Page 1 of 7
Transactions on Machine Learning and Artificial Intelligence - Vol. 9, No. 2
Publication Date: April, 25, 2021
DOI:10.14738/tmlai.92.10008. Chen, W. W. S. (2021). Conversion Among Arma Models and State-Space Representation. Transactions on Machine Learning and
Artificial Intelligence, 9(2). 53-59.
Services for Science and Education – United Kingdom
Conversion Among Arma Models and State-Space Representation
William W. S. Chen
Department of Statistics, The George Washington University
Washington D.C. 20013
ABSTRACT
We present the ARMA models (or Non-Markovian) and state-space (or Markovian)
representation relationship. Then we break the problem into three different cases
to discuss how one form could be converted to another form. In case A, we assume
that we know the state-space representation then we convert it into the ARMA
model. In case B, we reverse the situation, given the ARMA model we convert into
state-space representation. In Case C, we combine the first two cases, conversion
the two forms in either directions.
KEY WORDS: ARMA Model, Conversion to another form, Markovian Representation,
replace t by t+1, replace t+3 by t, State-Space representation, Time Index.
INTRODUCTION
In discussing linear systems it is often more convenient to use the state-space (or Markovian)
representation of the relationship between input and output rather than the explicit form. The
state-space form gives a very compact description which is valid provided the relationship
between the input and output can be expressed in terms of a finite order linear difference
equation. The basic idea rests on the well-known result that any finite order linear difference
equation can be expressed as a vector first order equation. For this reason, state-space
representation had a profound impact on time series analysis and many related areas. Davis
and Vinter(1985) applied these techniques in control of linear systems. Later, Hannan and
Deistler (1988) used it in linear system of statistical theory. This is a rich class for time series
models and going well beyond the linear ARMA models. In econometrics the structural time
series models developed by Harvey (1990) formulated like the classical decomposition model
directly in terms of components of interest such as trend, noise. The objective of current paper
is not creating a new theory for time series. We wish to build a bridge between ARMA model
and state-space representation.
RELATIONSHIP BETWEEN STATE-SPACE AND ARMA MODEL
Let be a univariate ARMA(p,q) time series with p>q
We define then
for
t x
11 11 ...... .... t t p t p t t q tq xx xaa a = ++ + f f qq - --- - --
| ,1 ( | ....) t it t i t t x Ex xx + + = -
t it t | x x + = i £ 0
| ,1 a Ea xx a t it t i t t t i + + = = ( | .....) i 0 - + £
Page 2 of 7
54
Transactions on Machine Learning and Artificial Intelligence (TMLAI) Vol 9, Issue 2, April - 2021
Services for Science and Education – United Kingdom
The state-space formulation is
where is a length p column vector and F is a pxp matrix.
This representation is based on writing
F G
The matrices F and G are identified by the following way.
The infinite MA representation for is
Finally, we have the following results.
And expectation given , ...is
| 0 for i>0 t i t a + =
t+1 t 1 z z = + F Gat+
tz
1
2| 1 1|
3| 1 2|
1
| 1 1|
. .
. .
t t
t t tt
tt tt
t t
t pt t p t
x x
x x
x x
z a
x x
+
++ +
++ +
+
++ + -
éù éù é ù éù êú êú ê ú êú
== +
ëû ëû ë û ëû
t i x +
0
t+i 1 1 1 1 = .......
ti k tik
k
ti i t k tik
k i
x x
aa a a
Y
Y YY
¥
+ + - =
¥
+ - - + + - =
= å
++ + å
ti k tik |t
k i
x a Y¥
+ + - =
= å
| 1 1 1
11 | = (2.1)
ti i t k tik t
k i
i t t it
xaa
a x
Y Y
Y
¥
+ + - + + - =
- + +
= + å
+
1 1 1| for i=1 (2.2) t t tt xax +++ = +
11 11 ...... .... t p t p p t t p t p q t pq x x xa a a + + = ++ + f fq q - + + - -- - + -
t x t 1 x -
| 1 1| | xx x t pt t p t p tt + + = ++ + f f - ...... 0 since p-q>0
|1 1 1 | (2.3) t pt p t t pt x ax + + = + y - + +
Page 3 of 7
55
Chen, W. W. S. (2021). Conversion Among Arma Models and State-Space Representation. Transactions on Machine Learning and Artificial
Intelligence, 9(2). 53-59.
URL: http://dx.doi.org/10.14738/tmlai.92.10008.
Summarize (2.1), (2.2), and (2.3), we can write the state-space formulation as below:
The bottom row of the F matrix gives AR coefficients and the G vector gives the first p-1
coefficients, which can be used to calculates the coefficients
CASE STUDY
Case A. Given the following State-Space representation for a bivariate time series, write it in
ARMA Form.
From (3a.1), rewrite as
Substitute (3a.4) into (3a.2)
Rewrite (3a.5) in the form
1
2| 1 1| 1
3| 1 2|
1
| 1 1 1 | 1| 1
0 1 0.. 0 1
0 0 1.. 0
. . ... . .
. . . ... . . .
. 0 . ... 1 . .
t t
t t tt
tt tt
t
t pt p p t p t p
x x
x x
x x
a
x x
Y
FF F Y
+
++ +
++ +
+
+ + - + - -
é ù é ùé ù é ù
ê ú ê úê ú ê ú
= +
ë û ë ûë û ë û
Y
Q
() ()
( ) imply ( ) ( )
( ) ( ) so (B) (B)= (B) ( )
t t
t t tt
Bx Ba
B x a x Ba
B
B where B
B
F Q
Q Y
F
Q Y YF Q
F
=
= =
=
1| 1 |
1, 1
2| 1 21 22 23 1| 1 2
2, 1
1| 1 33 |
0 1 0 10
0 0 01
t t tt
t
t t tt
t
t t tt
X X
a
X f f f X gg
a
Y fY
+ +
+
++ +
+
+ +
æ ö æö æ ö æö ç ÷ ç÷ æ ö ç ÷ ç÷ = + ç ÷ è ø è ø èø è ø èø
1| 1 1| 1, 1
2| 1 21 | 22 1| 23 | 1 1, 1 2 2, 1
t+1|t+1 33 | 2, 1
(3a.1)
(3a.2)
y
tt tt t
t t tt t t tt t t
tt t
X Xa
X f X f X f Y ga g a
fy a
++ + +
++ + + +
+
= +
= + ++ +
= + (3a.3)
1| 1 1, 1 (3a.4) X Xa tt t t + ++ = -
2 1, 2 21 22 1 1, 1 23 1 1, 1 2 2, 1 ( ) (3a.5) X a f X f X a f Y ga g a t t t tt t t t + + ++ + + - = + - ++ +
2 2
22 21 2 23 2 1 22 1, 2 2 2, 2 (1 ) (1 ( ) ) (3 .6) tt tt -- - f B f B X f B Y g f B a g Ba a ++ ++ = + - +
Page 4 of 7
56
Transactions on Machine Learning and Artificial Intelligence (TMLAI) Vol 9, Issue 2, April - 2021
Services for Science and Education – United Kingdom
From (3a.3), we replace t by t+1 and have
Rewrite above equation in the form
Combine (3a.6) and (3a.7), we write in bivariate time series form,
where
Case B. Write the following bivariate ARMA (1,0,1) model in the State-Space formulation.
From (3b.1), we replace t by t+1 and consider the conditional expectation up to time t
Same reason for equation (3b.2)
If we replace t by t+2 then consider the conditional expectation up to t, we have
y t+2 33 1 2, 2 t t = + fy a + +
33 t+2 2, 2 (1- B)y (3a.7) t f a = +
2 2
22 21 23 2 1 22 2 1, 2
33 2 2, 2
1 1( )
0 1 0 1
t t
t t
fB fB fB x g f B gB a
f B y a
+ +
+ +
æ ö -- - æ ö æ ö + - æ ö ç ÷ç ÷ = ç ÷ç ÷ è ø - è ø è øè ø
( ) ( ) 2 2 1, 2
12 1
2 2, 2
t t
t t
x a
IBB IB
y a
FF Q + +
+ +
æ ö æ ö - - ç ÷ = - ç ÷ è ø è ø
22 21 23
1 2
33
1 22 2
1
1 0 0 , , 01 0 0 0
( )
0 0
f f f I
f
gf g
F F
Q
æö æ ö æ ö == = ç÷ ç ÷ ç ÷ èø è ø è ø
æ ö -- - = ç ÷ è ø
11 12 11 12 1
21 22 21 22 2
( ) t t
t t
X a
I BI B
Y a
ff qq
ff qq
æö æö æö æö æ ö - ç÷ ç÷ ç÷ ç÷ = ç ÷ -
èø èø èø èø è ø
11 12 11 12 1
21 22 21 22 2
1 1
1 1
t t
t t
BB BB X a
BB BB Y a
ff qq
ff qq
æ öæ ö -- -- æö æö æ ö
ç ÷ç ÷ ç÷ ç÷ = ç ÷ è øè ø -- -- èø èø è ø
11 1 12 1 1, 11 1, 1 12 2, 1 (3b.1) X X Ya a a t t tt t t = ++ ff q q -- - - - -
22 1 21 1 2, 22 2, 1 21 1, 1 (3b.2) Y Y Xa a a tt tt t t =+ + ff q q -- - - - -
1| 11 12 11 1, 12 2, (3b.3) X X Ya a tt t t t t + = + f fq q - -
1| 22 21 22 2, 21 1, (3b.4) Y YX a a tt t t t t + = + ff q q - -
2| 11 1| 12 1| (3b.5) X XY t t tt tt + ++ = + f f
2| 22 1| 21 1| (3b.6) YYX t t tt tt ++ + = + f f
Page 5 of 7
57
Chen, W. W. S. (2021). Conversion Among Arma Models and State-Space Representation. Transactions on Machine Learning and Artificial
Intelligence, 9(2). 53-59.
URL: http://dx.doi.org/10.14738/tmlai.92.10008.
Both of the (3b.5) and (3b.6) are linear combination of the (3b.3) and (3b.4). Hence it should
not show in State-space formula. From (3b.1) and (3b.2), we have the Following results.
Substitute (3b.7) and (3b.8) into (3b.3) and (3b.4), replace t by t+1 then we can derive
Combine (3b.7), (3b.8), (3b.9) and (3b.10), we could formulate State-Space model as follow:
Case C. Write the ARMA (2,0,2) model in the state-space formulation then convert it back to
ARMA (2,0,2) model.
Spell out (3c.2), we have
From (3c.3) and (3c.4), we replace t by t+1 and we derive
1 1| 1, 1
1 1| 2, 1
(3b.7)
(3b.8)
t tt t
t tt t
XX a
YY a
++ +
++ +
= +
= +
2| 1 11 1| 1, 1 12 1| 2, 1 11 1, 1 12 2, 1 ( ) ( ) X X a Ya a a t t tt t tt t t t ++ + + + + + + = ++ + f f qq - -
11 1| 12 1| 11 11 1, 1 12 12 2, 1 ( ) ( ) (3b.9) = ++ f f fq fq XY a a tt tt t t ++ + + - + -
2| 1 22 1| 2, 1 21 1| 1, 1 22 2, 1 21 1, 1 ( ) ( ) Y Ya X a a a t t tt t tt t t t ++ + + + + + + = ++ + f f qq - -
22 1| 21 1| 22 22 2, 1 21 21 1, 1 ( ) ( ) (3b.10) =+ + f f fq fq YX a a tt tt t t ++ + + - + -
1| 1
1| 1 1, 1
2| 1 1| 11 12 11 11 12 12 2, 1
2| 1 1| 21 22 21 21 22 22
00 1 0 1 0
00 0 1 0 1
0 0
0 0
tt t
tt t t
t t tt t
t t tt
X X
Y Y a
X X a
Y Y
ff fq fq
ff fqfq
+ +
+ + +
++ + +
++ +
æ ö æö æ öæ ö ç ÷ ç÷ ç ÷ç ÷æ ö
= + ç ÷ - - è ø
è øè ø - - è ø èø
2 2
12 12
21 2
12 12
0
(1 ) (1 )
(1 ) (1 ) (3c.1)
t t
t t k tk
k
B BZ B Ba
Z B B B Ba a
ff qq
ff qq y ¥ -
- =
- - = - -
= - - - - = å
state-space representation
1| 1 1| 1
2| 1 2| 1 1
3| 1 2 1| 1 2| 2 1
(3c.3)
(3c.4)
+ (3c.5)
tt tt t
tt tt t
tt tt t t t
Z Za
ZZ a
Z ZZ a
y
f fy
++ + +
++ + +
++ + + +
= +
= +
= +
2| 1 2| 2 2
3| 1 3| 2 1 2
(3c.6)
(3c.7)
tt tt t
tt tt t
ZZ a
ZZ a y
++ ++ +
++ ++ +
= -
= -
1| 1
2| 1 1| 1 1
3| 1 2 1 2| 2
01 0 1
0 0 1 (3c.2)
0
tt t
t t tt t
tt tt
Z Z
Z Za
Z Z
y
ff y
+ +
++ + +
++ +
æ ö æö æ ö æö ç ÷ ç÷ ç ÷ ç÷ = +
è ø èø è ø èø
Page 6 of 7
58
Transactions on Machine Learning and Artificial Intelligence (TMLAI) Vol 9, Issue 2, April - 2021
Services for Science and Education – United Kingdom
Substitute (3c.8), (3c.3) and (3c.4) into (3c.5), we derive
Lastly, we replace t+3 by t in (3c.9) and rearrange order
At last, we can write (3c.10) in the ARMA (2,0,2) model
In above equation we had applied the relationship among It needs some
algebraic process to derive these results. We leave it in the appendix.
CONCLUDING REMARKS
In control theory of linear systems or in econometrics, these two forms played the central key
roles. In this paper, we present a bridge to link the ARMA models and state space representation
in such a way even a researcher does not familiar with time series theories can switch one form
to the other. So that he can plug in the needed form into SAS package to complete the computing.
We had chosen our notation consistent with the SAS package to minimize the possible
confusion. It seems much more straightforward to convert from ARMA model to state-space
representation. However, the process needs more careful on two tricky factors. We must be
certain that all the variables are independent to each other. Secondly, the time index must be
carefully treated.
References
[1] Brockwell, P.J. and Davis, R.A. (1995) A first course in time series analysis. Springer-Verlag, New York, Inc.
Washington Statistical Society workshop, October,30-31, 1995.
[2] Davis, M.H.A. and Vinter, R.B. (1985) Stochastic Modelling and Control, Chapman and Hall, London.
[3] Hannan, E.J. and Deistler, M. (1988) The Statistical Theory of Linear System, John Wiley, New York.
[4] Hannan, E.J. and Rissanen, J.(1982) Recursive estimation of mixed autoregressive moving average order.
Biometrika,69,81-94.
[5] Harvey, A.C. and Fernandes, C. (1989) Time Series Models for count data of qualitative observations. J.
Business and Economic Statistics, 407-422.
[6] Harvey, A.C. (1990) Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University
Press, Cambridge.
[7] Harvey, A.C. (1981) Time Series Models. Halsted Press, New York.
[8] Wei, W.W.S. (2006) Time Series Analysis Univariate and Multivariate Methods. Second Edition, Boston
Pearson Addison Wesley.
3| 1 3| 3 3 1 2
substitute (3c.6) to right side of (3c.7)
(3c.8) ZZ aa tt tt t t ++ ++ + + = - -y
3 3 12 2 1 1 1 2 2 11 21 ( ) ( - - )+ (3c.9) Z a a Z a Za a a t t t t t tt t t + + + + + ++ + + =+ + y f f yy - +
11 2 2 2 1 1 1 12 2 2
2 2 1 1 1 1 1 2 11 2 2
( ) ( - - )+
= ( - ) ( ) (3c.10)
tt t t t tt t t
t tt t t
Za a Z a Za a a
Z Za a a
yf f yy
f f y f y fy f
- - - -- - -
-- - -
=+ + - +
+ ++ + - -
2 2
12 12 (1 ) (1 ) - - ff qq B BZ B Ba t t = - -
1 1 1 2 2 11 2 where - ( - ) - ( ) q y f q y fy f = = - -
i i , and . qy f i
Page 7 of 7
59
Chen, W. W. S. (2021). Conversion Among Arma Models and State-Space Representation. Transactions on Machine Learning and Artificial
Intelligence, 9(2). 53-59.
URL: http://dx.doi.org/10.14738/tmlai.92.10008.
APPENDIX
21 2
12 12
0
(1 ) (1 ) t t k tk
k
Z B B B Ba a ff qq y ¥ -
- =
= - - - - = å
2 2 23
12 12 1 2 3
2
1 1 2 11 2
(1 ) (1 )(1 ......)
(1 ( ) ( ) ...)
t t
t
B Ba B B B B B a
B Ba
qq ff yy y
y f y yf f
- - = - - + + + +
= + - + - - +
1 1 1 2 11 2 2 ( ) , ( ) y f q y fy f q - = - - - = -