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ABSTRACT   

Recently, generic object recognition that achieves human-like vision has being looked to for 
use in robot vision, automatic categorization of images, and image retrieval. In object 
recognition, semi-supervised learning, which incorporates a large amount of unsupervised 
training data (unlabeled data) along with a small amount of supervised data (labeled data), is 
regarded as an effective tool to reduce the burden of manual annotation. However, some 
unlabeled data in semi-supervised models contain outliers that negatively affect the parameter 
estimation during the training stage. Such outliers often cause an over-fitting problem 
especially when a small amount of training data is used. Furthermore, another problem that 
occurs when using the conventional methods is that when labeling an image based on super-
pixel representation, the lack of discrimination of the image features and the scale variance of 
the objects decreases the recognition accuracy because the feature extraction is based on the 
mono-scale segmentation. In this paper, we propose an object recognition method for solving 
both problems. For the former problem, our method prevents the over-fitting associated with 
the semi-supervised based approach by using sparse representation to suppress existing 
outliers in the data. For the latter problem, we employ Tree Conditional Random Field to 
construct the hierarchical structure of an image. Experiment results using two datasets confirm 
the effectiveness of our method. 

Keywords: Object recognition, Automatic image annotation, Sparse representation, Semi-
supervised learning, Hierarchical representation, Tree Conditional Random Field. 

1. INTRODUCTION  

Generic object recognition (automatic image annotation), in which the system automatically 
assigns labels to an image, is one of the most significant tasks in computer vision. Most of the 
conventional methods are based on a supervised labeling approach in order to achieve an exact 
classification. However, it has been pointed out that with this approach the training cost is 
extremely high because an enormous amount of training data must be labeled manually. To 
reduce the amount of such a troublesome work, a semi-supervised approach has recently 
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attracted considerable attention in machine learning [1][2][3][4][5]. The semi-supervised 
approach inputs a large amount of non-labeled data (unsupervised data) for the training as well 
as not so much labeled data. Hence, it helps to improve the training accuracy without using a 
lot of labeled data. 

Descriptions of popular methods using semi-supervised learning in text classification can be 
found in [2], which introduces TSVM (transductive support vector machine) as a classification 
model, and in [3], which introduces SemiNB (semi-supervised naive Bayes classifier) as a 
generative model. TSVM extends the well-known SVM so that it can be trained not only with a 
few labeled data but also with a large volume of unlabeled data. During the training, labeled 
data first determine the margin, which classifies unlabeled data. The former SemiNB is a semi-
supervised version of Naive Bayes (NB). Both methods, especially in SemiNB, are adversely 
affected by the influence of outliers in large amounts of unsupervised data, because they both 
take whole the unlabeled data as well as labeled data in the training process. The TSVM limits 
the influence of the outliers only to data around the margin. Therefore, the TSVM is not 
influenced as much by outliers as SemiNB is, though it is inevitable that the outliers negatively 
affect the margin estimation. Furthermore, the TSVM is a computationally expensive algorithm. 
Given a large number of training data, it needs to take an approximate approach that causes 
weak estimation of the margin. 

In consideration of the drawbacks in a semi-supervised approach, we propose an automatic 
image annotation method where an effective semi-supervised tool, semi-supervised canonical 
correlation analysis (semi-CCA) [4], and sparse representation [6] collaboratively suppress the 
influence of outliers. First, subspaces that maximize the correlation between image features 
and label features are generated by semi-CCA, using a small amount of labeled data and much 
unlabeled data. Semi-CCA extends canonical correlation analysis (CCA), so as to avoid over-
fitting when it has a few (labeled) training data. Given a large amount of unlabeled data as well 
as the labeled data, it grabs a global distribution. Since the trained distribution is affected by 
outliers somewhat, we adopt Regularized Orthogonal Matching Pursuit (ROMP) [7], one of the 
handy sparsing algorithms. Using sparse representation, it is possible to achieve the automatic 
annotation that utilizes an abundance of unlabeled data for the semi-supervised learning that is 
robust to the influence of outliers. 

Our approach is based on super-pixel representation [8,9], where low-level features, such 
as the color feature and the texture feature, are extracted from the local region (super-pixel), 
and the class of each region is recognized based on such features. However, there is a problem 
in the super-pixel-based methods in that they are not robust to the scale variance due to their 
inability to discriminate the features extracted from the local regions. Therefore, we further 
employ hierarchical representation in this paper. This hierarchical structured model, which is 
called Tree Conditional Random Field (TCRF) [10], is robust to the scale variance since it 
accounts for multi-scale hierarchization. 
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Figure 1: System flowchart of proposed method. 

Figure 1 shows the flow of the proposed method. In the training stage, we first divide all 
training images including labeled and unlabeled data into hierarchical subregions using SWA 
(Segmentation by Weighted Aggregation) [11]. For each region in each layer, we extract 
features  and apply sparse-representation in semi-supervised learning to estimate class label 
confidence. Then, we train TCRF using the confidence and the label data in all layers to estimate 
the probability of co-occurrences within classes in a hierarchical structure. In the test stage as 
well, we first apply SWA to obtain hierarchical subregions, project the regions into sub-space in 
each layer, and finally estimate the class label for each region (pixel) using TCRF. 

The rest of the paper is organized as follows. In Section 2, we present the way of applying 
sparse representation in semi-supervised learning, and we explain the final annotation using 
TCRF in Section 3. The performance of the proposed method is evaluated in Section 4, and we 
conclude in Section 5. 

2. SUBSPACE GENERATION AND SPARSE REPRESENTATION 

Due to the high cost of preparing correct labels as training data in automatic image 
annotation, it is desirable to employ a semi-supervised approach which uses unlabeled data 
instead of some of labeled data. However, there exist outliers in the unlabeled data. In this 
section, we discuss a method that generates subspaces using the semi-supervised approach 
called Semi-supervised Canonical Correlation Analysis (semi-CCA) [4], and suppresses such 
outliers using Regularized Orthogonal Matching Pursuit (ROMP) [7] as shown in Figure 2. 
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Figure 2: Flow of outlier suppression in semi-supervised learning using sparse representation. 

 

2.1 Semi-CCA 

The semi-CCA is an extended version of Canonical Correlation Analysis (CCA) so that it 
substitutes unlabeled data for some labeled data. Both methods find the subspace that 
maximizes a correlation between two different types of features. In this paper, the relationship 
(correlation) between an image and the accompanying labels are obtained. 

Let  be a training data set, where  and  are N 
labeled data, and  is M unlabeled data. x and y indicate image feature and 
label feature, respectively (See 2.2). The aim of Semi-CCA or CCA is to find the optimum 
subspace that maximizes a correlation between projected x and y: 

 

(1) 

where  and  are projection vectors to the subspace from the original feature space x 
and y, respectively.  indicates each variance-covariance matrix within the labeled data. For 

example, . 
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If unlabeled data  is not given as the training (in other words, in the case of normal 
CCA), all that can be done is just to formulate the maximum problem in which the optimum  
and  are found to maximize Eq. (1) using a Lagrange multiplier. In that case, the formulation 
boils down to an eigen-value problem. 

When the amount of labeled data is not adequate, the obtained subspace is inefficiently 
overfitted to the training data. Hence, unlabeled data are added for correcting a global 
structure of data distribution in the subspace. In order to do that, PCA is employed using the 
concept of semi-CCA [4]. In a similar way to CCA, a projection matrix of the PCA can be 
calculated by solving an eigenvalue problem, in which a variance-covariance matrix of the data 
is maximized under a normalized orthogonal constraint. 

As mentioned above, semi-CCA can be expressed as the combination of two factors: CCA 
with labeled data and PCA with all data including unlabeled data. Therefore, the semi-CCA 
formulation is also obtained by combination of the two eigenvalue problems, as in Eq. (2). A 
projection matrix can ultimately be obtained from the upper eigenvalues using semi-CCA. 

 
(2) 

 

where, 

 

(3) 

 

(4) 

 

and  is a variance-covariance matrix of all image feature vectors 
including unlabeled images.  and  are identity matrices with the size  and , 
respectively. Note that the first term and the second term in Eq. (3) and (4) indicate the terms 
related to eigenvalue problems of CCA and PCA, respectively.  is a trade-off parameter which 
determines the effects of CCA and PCA. 

The image feature and the label feature are connected via latent variables z in the 
subspace. These variables can be calculated by applying the conditional Gaussian model (For 
more details, see [4]). After this, we can rewrite the training and test data with the latent 
variables z for the sake of consideration in the subspace. 
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2.2 Image Feature and Label Feature 

Each image is first divided into small subregions using Normalized Cuts [12]. In each 
subregion, the following features are extracted: 

• Color : Statistics of RGB, HSV, Lab, and YCbCr 
• Gabor : Gabor filter and Laplacian-of-Gaussian 
• Position : Center position of a region 
• Geometric : Area of a region 

An image feature vector x is defined as a super-vector, where all these features are 
included. A label feature vector y is a binary vector, where each label is assigned in the 
subregion or not. 

 

2.3 Annotation Using Sparse Representation 

Recently, classification methods based on sparse representation, in which test data are 
represented as a linear combination of sparse bases, have been drawing attention in image 
processing [13][14]. It was reported in these papers that classification results showed favorable 
robustness of sparse representation against outliers. In this paper, we set out to suppress the 
effect of outliers that unintentionally appear when there is a large amount of unlabeled data, 
by employing sparse representation. 

If a sufficient amount of training data is prepared, an input image  in the subspace can 
be represented as a linear combination of the training data. Our aim is to find sparse 
coefficients associated with each training data. Those entries are mostly zero, except for a few 
elements. This can be formulated as a minimizing problem with respect to a coefficient vector 

 in Eq. (5). 

 
(5) 

where  is a training data matrix (  is a dimension of subspace feature). 

 indicates  norm, which is the number of almost-zero elements in , given by 
 with an experimentally-determined small value . However, it is 

computationally difficult to find the optimum vector in Eq. (5) because  is indifferentiable. 
In this paper, we consequently adopt one of the popular greedy algorithms, Regularized 
Orthogonal Matching Pursuit (ROMP) [7] to solve this optimum problem. 

At the end, the test data can be restored by multiplying a training data and the obtained 
vector  as . By taking an inner production between the test data and the restored 
data, a restoration ratio  of the label class c can be calculated as 
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(6) 

where Zc is a training data matrix that only contains the data given the label c, and  is a 
coefficient vector associated with the training data in Zc. The restoration ratio  implies a 
confidence of the class c. Therefore, multi-label classification can be realized by calculating all 

the confidences  (C is the number of label classes). However, we use the best 
class label  in all classes by taking the maximum for the following procedure. 

3. HIERARCHICAL REPRESENTATION  

From Eq. (6), we obtain the class label for one sub-pixel in a certain layer. After obtaining all 
the class labels for each sub-pixel in each layer, we finally estimate the class label for each 
region (pixel), considering the hierarchical and spatial co-occurrence in adjacent subregions 
using Tree Conditional Random Field (TCRF) [10]. 

 

 
Figure 3: Graphical representation of the image using Tree Conditional Random Field. 

Conditional Random Field (CRF) [15] was originally introduced in linguistic processing to 
represent a graphical and discriminative model. This model is used for estimating the class of 
the structured observation. When we apply the CRF to the hierarchical-segmented image as 
shown in Figure 3 left, each segment is represented as a node, and all segments that have the 
relation between layers are connected by an edge (Figure 3 right). Such a graphical model is 
called a TCRF. 

Let  denote each segment in a hierarchical-segmented image,  be the set of the 
child nodes for the parent node ,  describe the class reliability in each segment 

obtained from the previous section, and  indicate the class labels estimated in 
each node. Then, the model formula of the TCRF is written as the following conditional 

distribution . 

URL: http://dx.doi.org/10.14738/tmlai.21.95  52 
 

http://dx.doi.org/10.14738/tmlai.21.95


T R A N S A C T I O N S  O N  M A C H I N E  L E A R N I N G  A N D  A R T I F I C I A L  I N T E L L I G E N C E  V O L U M E  2 ,  I S S U E  1 ,  ( 2 1 0 4 )  
 

 

(7) 

where Z is called partition for regularization.  represents the model parameters 
of TCRF estimated based on the following Maximum A Posteriori (MAP) by using all the training 
images with ground truth. 

 
(8) 

where T is the number of the training images, and R is the parameter for preventing over-
fitting.  is computed analytically by an L-BFGS method [9]. The first term in Eq. (7)  
is the class reliability distribution in each node, which is defined as follows. 

 
(9) 

 

The second term in Eq. (7)  is the class co-occurrence between the adjacent 
nodes defined as: 

 (10) 

 For the final class estimation, we need to find the class of each node that maximizes the 
conditional distribution shown in Eq. (7), given the test image . For this purpose, 
we use Maximizer of Posterior Marginal (MPM) estimation. 

 
(9) 

where  is the class maximizing the posterior marginal distribution, and  is a collection of 
the labels. Since the graph structure is one of the tree structures, the global optimal estimation 
can be done by Belief Propagation [16]. 

By decreasing the segmentation error, we regard the estimation result in the bottom layer 
as the final estimation result. Since this estimation considers all estimation results in all layers 
of the hierarchy and is a global optimum, the proposed method is robust to the scale variance 
of objects. 

4. EXPERIMENTAL EVALUATION 

In Section 4.1, we first see the effectiveness of the labeling method only using sparse 
representation in semi-supervised learning described in Section 2. Then, we evaluate our 
method that combines the sparse representation and hierarchical representation in Section 4.2. 
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4.1 Object Recognition Using Sparse Representation in Semi-supervised 
Learning 

4.1.1 Experimental Conditions 

 
Figure 4: Examples from STAIR image dataset 

For this image annotation experiments, we used a STAIR image data set [17], which contains 
534 images along with pixel-wise 5 labels ( “Sky”, “Tree”, “Road”, “Grass” and “Building”) as 
their examples are shown in Figure 4. In our experiments, the training and test are conducted 
using features in each subregion, which is divided by Normalized Cuts. Labeling accuracies for 
each class and their average are calculated by accumulating the subregion results. The accuracy 
was evaluated with 3-fold cross validation. Images for the training and the test were randomly 
selected (400 images for the training and 134 images for the test) three times for each 
validation. 

We conducted two experiments in this section. In the first experiment, we compared with 
conventional semi-supervised methods: “SemiNB” and “TSVM”. Secondly, we examined these 
methods in a supervised manner; a supervised variation of our method (without hierarchical 
representation) was compared with “NB” and “SVM,” just to see the effectiveness of semi- 
supervised approach. Here we employed CCA instead of semi-CCA, given a full set of labeled 
data. 

 

4.1.2 Results and Discussion 

The results of semi-supervised and supervised approaches are shown in Table 1 and Table 2, 
respectively. As shown in these tables, the recognition accuracy of our method is higher than 
not only the other semi-supervised approaches but also the supervised approaches, such as 
SVM. The other methods, SVM and NB, suffer decreased accuracy in the semi-supervised case. 
This is, in general, because conventional approaches make extensive use of unsupervised data, 
and their classifiers were consequently affected by unsupervised factors, especially outliers. On 
the other hand, our approach increases the accuracy in the semi-supervised case. This is 
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considered to be due to the benefit of semi-supervised learning, which helps the classifier to 
catch the global structure of data distribution in the case where there is a very small amount of 
labeled data for the training (due to the effective suppression of outliers using sparse 
representation). 

Table 1: Recognition accuracies of non-hierarchical methods (semi-supervised approaches) [%] 

Label Sky Tree Road Grass Building Average 
SemiNB 25.3 30.5 70.6 47.5 31.3 41.0 
TSVM 82.8 62.0 83.3 74.4 68.6 74.2 
Our method 87.2 66.0 84.4 80.1 75.9 78.7 

 

Table 2: Recognition accuracies for comparison of supervised methods [%] 

Label Sky Tree Road Grass Building Average 
NB 43.2 26.7 73.8 54.3 33.1 46.2 

SVM 87.8 57.1 85.5 76.9 65.2 74.5 
ROMP 54.5 39.2 51.5 44.5 39.9 45.9 

Our method (sp) 85.0 63.7 89.6 75.4 73.2 77.4 
 

4.2 Object Recognition Using Hierarchical Sparse Representation 

4.2.1 Experimental Conditions 

 

 
Figure 5: Examples from STAIR image dataset 

In this section, we show the object recognition results of our proposed method, where we 
first estimate class labels for each of the subregions in each layer using the sparse 
representation method described in Section 2, and then adjust the labels using hierarchical 
representation as described in Section 3. For the experiments, we used a Corel image dataset 
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[18], in addition to a STAIR image dataset, which consists of 100 images with 7 labels 
(“Rhino/Hippo”, “Polar bear”, “Water”, “Snow”, “Vegetation”, “Ground”, and “Sky”) as shown 
in Figure 5. For this dataset, all images have the same size of 180x120. We divided all images 
into hierarchical subregions using SWA (Segmentation by Weighted Aggregation) [11], and 
extracted local features from the lowest layer where we set the number of subregions to 200 
per image. Each method was evaluated using leave-one-out cross validation. The experimental 
conditions related to the STAIR image dataset are the same as in the previous section. 

4.2.2 The Number of Layers 

First, we investigated our hierarchical method to see how the accuracy changes as the 
number of layers increases. We changed the number of layers from 1 to 6, and set the number 
of subregions in each case as shown in Table 3. For example, we divide an image into 200 
subregions, 100 subregions, and 50 subregions for the first layer, the second layer, and the 
third layer, respectively, when we use the four-layer structure. 

The results are shown in Figure 6. In most of the cases, the recognition accuracy increases 
as the number of layers increases. We obtained the best performance when there were 5 
layers. Therefore, we used the five-layer structure in the remaining experiments. 

Table 3: The number of subregions in each layer 

 Layer index 
Number of layers 1 2 3 4 5 6 

1 200 - - - - - 
2 200 1 - - - - 
3 200 100 1 - - - 
4 200 100 50 1 - - 
5 200 100 50 25 1 - 
6 200 100 50 25 12 1 

 

 
Figure 6: Change in accuracy due to increasing the number of layers. 
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4.2.3 Experimental Results and Discussion 

The experimental results using a Corel image dataset are shown in Table 4. The results of 
the comparison method “CRF” were obtained from a non-hierarchical structure [19,20]; i.e. the 
same case as when the number of layers was 1 in the previous section. “LR” has the same 
conditions as “CRF”, except for using logistic regression for the clustering method instead of 
CRF. As shown in Table 4, our proposed method improved the accuracy by 2.5 points due to the 
hierarchical structure. 

Table 5 shows the results of our proposed method using the STAIR image dataset. The 
difference between “Our method(a)” and “Our method(b)” is that “Our method(a)” does not 
have a hierarchical structure but has sparse representation (in the same case as shown in 
Section 4.1.2). On the other hand, “Our method(b)” has a hierarchical structure. We obtained 
better performance with “Our method(b)”. 

Table 4: Recognition accuracies using Corel image dataset [%] 

Label Rhino P. bear Water Snow Vege. Ground Sky Average 
LR 73.5 65.1 70.3 68.2 75.3 71.0 56.6 68.6 

CRF 71.8 71.0 82.6 70.6 78.9 74.7 41.7 70.2 
Our method 76.2 74.1 80.4 73.0 80.9 74.1 50.4 72.7 

 

Table 5: Recognition accuracies using STAIR image dataset [%] 

Label Sky Tree Road Grass Building Average 
Our method(a) 87.2 66.0 84.4 80.1 75.9 78.7 
Our method(b) 92.1 63.2 85.1 84.9 74.9 80.0 
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Figure 7: Examples of recognition results from each method 

 

From Table 4 and Table 5, we see the effectiveness of the method that is based on sparse 
and hierarchical representation, regardless of the dataset. To show the details of the results, we 
provide some examples of the recognition results in Figure 7. First we compare the 
conventional methods “LR” and “CRF”. The local errors are improved with “CRF” due to 
considering the co-occurrence of the labels in adjacent regions, resulting in better performance. 
Our method further considers the hierarchical structure, and comes up with labeling results 
that are more natural and  closer to the ground truth. 

5. CONCLUSION 

In this paper, we proposed an effective object recognition method, which suitably combines 
a semi-supervised approach (Semi-supervised Canonical Correlation Analysis; semi-CCA), sparse 
representation (Regularized Orthogonal Matching Pursuit; ROMP), and hierarchical 
representation (Tree Conditional Random Field; TCRF). Semi-supervised learning has the 
advantage of being able to capture a global structure of the true data distribution even when 
given only a small amount of labeled training data. However, outliers included in unsupervised 
data often negatively affect the classifier construction. Our approach suppresses such outliers 
in terms of sparse representation in the subspace that is created using semi-CCA. Furthermore, 
we adopt TCRF in order to be robust to scale variance, which often causes errors in super-pixel-
based object recognition. 
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The experimental results using two datasets showed the effectiveness of our proposed 
method satisfactorily. While conventional semi-supervised approaches decreased the labeling 
accuracy compared with their supervised methods, our sparse-representation-based approach, 
on the contrary, increased the accuracy, taking full advantage of semi-supervised learning. 
When we also applied hierarchical representation, we further obtained better results than 
when the non-hierarchical structured approach is used. 

In our method, we used sparse representation and hierarchical representation in a tandem 
manner. We would like to investigate the integration of these methods into one framework in 
the future. 
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