 

The reference algorithm SieveOfAtkin has less operations index-based IndexSieveOfAtkin, which juggles 
between numbers and indices. But on the other hand SieveOfAtkin performs Euclidian divisions by 12, 
whereas IndexSieveOfAtkin does divisions by 6. This is due to the conversion of number 𝑛𝑛 into its index 
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𝑘𝑘 = (𝑛𝑛 − 3) 2⁄ . Furthermore, the latter only performs the sieve on odd numbers, which means effectively 
the memory space for the sieve is twice smaller. 

On the graph 3-3 below, we plot the computation time in seconds for both algorithms. The curve 𝑇𝑇3 
corresponds to SieveOfAtkin and the curve 𝑇𝑇4  to IndexSieveOfAtkin. We observe empirically that 
computation time of both algorithms looks slightly higher than linear, even though theoretically the 
number of operations appears to be linear in 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. Details of the Maple options used to get the regression 
are given in appendix 8.2. 

 

Graph 2: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Sieve of Atkin) 

The second algorithm is faster for larger values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, roughly for 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 109. For such values the cost 
of encoding numbers to indices is offset by the gain on modulo operations and halving the size of the 
sieve. We note also that memory size is halved for the second algorithm. 

4 Wheel sieve with indices 
We first describe Pritchard’s wheel sieve. Then we adapt it to indices and discuss a way to generate the 
integers of the turning wheel. 

4.1 Description of Pritchard’s wheel sieve 
This description is based on [7] and [4]. The wheel sieve operates by generating a set of numbers that are 
coprime with the first 𝑀𝑀 prime numbers. The second of these is the next prime, multiples of which are 
then eliminated (by turning the wheel). 

More precisely, let 𝑝𝑝0 = 2,𝑝𝑝1 = 3 … the sequence of prime numbers and let:  

Π𝑞𝑞 = �𝑝𝑝𝑘𝑘

𝑞𝑞

𝑘𝑘=0

 

ℛ(𝑚𝑚) = {𝑥𝑥 ∈ ⟦1,𝑚𝑚− 1⟧| gcd(𝑥𝑥,𝑚𝑚) = 1} 

𝒲𝒲𝑞𝑞 = ℛ�Π𝑞𝑞� 

The following proposition describes a “turn of the wheel”. 
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Proposition 4-1-1: We have the following inductive formula for 𝒲𝒲𝑞𝑞: 

𝒲𝒲0 = {1},𝒲𝒲1 = {1,5},𝒲𝒲2 = {1,7,11,13,17,19,23,29} 

∀𝑀𝑀 ∈ ℕ,𝒲𝒲𝑞𝑞+1 = � � �𝒲𝒲𝑞𝑞 + 𝑥𝑥Π𝑞𝑞�

𝑝𝑝𝑞𝑞+1−1

𝑀𝑀=0

� ∖ 𝑝𝑝𝑞𝑞+1�1,Π𝑞𝑞 − 1� 

Proof: The Chinese theorem ensures that 𝑚𝑚 ∈ 𝒲𝒲𝑞𝑞+1 if and only if 𝑚𝑚 mod Π𝑞𝑞 ∈ 𝒲𝒲𝑞𝑞 and 𝑚𝑚 ∉ 𝑝𝑝𝑞𝑞+1ℕ. This 
gives the desired set equality. 

Furthermore, induction formula for 𝒲𝒲𝑞𝑞  can also be used to recursively build the sequence of prime 
numbers: 

Proposition 4-1-2: The second smallest element of 𝒲𝒲𝑞𝑞 (𝑀𝑀 ≥ 1) is the next prime 𝑝𝑝𝑞𝑞+1. 

Proof: The first element is 1, which is obviously not prime. For 𝑀𝑀 ≥ 1, 𝑝𝑝𝑞𝑞 ≥ 3 and from proposition 4-1-1 
we can show (see corollary 4-2-2 later on) that 𝒲𝒲𝑞𝑞 has at least 2 elements. The second one must then be 
the smallest integer coprime with 𝑝𝑝0 …𝑝𝑝𝑞𝑞, and thus must be 𝑝𝑝𝑞𝑞+1. 

The elements of 𝒲𝒲𝑞𝑞 are called pseudo-primes (at order 𝑀𝑀). Some of them are primes and others are not. 
However, we have a boundary condition to identify some of the primes: 

Proposition 4-1-3: All integers in 𝒲𝒲𝑞𝑞 and less than 𝑝𝑝𝑞𝑞2 are sure to be primes. 

Proof: Any integer less than 𝑝𝑝𝑞𝑞2 is either prime or has a divisor among 𝑝𝑝0 …𝑝𝑝𝑞𝑞. The latter is impossible by 
definition of 𝒲𝒲𝑞𝑞. 

To enumerate primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, we thus have to keep turning the wheel as long as 𝑝𝑝𝑞𝑞+12 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

As Π𝑞𝑞 grows exponentially (in particular it can be easily proven from Bertrand’s postulate that Π𝑞𝑞 > 𝑝𝑝𝑞𝑞2 
from 𝑀𝑀 = 2), while we are only interested in pseudo-primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, we may replace in practice 𝒲𝒲𝑞𝑞 

by 𝒲𝒲𝑞𝑞
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒲𝒲𝑞𝑞 ∩ ⟦1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧. 

Proposition 4-1-4: The following inductive formula (or wheel turn) is true for all 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀: 

∀𝑀𝑀 ∈ ℕ,𝒲𝒲𝑞𝑞+1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 =

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛

� �𝒲𝒲𝑞𝑞 + 𝑥𝑥Π𝑞𝑞�

max�𝑝𝑝𝑞𝑞+1−1,�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝛱𝛱𝑞𝑞

��

𝑀𝑀=0
⎠

⎟
⎞
∖ 𝑝𝑝𝑞𝑞+1 �1, �

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑝𝑝𝑞𝑞+1

��

⎦
⎥
⎥
⎥
⎤
∩ ⟦1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧. 

Furthermore, if 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9, then as soon as 𝑝𝑝𝑞𝑞2 ≥ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑝𝑝0 …𝑝𝑝𝑞𝑞� ∪ �𝑊𝑊𝑞𝑞
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ∖ {1}�. 

Proof: By double inclusion (cf. proof of proposition 4-2-3). The second identity comes from the fact that if 
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9, 𝑝𝑝𝑞𝑞2 ≥ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 implies 𝑀𝑀 ≥ 2. 

Thus, when we turn the wheel, we remove integers that are, for a given 𝑚𝑚 ∈ 𝒲𝒲𝑞𝑞, and 𝑥𝑥,𝑑𝑑 integers, of the 
form: 

𝑚𝑚 + 𝑥𝑥Π𝑞𝑞 = 𝑑𝑑𝑝𝑝𝑞𝑞+1 

One way to do that is to remove all multiples of 𝑝𝑝𝑞𝑞+1. We will show however in section 4.2 that there is a 
relationship between the value of 𝑥𝑥, the multiples of Π𝑞𝑞  which are added to 𝒲𝒲𝑞𝑞 , and the composite 
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numbers 𝑑𝑑𝑝𝑝𝑞𝑞+1  which must be removed of the wheel 𝒲𝒲𝑞𝑞+1 , so that the index 𝑥𝑥  to remove can be 
predicted from 𝑚𝑚 or conversely. 

4.2 Index wheel sieve 
Definition 4-2: We note Π𝑞𝑞′  the product of all odd primes up to 𝑝𝑝𝑞𝑞, i.e. Π𝑞𝑞 = 2Π𝑞𝑞′ . 

We also note: 

𝑁𝑁(𝑚𝑚,𝑑𝑑, 𝑀𝑀) = 𝑚𝑚Π𝑞𝑞 + 𝑑𝑑 

and, with 𝑑𝑑′ the index of 𝑑𝑑: 

𝑘𝑘(𝑚𝑚,𝑑𝑑′, 𝑀𝑀) =
𝑁𝑁(𝑚𝑚, 2𝑑𝑑′ + 3, 𝑀𝑀) − 3

2
= 𝑚𝑚Π𝑞𝑞′ + 𝑑𝑑′ 

the index of 𝑁𝑁(𝑚𝑚, 𝑑𝑑, 𝑀𝑀). 

We let 𝒲𝒲𝑞𝑞
′ be the set of indices corresponding to 𝒲𝒲𝑞𝑞, with 1 replaced by Π𝑞𝑞 + 1 (which index is Π𝑞𝑞′ − 1): 

𝒲𝒲𝑞𝑞
′ = �

𝑛𝑛 − 3
2

,𝑛𝑛 ∈ 𝒲𝒲𝑞𝑞 ∖ {1}� ∪ �Π𝑞𝑞′ − 1� 

In this section, we describe how we adapt the wheel sieve to work with indices of odd integers. The limit 
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is supposed to be an odd integer of index 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. 

Recurrence relation verified by the index wheel sieve: 

The initial index wheels are 𝒲𝒲0
′ = {0}, 𝒲𝒲1

′ = {1,2}, 𝒲𝒲2
′ = {2,4,5,7,8,10,13,14}. 

Remark 4-2-1: The first element of 𝒲𝒲𝑞𝑞
′  is the index of the prime number 𝑝𝑝𝑞𝑞+1 . 𝒲𝒲𝑞𝑞

′  is included in 

�𝑝𝑝𝑞𝑞+1−3
2

,Π𝑞𝑞′ − 1�. 

Proof: Since we remapped 1 to Π𝑞𝑞 + 1 in 𝒲𝒲𝑞𝑞 to define 𝒲𝒲𝑞𝑞
′, and because the indexing map is increasing, 

the first element of 𝒲𝒲𝑞𝑞
′ is the index of prime 𝑝𝑝𝑞𝑞+1 from proposition 4-1-2 (we note that it works even for 

𝑀𝑀 = 0), and its last element is Π𝑞𝑞′ − 1. 

Proposition 4-2-1: The index wheel sieve is the only sequence of sets verifying: 

𝒲𝒲0
′ = {0} 

∀𝑀𝑀 ∈ ℕ,𝒲𝒲𝑞𝑞+1
′ = � � �𝒲𝒲𝑞𝑞

′ +𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1

𝑚𝑚=0

� ∖ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0,Π𝑞𝑞′ − 1�� 

Furthermore, indices in the wheel 𝒲𝒲𝑞𝑞
′ up to 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 correspond to all remaining prime numbers up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 

(on top of 𝑝𝑝0 …𝑝𝑝𝑞𝑞) as soon as: 

𝑝𝑝𝑞𝑞2 − 3
2

≥ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 

Proof: This comes from the definition 4-2 of the index wheel sieve, the proposition 4-1-1 and from 
observing that the index of any odd multiple 𝑑𝑑𝑝𝑝𝑞𝑞  of 𝑝𝑝𝑞𝑞 is of the form: 
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𝑑𝑑𝑝𝑝𝑞𝑞 − 3
2

=
𝑝𝑝𝑞𝑞 − 3

2
+ 𝑑𝑑′𝑝𝑝𝑞𝑞 ,𝑑𝑑′ =

𝑑𝑑 − 1
2

 

If we let 𝑝𝑝 = 2𝑖𝑖 + 3, this corresponds to the definition of 𝑘𝑘(𝑑𝑑′, 𝑖𝑖) in [8]: 𝑘𝑘(𝑑𝑑′, 𝑖𝑖) = 𝑖𝑖 + (2𝑖𝑖 + 3)𝑑𝑑′. 

Eliminating multiples of the next prime by solving a Diophantine equation: 

Proposition 4-2-2: For a given 𝑑𝑑 ∈ �0,Π𝑞𝑞′ − 1�, there exists a unique (𝑚𝑚𝑐𝑐 ,𝑑𝑑𝑐𝑐) ∈ �0,𝑝𝑝𝑞𝑞+1 − 1� ×𝒲𝒲𝑞𝑞 such 
that 𝑑𝑑 +𝑚𝑚𝑐𝑐Π𝑞𝑞′ = 𝑑𝑑𝑐𝑐𝑝𝑝𝑞𝑞+1 . Furthermore, 𝑚𝑚𝑐𝑐  only depends of 𝑑𝑑 mod 𝑝𝑝𝑞𝑞+1 , 𝑚𝑚0 = 0  and for 𝑑𝑑1 =
�−Π𝑞𝑞′ � mod 𝑝𝑝𝑞𝑞+1, 

𝑚𝑚𝑐𝑐1 = 1. 

For all 𝑑𝑑 ∈ 𝒲𝒲𝑞𝑞 one has 𝑑𝑑 mod 𝑝𝑝𝑞𝑞+1 = 𝑚𝑚𝑐𝑐𝑑𝑑1 mod 𝑝𝑝𝑞𝑞+1 

Remark 4-2-2: Using indices, we must solve (𝑚𝑚,𝑑𝑑′)  in the following equations for 𝑑𝑑′ ∈ 𝒲𝒲𝑞𝑞
′ : 

 𝑑𝑑′ + 𝑚𝑚Π𝑞𝑞′ =
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1 

so we will let 𝑑𝑑 = 𝑑𝑑′ − 𝑝𝑝𝑞𝑞+1−3
2

. 

Proof: Because Π𝑞𝑞′  and 𝑝𝑝𝑞𝑞+1 are coprime, existence and unicity of the solution are well-known. In [9] we 
introduced the concept of normalizer of such a Diophantine equation, and have shown its additive and 
multiplicative property. 

Clearly if 𝑑𝑑 ≡ 𝑑𝑑 [𝑝𝑝𝑞𝑞+1]  then (𝑚𝑚𝑐𝑐 −𝑚𝑚𝑑𝑑)Π𝑞𝑞′ ≡ 0 �𝑝𝑝𝑞𝑞+1�  and as Π𝑞𝑞′  and 𝑝𝑝𝑞𝑞+1  are coprime, 𝑚𝑚𝑐𝑐 ≡
𝑚𝑚𝑑𝑑  �𝑝𝑝𝑞𝑞+1�. 

Also, because 0 + 0.Π𝑞𝑞′ = 0.𝑝𝑝𝑞𝑞+1 we deduce that 𝑚𝑚0 = 0. 

Then from the fact that 𝑑𝑑1 + Π𝑞𝑞′ ∈ 𝑝𝑝𝑞𝑞+1ℤ we get that 𝑚𝑚𝑐𝑐1 = 1. 

Furthermore, for all 𝑑𝑑, by multiplicative property: 

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐1 ≡ 𝑚𝑚𝑐𝑐 .𝑚𝑚𝑐𝑐1 ≡ 𝑚𝑚𝑐𝑐  �𝑝𝑝𝑞𝑞+1� 

Thus, 𝑑𝑑 ≡ −𝑚𝑚𝑐𝑐Π𝑞𝑞′ ≡ −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐1Π𝑞𝑞
′ ≡ 𝑚𝑚𝑐𝑐𝑑𝑑1 �𝑝𝑝𝑞𝑞+1�. 

This proposition gives us an effective way of building all couples (𝑑𝑑,𝑚𝑚𝑐𝑐) modulo 𝑝𝑝𝑞𝑞+1: start from (𝑑𝑑1, 1) 
and add it to itself (modulo 𝑝𝑝𝑞𝑞+1) up to 𝑝𝑝𝑞𝑞+1 − 1 times (the last time we will get the couple (0,0 = 𝑚𝑚0)). 

Corollary 4-2-2: 𝒲𝒲𝑞𝑞 and 𝒲𝒲𝑞𝑞
′ have ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞

𝑘𝑘=1  elements. 

Proof: Let us proceed by induction on 𝑀𝑀. The property is true for 𝑀𝑀 = 0. Assume it is true for a given 𝑀𝑀 ∈
ℕ. From proposition 4-2-1, 

𝒲𝒲𝑞𝑞+1
′ = � � �𝒲𝒲𝑞𝑞

′ + 𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1

𝑚𝑚=0

� ∖ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0,Π𝑞𝑞′ − 1��. 

Thus ⋃ �𝒲𝒲𝑞𝑞
′ + 𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1
𝑚𝑚=0 = ⋃ �𝑑𝑑′ + Π𝑞𝑞′ �0,𝑝𝑝𝑞𝑞+1 − 1��𝑐𝑐′∈𝒲𝒲𝑞𝑞

′  has exactly 𝑝𝑝𝑞𝑞+1 ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1  elements, 

from which we must remove the indices of multiples of 𝑝𝑝𝑞𝑞+1. For a given 𝑑𝑑′ ∈ 𝒲𝒲𝑞𝑞
′, from proposition 4-2-

2 there is exactly one couple (𝑚𝑚,𝑑𝑑) such that: 
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𝑑𝑑′ + 𝑚𝑚Π𝑞𝑞′ =
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1 

i.e. there is only one element of 𝑑𝑑′ + Π𝑞𝑞′ �0,𝑝𝑝𝑞𝑞+1 − 1� in �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0,Π𝑞𝑞′ − 1��. So in total 

there are exactly ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1  elements in �⋃ (𝒲𝒲𝑞𝑞

′ +𝑚𝑚Π𝑞𝑞′ )𝑝𝑝𝑞𝑞+1−1
𝑚𝑚=0 � ∩ �𝑝𝑝𝑞𝑞+1−3

2
+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0,Π𝑞𝑞′ −

1��, thus �𝑝𝑝𝑞𝑞+1 − 1�∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1 = ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞+1

𝑘𝑘=1  elements in 𝒲𝒲𝑞𝑞+1
′ . 

Proposition 4-2-3: 𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒲𝒲𝑞𝑞

′ ∩ ⟦0,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧ verifies the following induction property. 

For all 𝑀𝑀 ∈ ℕ,𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀  is equal to: 

⎝

⎜
⎜
⎛

⎝

⎜⎜
⎛

� �𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚Π𝑞𝑞′ �

min�𝑝𝑝𝑞𝑞+1−1,�𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀
Π𝑞𝑞′

��

𝑚𝑚=0

⎠

⎟⎟
⎞
∖ �

𝑝𝑝𝑞𝑞+1 − 3
2 + 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0, min �𝛱𝛱𝑞𝑞′ − 1, �

2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 3
2𝑝𝑝𝑞𝑞+1

−
1
2���

�

⎠

⎟
⎟
⎞
∩ ⟦0, 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧ 

Proof: Let 𝑥𝑥 ∈ 𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. From proposition 4-2-1, there exists 𝑑𝑑′ ∈ 𝒲𝒲𝑞𝑞

′, 𝑚𝑚 ∈ �0,𝑝𝑝𝑞𝑞+1 − 1� such that 𝑥𝑥 =

𝑑𝑑′ +𝑚𝑚Π𝑞𝑞′ . But 𝑥𝑥 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 so 𝑚𝑚 ≤ �𝑘𝑘𝑀𝑀𝑑𝑑𝑥𝑥 Π𝑀𝑀′⁄ �. Furthermore, 𝑥𝑥 ∉ �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0,Π𝑞𝑞′ − 1�� so a 

fortiori: 

𝑥𝑥 ∉ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �

2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 3
2𝑝𝑝𝑞𝑞+1

−
1
2
����. 

Conversely, let 𝑥𝑥 ∈ �⋃ �𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚Π𝑞𝑞′ �

min�𝑝𝑝𝑞𝑞+1−1,�𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 Π𝑞𝑞′⁄ ��
𝑚𝑚=0 � ∩ ⟦0,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧  such that        𝑥𝑥 ∉

�𝑝𝑝𝑞𝑞+1−3
2

+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀−3
2𝑝𝑝𝑞𝑞+1

− 1
2
���� . The first condition means that 𝑥𝑥 ∈ 𝒲𝒲𝑞𝑞+1

′  if 

𝑥𝑥 ∉ �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑 ∈ �0,Π𝑞𝑞′ − 1��. But if that were the case, there would be 𝑑𝑑′ ∈ �1,Π𝑞𝑞′ − 1� such 

that 𝑥𝑥 = 𝑝𝑝𝑞𝑞+1−3
2

+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1. Thus 𝑑𝑑 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀−(𝑝𝑝𝑞𝑞+1−3) 2⁄
𝑝𝑝𝑞𝑞+1

= 2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀+3
2𝑝𝑝𝑞𝑞+1

− 1
2
, which cannot happen because 𝑥𝑥 ∉

�𝑝𝑝𝑞𝑞+1−3
2

+ 𝑑𝑑′𝑝𝑝𝑞𝑞+1,𝑑𝑑′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀+3
2𝑝𝑝𝑞𝑞+1

− 1
2
���� . 

 

4.3 Wheel sieve algorithms 
As per sections 4.1 and 4.2, the wheel sieve algorithms will consist in two steps: 

(A) A first step where the wheel will always grow, as long as Π𝑞𝑞 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, or: 
Π𝑞𝑞′ − 1 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀, 

(B) A second step where we will no longer grow the wheel, but will have to keep eliminating 
composite numbers, as long as 𝑝𝑝𝑞𝑞2 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, or: 

𝑝𝑝𝑞𝑞2 − 3
2

< 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. 

This is equivalent to saying that we replace 𝒲𝒲𝑞𝑞+1 by 𝒲𝒲𝑞𝑞+1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  and similarly 𝒲𝒲𝑞𝑞+1

′  by 𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. During 

step (B) we do not add new pseudo-primes, only remove those that we rule out as multiples of the next 
prime. Because Π𝑞𝑞 grows exponentially, there will generally be more iterations in step (B) than in step (A). 

Quick description of the steps of the index wheel sieve algorithm (see appendix for full algorithm): 
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As for the previous algorithms, we note 𝐿𝐿𝑝𝑝 the list of primes and 𝑖𝑖𝑙𝑙  its number of elements. 𝐼𝐼𝐿𝐿𝑝𝑝 represents 
the list of indices of odd primes, and 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝 the list of indices of squared odd primes. At step 𝑀𝑀, 𝐿𝐿𝑝𝑝 will 
contain all primes up to 𝑝𝑝𝑞𝑞2, coming from the wheel 𝒲𝒲𝑞𝑞

′, 𝐼𝐼𝐿𝐿𝑝𝑝 and 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝 being filled with the corresponding 
indices. 

1- Intialisation of the sieve for 𝑀𝑀 = 1: 𝐿𝐿𝑝𝑝 = {2,3,5,7}, 𝑖𝑖𝑙𝑙 = 4 𝐼𝐼𝐿𝐿𝑝𝑝 = {0,1,2}, 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝 = {3,11,23} and 
𝒲𝒲1

′ = {1, 2} with Π1′ = 3. 
2- While Π𝑞𝑞′ < 𝑘𝑘𝑚𝑚𝑀𝑀𝑀𝑀 (step A): 

a. We take 𝑝𝑝𝑞𝑞+1 from 𝐿𝐿𝑝𝑝 (or equivalently the first element of 𝒲𝒲𝑞𝑞). The list of pairs (𝑑𝑑,𝑚𝑚𝑐𝑐) 
such that 𝑑𝑑 + 𝑚𝑚𝑐𝑐Π𝑞𝑞′  has to be eliminated is then computed, according to proposition 4-
2-2. Then we build the wheel 𝒲𝒲𝑞𝑞+1

′ . 
b. Once this is done primes in the interval ⟦𝑝𝑝𝑖𝑖𝑙𝑙−1 + 2,𝑝𝑝𝑞𝑞+12 − 2⟧ are added to 𝐿𝐿𝑝𝑝 and 𝑖𝑖𝑙𝑙, 𝐼𝐼𝐿𝐿𝑝𝑝 

and 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝  are updated accordingly. Indices of the primes to add are those in 𝒲𝒲𝑞𝑞+1
′ ∩

�𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 1, 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝(𝑀𝑀) − 1�. 
3- While  𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝(𝑀𝑀) < 𝑘𝑘𝑚𝑚𝑀𝑀𝑀𝑀 (step B): 

a. Remove indices of multiples of 𝑝𝑝𝑞𝑞+1 from 𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀  to get 𝒲𝒲𝑞𝑞+1

′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. 
b. Once this is done primes in the interval ⟦𝑝𝑝𝑖𝑖𝑙𝑙−1 + 2,𝑝𝑝𝑞𝑞+12 − 2⟧ are added to 𝐿𝐿𝑝𝑝 and 𝑖𝑖𝑙𝑙, 𝐼𝐼𝐿𝐿𝑝𝑝 

and 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝  are updated accordingly. Indices of the primes to add are those in 𝒲𝒲𝑞𝑞+1
′ ∩

�𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 1, 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝(𝑀𝑀) − 1�. 
 

Remark 4-3-1: Let 𝑘𝑘1 and 𝑘𝑘2 be the indices of two odd numbers, respectively 𝑛𝑛1 and 𝑛𝑛2, such as 𝑛𝑛2 −
𝑛𝑛1 > 0. Let 𝛼𝛼 = 𝑘𝑘2 − 𝑘𝑘1. The difference between the indices 𝑛𝑛12 and 𝑛𝑛22 is: 

𝛽𝛽 = 2𝛼𝛼2 + 2𝛼𝛼𝑛𝑛1. 

Furthermore, if 𝑚𝑚 is another integer, the difference between the indices of 𝑛𝑛1𝑚𝑚 and 𝑛𝑛2𝑚𝑚 is: 

𝛾𝛾 = 𝛼𝛼𝑚𝑚. 

Proof: Note that 𝑛𝑛2 − 𝑛𝑛1 = 2𝛼𝛼 and thus: 
𝑛𝑛22 − 3

2
−
𝑛𝑛12 − 3

2
=

1
2

(𝑛𝑛2 − 𝑛𝑛1)(𝑛𝑛2 + 𝑛𝑛1) = 𝛼𝛼(𝑛𝑛2 + 𝑛𝑛1) = 𝛼𝛼(2𝑛𝑛1 + 2𝛼𝛼) = 𝛽𝛽. 

Similarly: 

𝑛𝑛2𝑚𝑚 − 3
2

−
𝑛𝑛1𝑚𝑚 − 3

2
= 𝛼𝛼𝑚𝑚 = 𝛾𝛾. 

This last remark is used in steps 2-b. and 3-b. to fill 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝 and to perform step 3-a. 

Remark 4-3-2: The index wheel sieve involves operations with reduced input size compared with the 
number version. This is clear from remark 4-3-1 where 𝛽𝛽 is exactly half of 𝑛𝑛22 − 𝑛𝑛12, for instance. Similarly 
Π𝑞𝑞′  is half of Π𝑞𝑞 so modulo operation input is also reduced. 

4.4 Performance of algorithms 
In this section, we present results from the previous algorithm of index wheel sieve, which we compare 
with a similar one on numbers (unspecified for to avoid a lengthy duplication). These results are similar to 
those obtained in the previous sections. As for the sieve of Atkin, we did not go for refinements that give 
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a better time complexity, so theoretical complexity in terms of number of operations is 𝑀𝑀(𝑁𝑁) for both 
algorithms. 

On the graph 4-4 below, we plot the computation time in seconds for both algorithms, for 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 up to 
6.109. The curve 𝑇𝑇5 corresponds to the the algorithm WheelSieveReference and the curve 𝑇𝑇6 corresponds 
to the the algorithm IndexWheelSieve. The correlation coefficient 𝑅𝑅 of each regression is given on the 
graph. Details of the Maple options used to get the regression are given in appendix 8.3. We notice that 
complexity of both algorithms again seems empirically slightly higher than linear. 

 

 

 

Graph 4-4: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Wheel sieve) 

Complexity is reduced by using indices, due to reduction of input size in the modulo and the multiplication 
operations (see Remark 4-3-2) and despite a higher number of operations with the algorithm 
IndexWheelSieve. Moreover, the amount of memory space used with indices is halved, due to the fact 
that we avoid even numbers completely. 

5 Conclusion 
In theory, indices are a way to work with odd numbers only by not representing even numbers. Most 
mathematical relations must be reformulated for indices, which lead to a higher number of (conversion) 
operations, but in return the input size of other operations is reduced. In this article, we have shown how 
this indexing translates into optimized algorithms in applied mathematics. From a basic primality test 
implementation, to the sieve of Atkin and Pritchard’s wheel sieve, indices speeded up these algorithms, 
not by changing their complexity but by reducing the time cost by a constant factor, and generally also 
made them more efficient from a memory point of view. 

Acknowledgments: We would like to thank François-Xavier VILLEMIN for his attentive comments and 
suggestions. 

𝑇𝑇6 (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃  1.33 × 10−9 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀1.06 

𝑅𝑅 = 0.9999  

𝑇𝑇5 (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃  5.25 × 10−10 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀1.11 

𝑅𝑅 = 0.9998  
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6 APPENDIX: ALGORITHM OF THE INDEX WHEEL SIEVE 

This algorithm enumerates odd primes up to the limit 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. It is composed of a main function that is 
called IndexWheelSieve and the following auxilliary other functions:  

7-2- DiophantineSolutions(𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,Π𝑞𝑞′ ) 
7-3- WheelTurn(𝒲𝒲𝑞𝑞

′ ,𝑀𝑀,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀) 
7-4- RemoveMultiples(𝜇𝜇𝑀𝑀𝑆𝑆𝑑𝑑𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,𝒲𝒲𝑞𝑞

′) 
7-5- GetNewPrimes(𝒲𝒲𝑞𝑞

′ ,𝑀𝑀, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝,𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝) 
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Some marginal optimizations can still be performed, for instance modulo operations inside a loop can be 
replaced by substractions, and memory can be managed better. For the sake of readability we leave these 
optimizations out of scope. 

 

Algorithm 6-1 IndexWheelSieve(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9 is an odd integer. 

This function returns the list of all prime numbers up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {2, 3,5,7}    Dynamic list of primes 

𝑖𝑖𝑙𝑙 ← 4     Number of primes in the list 

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄    Index of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 

𝐼𝐼𝐿𝐿𝑝𝑝 ← {0,1,2}  

𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝 ← {3,11,23}   

𝒲𝒲𝑞𝑞
′ ← {1, 2}  

Π𝑞𝑞′ ← 3  

𝑀𝑀 ← 1  

Second step : Wheel inflation. 

Do 

  𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 ← 𝐿𝐿𝑝𝑝(𝑀𝑀 + 1) 

  𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 ← 𝐼𝐼𝐿𝐿𝑝𝑝(𝑀𝑀) 

  Π𝑞𝑞+1′ ← Π𝑞𝑞′ × 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 

   Compute values of the new wheel from the previous one 

  𝒲𝒲𝑞𝑞
′ ←WheelTurn(𝒲𝒲𝑞𝑞

′ ,𝑀𝑀,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀) 

  GetNewPrimes(𝒲𝒲𝑞𝑞
′ ,𝑀𝑀, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝, 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝) 

  Π𝑞𝑞′ ← Π𝑞𝑞+1′  

  𝑀𝑀 ← 𝑀𝑀 + 1 

While 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 > Π𝑞𝑞′  

Third step : Wheel deflation. 

While 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝(𝑀𝑀 − 1) < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 

  𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 ← 𝐿𝐿𝑝𝑝(𝑀𝑀 + 1) 

  𝜇𝜇𝑀𝑀𝑆𝑆𝑑𝑑𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 ← 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝(𝑀𝑀) 

http://dx.doi.org/10.14738/tmlai.82.8054
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  𝒲𝒲𝑞𝑞
′ ←RemoveMultiples(𝜇𝜇𝑀𝑀𝑆𝑆𝑑𝑑𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,𝒲𝒲𝑞𝑞

′) 

  GetNewPrimes (𝒲𝒲𝑞𝑞
′ ,𝑀𝑀, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝, 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝) 

  𝑀𝑀 ← 𝑀𝑀 + 1 

End While 

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙) 

 

 

Algorithm 6-2 DiophantineSolutions(𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,Π𝑞𝑞′ ) 

 

𝑑𝑑1 ← 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 − �Π𝑞𝑞′  mod 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒�   Solution such that 𝑚𝑚 = 1 

𝑑𝑑 ← 0  

𝜇𝜇𝑙𝑙𝑙𝑙𝑆𝑆𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛𝑠𝑠 ← {0 … 0}     Array of size 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 

 

For 𝑚𝑚 = 1 To 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 − 1 Do 

  𝑑𝑑 ← (𝑑𝑑 + 𝑑𝑑1) mod 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 

  𝜇𝜇𝑙𝑙𝑙𝑙𝑆𝑆𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛𝑠𝑠(𝑑𝑑) ← 𝑚𝑚  

End For 

Return 𝜇𝜇𝑙𝑙𝑙𝑙𝑆𝑆𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛𝑠𝑠 

 

 

Algorithm 6-3 WheelTurn(𝒲𝒲𝑞𝑞
′ ,𝑀𝑀,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀) 

This function computes 𝒲𝒲𝑞𝑞+1
′  by duplicating the wheel 𝒲𝒲𝑞𝑞

′ and removing indices of multiples of 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 =
𝑝𝑝𝑞𝑞+1. 

 

First step : Compute all the pairs (𝑑𝑑,𝑚𝑚𝑐𝑐) in the function DiophantineSolutions 

𝜇𝜇𝑙𝑙𝑙𝑙𝑆𝑆𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛𝑠𝑠 ← DiophantineSolutions(𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,Π𝑞𝑞′ ) 

Second step : Iteration 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝜇𝜇𝑖𝑖𝑒𝑒𝑒𝑒 ← Size(𝒲𝒲𝑞𝑞
′) 

𝑇𝑇𝑑𝑑𝑏𝑏𝑙𝑙𝑒𝑒 ← Range({},𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒) 

For 𝑗𝑗 = 0 To 𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝜇𝜇𝑖𝑖𝑒𝑒𝑒𝑒 − 1 Do 

  𝑑𝑑′ ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗) 
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  𝑑𝑑 ← (𝑑𝑑′ − 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥) mod 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 

  𝑚𝑚 ← 𝜇𝜇𝑙𝑙𝑙𝑙𝑆𝑆𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛𝑠𝑠(𝑑𝑑)  

  For 𝑑𝑑 = 0 To 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝑁𝑁𝑆𝑆𝑚𝑚𝑏𝑏𝑒𝑒𝑃𝑃 − 1 Do 

    𝑛𝑛 ← 𝑑𝑑′ + 𝑑𝑑Π𝑞𝑞′  

    If 𝑛𝑛 > 𝑘𝑘𝑚𝑚𝑀𝑀𝑀𝑀 Do 

      Break 

    End If 

    If 𝑑𝑑 ≠ 𝑚𝑚 Do 

      Append(𝑇𝑇𝑑𝑑𝑏𝑏𝑙𝑙𝑒𝑒(𝑑𝑑),𝑛𝑛) 

    End If 

  End For 

End For 

Third step : Build 𝒲𝒲𝑞𝑞+1
′  by concatenation 

𝒲𝒲𝑞𝑞+1
′ ← {}  

For 𝑑𝑑 = 0 To 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝑁𝑁𝑆𝑆𝑚𝑚𝑏𝑏𝑒𝑒𝑃𝑃 − 1 Do 

  Concatenate(𝒲𝒲𝑞𝑞+1
′ ,𝑇𝑇𝑑𝑑𝑏𝑏𝑙𝑙𝑒𝑒(𝑑𝑑)) 

End For 

Return 𝒲𝒲𝑞𝑞+1
′  

 

 

Algorithm 6-4 RemoveMultiples(𝜇𝜇𝑀𝑀𝑆𝑆𝑑𝑑𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥,𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒,𝒲𝒲𝑞𝑞
′) 

 

𝒲𝒲𝑞𝑞+1
′ ← {}  

𝑁𝑁𝑒𝑒𝑥𝑥𝑡𝑡𝑀𝑀𝑆𝑆𝑙𝑙𝑡𝑡𝑖𝑖𝑝𝑝𝑙𝑙𝑒𝑒 ← 𝜇𝜇𝑀𝑀𝑆𝑆𝑑𝑑𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥  

For 𝑗𝑗 = 1 To Size(𝒲𝒲𝑞𝑞
′)−1 Do 

  If 𝓦𝓦𝑞𝑞
′ (𝑗𝑗) > 𝑁𝑁𝑒𝑒𝑥𝑥𝑡𝑡𝑀𝑀𝑆𝑆𝑙𝑙𝑡𝑡𝑖𝑖𝑝𝑝𝑙𝑙𝑒𝑒 Do 

    𝑁𝑁𝑒𝑒𝑥𝑥𝑡𝑡𝑀𝑀𝑆𝑆𝑙𝑙𝑡𝑡𝑖𝑖𝑝𝑝𝑙𝑙𝑒𝑒 ← 𝑁𝑁𝑒𝑒𝑥𝑥𝑡𝑡𝑀𝑀𝑆𝑆𝑙𝑙𝑡𝑡𝑖𝑖𝑝𝑝𝑙𝑙𝑒𝑒 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 

    𝑗𝑗 ← 𝑗𝑗 − 1  

  Else If 𝓦𝓦𝑞𝑞
′ (𝑗𝑗) = 𝑁𝑁𝑒𝑒𝑥𝑥𝑡𝑡𝑀𝑀𝑆𝑆𝑙𝑙𝑡𝑡𝑖𝑖𝑝𝑝𝑙𝑙𝑒𝑒 Do 

    𝑁𝑁𝑒𝑒𝑥𝑥𝑡𝑡𝑀𝑀𝑆𝑆𝑙𝑙𝑡𝑡𝑖𝑖𝑝𝑝𝑙𝑙𝑒𝑒 ← 𝑁𝑁𝑒𝑒𝑥𝑥𝑡𝑡𝑀𝑀𝑆𝑆𝑙𝑙𝑡𝑡𝑖𝑖𝑝𝑝𝑙𝑙𝑒𝑒 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 

  Else 
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    Append(𝒲𝒲𝑞𝑞+1
′ ,𝓦𝓦𝑞𝑞

′ (𝑗𝑗)) 

  End If 

End For 

Return 𝒲𝒲𝑞𝑞+1
′  

 

 

Algorithm 6-5 GetNewPrimes(𝒲𝒲𝑞𝑞
′ ,𝑀𝑀, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝,𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝) 

This function adds new primes to the list 𝐿𝐿𝑝𝑝 and updates 𝑖𝑖𝑙𝑙  and the other lists 𝐼𝐼𝐿𝐿𝑝𝑝 and 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝 (all passed by 
reference).  

 

𝜇𝜇𝑀𝑀𝑆𝑆𝑑𝑑𝑃𝑃𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 ← 𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝(𝑀𝑀 + 1)  

𝑗𝑗 ← 𝑖𝑖𝑙𝑙 − 𝑀𝑀 − 2      Offset to take into account already known primes 

𝑁𝑁𝑒𝑒𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗)  

While 𝑁𝑁𝑒𝑒𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 < 𝜇𝜇𝑀𝑀𝑆𝑆𝑑𝑑𝑃𝑃𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 Do 

  𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) ← 𝑁𝑁𝑒𝑒𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 

  𝛼𝛼 ←  𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) − 𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) 

  𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) ←  𝜇𝜇𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 2𝛼𝛼2 + 2𝛼𝛼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) 

  𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) + 2𝛼𝛼 

  𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  𝑗𝑗 ← 𝑗𝑗 + 1 

  𝑁𝑁𝑒𝑒𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗)  

End While 

 

7 APPENDIXES: MAPLE REGRESSIONS 

Here are numeric values obtained from our implementation (Visual Studio C++ 2012) of the algorithms 
presented in this article. 

7.1 BASIC PRIMALITY TEST AND PRIMES ENUMERATION 

In table 8.1, numeric values of 𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)  and 𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)  are obtained respectively from the 
PrimeEnumeration and IndexPrimeEnumeration algorithms. 
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Table 2: numeric values of 𝑻𝑻𝟏𝟏(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟐𝟐(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds. 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 107 108 5 × 108 109 2 × 109 3 × 109 4 × 109 

𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 2.403 56.031 493.163 1306.884 3414.713 6271.249 8908.814 

𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 2.375 54.725 487.568 1275.921 3329.573 6105.386 8664.438 

 
To fit these observations, Maple’s NonlinearFit function is used with the parameters below. Initial values 
for 𝑑𝑑 and 𝑏𝑏 were determined empirically. 
NonlinearFit(𝑑𝑑 × 𝑛𝑛𝑏𝑏/ ln(𝑛𝑛), X, Y, n, initialvalues = [𝑑𝑑 = 5.9 × 10−9, 𝑏𝑏 = 1.41], 

output = [leastsquaresfunction, residuals]) 

We get the following mathematical relationships: 

𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 5.79409775129480 × 10−9 × 𝜋𝜋1.40966993452829

ln(𝜋𝜋)
,  𝑅𝑅 = .99962000 

𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 6.10602965467609 × 10−9 × 𝜋𝜋1.406040046365699

𝑙𝑙𝜋𝜋(𝜋𝜋)
, 𝑅𝑅 = .99962009 

7.2 THE SIEVE OF ATKIN 

In table 8.2, numeric values of 𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) are obtained respectively from the SieveOfAtkin 
and IndexSieveOfAtkin algorithms. 

Table 3: numeric values of 𝑻𝑻𝟑𝟑(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟒𝟒(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds. 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 108 5 × 108 109 1.5 × 109 1.6 × 109 2 × 109 3 × 109 

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.719 3.797 8.033 12.48 13.967 18.843 28.217 

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.727 3.921 8.225 12.152 12.953 16.507 25.342 
 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 4 × 109 5 × 109 6 × 109 7 × 109 8 × 109 9 × 109 1010 

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 41.534 54.871 72.044 84.511 100.727 116.093 133.184 

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 35.27 46.261 57.418 70.311 84.291 98.047 110.96 

 
This time we used Maple’s function Fit as below:  

Fit(𝑑𝑑 × 𝑛𝑛2 + 𝑏𝑏 × 𝑛𝑛, X, Y, 𝑛𝑛, summarize = embed) 
We get the following mathematical relationships: 

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 4.90268369826396 × 10−19 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀2 + 8.54576412559177 × 10−9 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑅𝑅 =
.999647 

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 3.78795281632082 × 10−19 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀2 + 7.39595089422000 × 10−9 ×𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀,  

𝑅𝑅 = .999926 
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7.3 WHEEL SIEVE WITH INDICES 

In table 4, numeric values of 𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)  and 𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)  are obtained respectively from the 
WheelSieveReference and IndexWheelSieve algorithms. 

Table 4 : numeric values of 𝑻𝑻𝟓𝟓(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟏𝟏(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds. 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 107 108 5 × 108 109 2 × 109 3 × 109 4 × 109 5 × 109 6 × 109 

𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.071 0.496 2.783 5.407 10.931 17.070 23.944 31.150 37.501 

𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.064 0.457 2.657 4.936 9.995 15.121 20.995 26.260 32.351 

 
We used again NonlinearFit with empirically determined initial values 𝑑𝑑 and 𝑏𝑏: 

NonlinearFit(𝑑𝑑 × 𝑛𝑛𝑏𝑏, X, Y, n, initialvalues = [𝑑𝑑 =  1.97461115539853 × 10−6, 𝑏𝑏 =
 1.1], output = [leastsquaresfunction, residuals]). 

We get the following mathematical relationships: 

𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 5.25118782575365 × 10−10 × 𝑛𝑛1.11016647384427, 𝑅𝑅 = .99982444 

𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 1.33020583039257 × 10−9 × 𝑛𝑛1.06187203820827,  𝑅𝑅 = .99986693 
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ABSTRACT 

The class imbalance problem is widespread in Data Mining and it can reduce the general performance of 
a classification model. Many techniques have been proposed in order to overcome it, thanks to which a 
model able to handling rare events can be trained. The methodology presented in this paper, called 
Controlled Over-Sampling Method (COSM), includes a controller model able to reject new synthetic 
elements for which there is no certainty of belonging to the minority class. It combines the common 
Machine Learning method for holdout with an oversampling algorithm, for example the classic SMOTE 
algorithm. The proposal explained and designed here represents a guideline for the application of 
oversampling algorithms, but also a brief overview on techniques for overcoming the problem of the 
unbalanced class in Data Mining.  

Keywords: Class imbalance problem; Data Mining; Holdout Method; Oversampling; Rare Class Mining; 
Undersampling. 

1 Introduction  
In many real application fields, the discovery and modeling of rare events is crucial for understanding 
complex phenomena [1]. For example, rare weather conditions, if not forecasted, can be very dangerous 
for the population, housing, air traffic, and so on; unauthorized and fraudulent use of a credit card must 
be detected as soon as possible; an unidentified cyberattack is very dangerous for companies, causing 
huge economic losses. Sometimes such events are so diluted in the database that the Data Mining 
algorithms used for training analytical models fail to characterize them: such events are exchanged as 
noise [2]; if these events constitute a class value (+), the trained model could always give the same answer 
(-), ignoring the minority class. The main problem with class imbalance states is that standard models are 
often biased towards the majority class.  

In Data Mining this condition is called class imbalance problem and it occurs when one of the two classes 
(in the binary case) has many more samples than the other class. What “many more” means is not clearly 
quantifiable and depends on the case. Most of the time, being able to train a model capable of classifying 
rare events, in conditions of high class imbalance, is an impossible goal, unless ad hoc strategies are first 
adopted. This problem is one of the main problem that degrades the performance of classification models 
[3] [4]. Various techniques have been proposed in order to solve the problem of class imbalance, including 
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over-sampling of the minority class or under-sampling of the majority one. Another widely used approach 
is focused on the cost-sensitive learning techniques included in meta-learning approaches [5]. These 
techniques take the misclassification cost in its account by assigning higher cost of misclassifications to 
the minority class, penalizing the correct classifications to the majority class, and generating the model 
with lowest cost. 

In this paper, a design of a methodology for oversampling is proposed. By using an oversampling 
technique, the minority class is oversampled by taking each minority class sample and adding new 
synthetic records by applying various strategies that are deepened and compared. The method is called 
Controlled Over-sampling Methodology (COSM) because a classification model – the controller – is 
created that can check if the new synthetic examples really belong to the minority class. The controller 
assists the entire sampling procedure, eventually rejecting the misclassified examples. 

Various aspects of the proposed method are also considered, including its relationship with the holdout 
method. 

2 Holdout Method 
The holdout method [6] is a very common strategy in Data Mining, mainly aimed at providing a useful 
scheme for datasets split and design, in order to train a model and evaluate its performances. 

2.1 Basic Holdout 
The whole dataset is randomly partitioned into two disjoint sets, called training and test sets. It is common 
to hold out one-third of data for testing and use the remaining two-third for training, but other 
proportions are possible, depending on the amount of data and other factors discussed later in the paper. 

This simple subdivision does not take into consideration the distribution of the target class. In spite of the 
random partitioning, the two subsets could have very different distributions of the target class. In order 
to overcome this unlikely event, the training and test sets must not only be obtained randomly but they 
must be also stratified, so that the class distribution of the records in each set is approximately the same 
as that in the initial dataset. 

This subdivision scheme can be enriched by considering a further subset of the training set, called 
validation set. More in detail, the validation set is used to select the algorithm parameters and then 
choose the model with the best performance metrics. This step is essential to mitigate the overfitting 
problem [7] [8]. Also in this case, the subdivision is random, can be stratified, and the subdivision 
percentages can vary, or be the same as the first splitting. 

 

Figure 1. The general holdout method schema 

Figure. 1 shows the framework of the complete holdout method. To recap: 
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• 𝜇𝜇 is the dataset with all the records; it can be subpart of a much larger database; this set has 
undergone all the preparation steps: for example, possible selection, cleaning and normalization 
of data, selection and extraction of features if useful, and any other operations on the data.  

• 𝐴𝐴 is the intermediate Training set, starting from which the final training is obtained.  
• 𝐵𝐵 is the final Training set; a model, for example a classifier, is built on this set by applying mainly 

a statistical or a Machine Learning algorithm.  
• 𝑉𝑉 is the Validation set; it is useful to tune and select the parameters (or hyper-parameters) of the 

algorithm chosen for training the model. In other words, 𝑉𝑉 is used to compare the performances 
of all the trained models and decide which one to take.  

• 𝑇𝑇 is the Test set; the model is then tested on this set; 𝑇𝑇 is used to obtain the performance metrics, 
such as accuracy, sensitivity, specificity, AUC, F-measure, and so on; moreover, 𝑇𝑇 is useful to 
understand if the model is overfitted. Generally, 𝑇𝑇∪𝐴𝐴=𝜇𝜇.  

The holdout method is not recommended when working with small datasets. In these cases, some 
variations may be applied to avoid that the dataset subdivisions can further reduce the number of data 
for the training and test phases.  

2.2 Some Variations on the Theme: k-Fold Cross-Validation  
The holdout method is the simplest kind of cross-validation method; the latter represents a more general 
method. In this approach, also called k-fold cross-validation, the original dataset is randomly partitioned 
into 𝑘𝑘 (generally 𝑘𝑘=10) equal sized subsamples. For each of 𝑘𝑘 experiments, 𝑘𝑘−1 folds are used for the 
training phase and the remaining one for testing phase. This procedure is repeated 𝑘𝑘 times. The error 
estimates are averaged to yield an overall error estimate, as well as the other performance metrics. 𝑘𝑘-
fold cross-validation seems to give better approximations of generalization than the holdout method [6] 
[8].  

In some uses of the method described, such as when the multi-division of holdout reduces the number of 
records in the training set too much, a mixed approach between holdout and 𝑘𝑘-fold cross-validation can 
be applied. In few words, the training set is not further subdivided into validation (𝑉𝑉), but the model is 
trained on Training set (𝐴𝐴) with the 𝑘𝑘-fold cross-validation method: we can say that the model is cross-
validated. Finally, as usual, it is tested on the test set (𝑇𝑇) in order to calculate the performances of model.  

3 Class Imbalance Problem  
The class imbalance problem consists in a skewed distribution of instances that belong to different classes; 
because class distribution plays a key role in Data Mining and Machine Learning classification task, this 
problem can compromise the training phase and the performance of the classification model.  

3.1 Examples in Real Datasets  
In many real world applications, datasets suffer the problem of the class imbalance. In these situations, 
discovering instances of rare class is “akin to finding a needle in a haystack”. Furthermore, a model able 
to describe the minority class tends to be highly specialized, and this condition is not desired because a 
good model is a model that is able to generalize, otherwise the model goes into overfitting. However, 
most Data Mining algorithms do not work very well with imbalanced datasets [8].  

Briefly, a dataset is affected by the unbalanced class problem when one of the classes has many more 
samples than the other ones. The most of machine learning algorithms is more focusing on classification 
of samples belonging to the majority class while ignoring or misclassifying samples of the minority one. 
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For example, if the target class has only two values (binary class case) “0” and “1”, and if the distribution 
is 99.9% of “1” and 0.01% of ”0“, a classifier that always says ”1“ is a very accurate model, because it never 
exhibits a false ”0“ and has a very low percentage (precisely the 0.01%) of false “1”.  

There exist many case studies that do not have a balanced data set. Some examples are:  

• Discovery of fake news;  
• Distinction among earthquakes, nuclear and non-nuclear explosions;  
• Document selection and filtering;  
• Forecast of extreme weather conditions;  
• Recognition of fraudulent telephone calls.  

 

3.2 Strategies to Handle Imbalanced Datasets  
As mentioned above, imbalance datasets can degrade the performance of a model that has been trained 
by applying a data driven technique; the Machine Learning algorithms lead to misclassifying the minority 
class records or treated them as noise. Even if the evaluation metric is changed, it is hard for the model 
to be accurate on the minority class, or that the chosen metric has a good result.  

Many techniques have been proposed in order to overcome the problem of learning models on an 
unbalanced class. They can be categorized into three main categories: re-sampling [8], cost-sensitive 
learning [9] [10], and ensemble-based methods [11]. Some of them are summarized in Table 1. 
Nevertheless, the choice of the strategy to be followed strictly depends on the data and on the learning 
algorithm, and there is no absolute advantageous technique.  

Strategies for overcoming the problem of the unbalanced class can be natively incorporated into the 
learning algorithm for training a classifier. 

Table1. Techniques for Imbalanced Problem 

 

3.3 SMOTE and ADASYN  
Synthetic Minority Over-sampling Technique (SMOTE) [13] is an oversampling method able to create new 
artificial examples of minority class based on the similarity among the existing elements. SMOTE is the 
most used algorithm for oversampling, and there are numerous variants of it [28] [29] [30].  
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Let 𝑥𝑥𝑖𝑖 be a record belonging to the minority class, 𝑥𝑥�̂�𝑖 one of the 𝑘𝑘-nearest neighbors of 𝑥𝑥𝑖𝑖, and 𝛿𝛿𝑖𝑖 a random 
number belonging to [0,1]. A new synthetic example of the minority class is calculated as: 
𝑥𝑥𝑛𝑛𝑒𝑒𝑁𝑁=𝑥𝑥𝑖𝑖+(𝑥𝑥�̂�𝑖−𝑥𝑥𝑖𝑖)∙𝛿𝛿𝑖𝑖  

The new 𝑥𝑥 belongs to the line between 𝑥𝑥𝑖𝑖 and 𝑥𝑥�̂�𝑖.  

The main shortcoming of SMOTE is the problem of overgeneralization. SMOTE’s algorithm does not regard 
to the majority class and, in the case of highly skewed class distributions, a harmful mixture of the classes 
is obtained.  

However, SMOTE yields among the best results as far as re-sampling and modifying the probabilistic 
estimate techniques go [31].  

Another very common oversampling algorithm is Adaptive Synthetic (ADASYN) sampling procedure [14]. 
Its key idea is, in few words, to automatically find the number of synthetic observations to be generated 
for each observation belonging to the rare class by using a density distribution function. The number of 
synthetic samples, generated for each observation of the minority class, is determined by the percentage 
of samples belonging to the majority class in its neighborhood. The steps of the ADASYN are:  

• Calculate the ratio of minority to majority examples using 𝑑𝑑=𝑚𝑚𝑠𝑠𝑚𝑚𝑙𝑙, where 𝑚𝑚𝑠𝑠 and 𝑚𝑚𝑙𝑙 are the 
number of minority and majority class examples respectively. 𝑑𝑑 is the Degree of Imbalance.  

• Calculate the total number of synthetic minority data to generate, by using 𝐺𝐺=𝛽𝛽∙(𝑚𝑚𝑙𝑙−𝑚𝑚𝑠𝑠); 𝐺𝐺 is 
the total number of minority class data to generate. 𝛽𝛽 is the ratio of minority: majority data 
desired after ADASYN. 𝛽𝛽=1 means a perfectly balance between two classes after ADASYN.  

• For each 𝑥𝑥𝑖𝑖 of the minority samples, find its 𝑘𝑘-nearest neighbors and calculate the ratio 𝑃𝑃𝑖𝑖=Δ𝑖𝑖𝑘𝑘, 
where Δ𝑖𝑖 is the number of majority class examples.  

• Normalize the 𝑃𝑃𝑖𝑖 values: 𝑃𝑃�̂�𝑖=𝑃𝑃𝑖𝑖Σ𝑃𝑃𝑖𝑖, and Σ𝑃𝑃�̂�𝑖=1.  
• Calculate the amount of new synthetic examples to generate in each neighborhood: 𝐺𝐺𝑖𝑖=𝐺𝐺𝑃𝑃�̂�𝑖.  
• Generate 𝐺𝐺𝑖𝑖 new data for each neighborhood, taking 𝑥𝑥𝑖𝑖. Select in random manner another 

minority example 𝑥𝑥𝑒𝑒𝑖𝑖 within the same neighborhood. The new synthetic example can be 
calculated by using:  

 
𝑥𝑥𝑛𝑛𝑒𝑒𝑁𝑁=𝑥𝑥𝑖𝑖+(𝑥𝑥𝑒𝑒𝑖𝑖−𝑥𝑥𝑖𝑖)∙𝛿𝛿 

where 𝛿𝛿 is a random number belonging to [0,1], 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑒𝑒𝑖𝑖 are two minority examples within a same 
neighborhood.  

4 COSM Framework  
One of the main disadvantages of the methods for oversampling is that the synthetic examples may not 
have the minority label or that they could never occur in the real world. 

COSM is a general framework for the application of oversampling algorithms. Its main strength is the 
controller model 𝐶𝐶, trained using an undersampling technique ℳ and a machine learning algorithm; 
furthermore, 𝐶𝐶 is tested on an independent set, which has the same class distribution as the original 
dataset, and which is also used to test the final classifier ℱ.  

4.1 General Description  
Figure 2 shows the framework of COSM. COSM can be entirely employed, for example, by using the 
operators, filters and algorithms of the WEKA open source software [32] [33]. 
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Figure 2. The complete schema of the subdivision of the dataset in COSM.  

The Data Preparation step of CRISP-DM methodology [34] for the knowledge discovery in large database 
process covers all activities needed to build the final dataset from the raw data. After this phase, the full 
prepared and imbalanced dataset 𝜇𝜇 is splitted into test set (𝑇𝑇) and training set 1 (𝐴𝐴), in accordance with 
the holdout method. 𝑇𝑇 has the same distribution of the class target of 𝜇𝜇 by applying a stratified filter, and 
𝑇𝑇 is, for example, the 34% of 𝜇𝜇.  

The set 𝐵𝐵 is obtained by randomly undersampling the set 𝐴𝐴. 𝐵𝐵 has the same number of records tagged 
with (+) and (-)  

Since the undersampling technique can lead to a loss of information, in a more advanced way, the random 
removal of minority class records (+) can be replaced by applying a “bootstrap” (“bagging”) approach [35]. 
In a nutshell, the set 𝐴𝐴 is subdivided into N subsets, in which the elements of the minority class (+) are all 
fixed, while the records of the majority class (-) are randomly sampled with replacement in a number 
equal to records tagged with minority class (+). In this way, each of the N subsets is balanced, the elements 
tagged with “+” do not vary, and may have records tagged with “-” in common. In a formal way:  

𝐵𝐵𝑖𝑖=𝐷𝐷∪𝑅𝑅𝑖𝑖 (𝑖𝑖=1,…,N)  
where 𝐷𝐷={𝑥𝑥∈𝐴𝐴:𝑥𝑥 ℎ𝑑𝑑𝑠𝑠 "+" 𝑑𝑑𝑙𝑙𝑑𝑑𝑠𝑠𝑠𝑠} and |𝐷𝐷|=𝑚𝑚  
𝑅𝑅𝑖𝑖={𝑥𝑥∈𝐴𝐴:𝑥𝑥 ℎ𝑑𝑑𝑠𝑠 "−" 𝑑𝑑𝑙𝑙𝑑𝑑𝑠𝑠𝑠𝑠}, |𝑅𝑅𝑖𝑖|=𝑚𝑚,∀𝑖𝑖=1,…,N  
𝐵𝐵=⋃𝐵𝐵𝑖𝑖𝑖𝑖=1,…,𝑁𝑁 

The model 𝐶𝐶 (Figure 3), called controller, is an ensemble [36] of 𝑁𝑁 classifiers 𝐶𝐶𝑖𝑖 (𝑖𝑖=1,…,𝑁𝑁). Each 𝐶𝐶𝑖𝑖 is a 
cross-validated classifier trained on a different balanced set 𝐵𝐵𝑖𝑖. Moreover, each 𝐶𝐶𝑖𝑖 is trained by a different 
learning algorithm. Finally, the class can be obtained by taking a majority vote on the individual predictions 
of the 𝐶𝐶𝑖𝑖 base classifier 
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Figure 3. Combine classifiers in the ensemble schema of COSM 

Additionally, 𝐶𝐶 is tested on the set 𝑇𝑇, by calculating the metrics of the Table 2, based on confusion matrix 
[8].  

The COSM procedure proceeds by considering the subset 𝐷𝐷 of 𝐴𝐴 consisting of only the 𝑚𝑚 elements of the 
minority class (𝐷𝐷={𝑥𝑥∈𝐴𝐴:𝑥𝑥 ℎ𝑑𝑑𝑠𝑠 "+" 𝑑𝑑𝑙𝑙𝑑𝑑𝑠𝑠𝑠𝑠}), and by applying an oversampling technique ℳ to 𝐷𝐷 in order 
to create a set (𝑀𝑀2) of new synthetic minority class examples.  

𝑀𝑀1 is the set of all the minority class examples, including the new synthetic ones (𝑀𝑀2=𝑀𝑀1−𝐷𝐷). The 
number of elements of 𝑀𝑀2 depends on ℳ and its parameters.  

The controller model 𝐶𝐶 is applied on the new set 𝑀𝑀2 in order to reject the examples that are misclassified 
by 𝐶𝐶: these elements are false positives according to classifier 𝐶𝐶. 

Table 2. Classification Performance Evaluation Metrics 

 

Finally, 𝑊𝑊 is the subset of 𝑀𝑀2 well classified by 𝐶𝐶: it is made up of non-rejected elements. And 𝐸𝐸=𝐴𝐴∪𝑊𝑊 is 
the new extended training set, which is the training set for the final classification model ℱ and which is 
tested on the test set 𝑇𝑇. The performances of ℱ on 𝑇𝑇 can be compared with the performances of 𝐶𝐶 on 𝑇𝑇.  

5 Conclusion  
Overcoming the problem of the unbalanced class depends on numerous elements. It depends on 
complexity of the data, severity of class imbalance, size of data and classifier involved. The framework 
designed here can be applied independently of the Machine Learning algorithm or the selected 
oversampling technique.  

COSM needs to be tried and tested, especially to define a strategy for selecting the following its 
parameters:  

• the percentage of 𝜇𝜇 to get the test set 𝑇𝑇;  
• the algorithm to obtain the controller model 𝐶𝐶 trained on set 𝐵𝐵;  
• the oversampling technique ℳ;  
• the algorithm to obtain the final classifier trained on the set 𝐸𝐸.  

http://dx.doi.org/10.14738/tmlai.82.7925
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As mentioned above, COSM can be entirely employed, for example, by using WEKA software. The paper 
describes the design of the methodology, while its implementation with all the experimental tests will be 
addressed in a future work.  
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