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ABSTRACT 

Odd numbers can be indexed by the map 𝑘𝑘(𝑛𝑛) = (𝑛𝑛 − 3) 2⁄ ,𝑛𝑛 ∈ 2ℕ + 3 . We first propose a basic 
primality test using this index function that was first introduced in [8]. Input size of operations is reduced 
which improves computational time by a constant. We then apply similar techniques to Atkin’s prime-
numbers sieve which uses modulus operations and finally to Pritchard’s wheel sieve, in both case yielding 
similar results. 

Keywords: odd number index, primality test, primes enumeration, Atkin sieve, composite odd numbers, 
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1 Introduction 

1.1 Primality test and prime enumeration 

An odd number 𝑛𝑛 is prime when it is not divisble by any prime 𝑝𝑝 lower than or equal to √𝑛𝑛. This basic 
primality test requires too much computational time for large integers. Faster and more efficient 
deterministic and probabilistic primality tests have been designed for large numbers [1]. A deterministic 
polynomial primality test was proposed by M. Agrawal, N. Kayal and N. Saxena in 2002 [2]. 

Enumeration of primes up to a given limit can be done by using a primality test but prime number sieves 
are preferred from a performance point of view. A sieve is a type of fast algorithm to find all primes up to 
a given number. There exists many such algorithms, from the simple Erastosthenes’ sieve (invented more 
than 2000 years ago), to the wheel sieves of Paul Pritchard ([3], [4], [5]) and the sieve of Atkin [6]. In [7], 
Gabriel Paillard, Felipe Franca and Christian Lavault present another version of the wheel sieve and give 
an overview of all the existing prime-numbers sieves. 

In theory, indices are a way to represent odd numbers. By adapting results from [8], we show how odd 
number indices may be used in applied mathematics. In the last part, we apply [8] to Pritchard’s wheel 
sieve, which leads to a 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 wheel sieve. Using the linear diophantine equation resolution method 
first introduced in [9], we introduce an original way of “turning the wheel”. 

1.2 Notation 
We will use the following notations: 
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1. 𝐼𝐼 designates the set of odd integers greater than 1, i.e.: 

𝐼𝐼 = {𝑁𝑁𝑘𝑘 = 2𝑘𝑘 + 3|𝑘𝑘 ∈ ℕ}; 

2. 𝑃𝑃 the set of prime numbers, 𝑃𝑃𝑛𝑛 the set of prime numbers not greater than 𝑛𝑛; 

3. 𝐶𝐶 the set of composite odd integers, i.e.: 

𝐶𝐶 = 𝐼𝐼\𝑃𝑃 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|∃(𝑎𝑎, 𝑏𝑏) ∈ 𝐼𝐼,𝑁𝑁𝑘𝑘 = 𝑎𝑎𝑎𝑎} 

The function 𝑓𝑓: 𝑘𝑘 ∈ ℕ⟼ 𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼  is bijective. The inverse function is 𝑓𝑓−1:𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼 ⟼ 𝑘𝑘 = 𝑁𝑁𝑘𝑘−3
2

. 𝑘𝑘 =
𝑓𝑓−1(𝑁𝑁𝑘𝑘) is the index of 𝑁𝑁𝑘𝑘. The preimage of 𝐶𝐶 is denoted by 𝑊𝑊: 

𝑊𝑊 = 𝑓𝑓−1(𝐶𝐶) = {𝑘𝑘 ∈ ℕ| 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶} 

4. For 𝑥𝑥 and 𝑦𝑦 two integers, we denote by 𝑥𝑥 mod 𝑦𝑦 the remainder of the Euclidean division of 𝑥𝑥 by 𝑦𝑦, 
which belongs to ⟦0,𝑦𝑦 − 1⟧. 

 

5. 𝑁𝑁1 and 𝑁𝑁2 are the subsets of 𝐼𝐼 given by: 

𝑁𝑁1 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|𝑁𝑁𝑘𝑘  mod 4 = 1} 

𝑁𝑁2 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|𝑁𝑁𝑘𝑘  mod 4 = 3} 

Similarly: 

𝐶𝐶1 = 𝑁𝑁1 ∩ 𝐶𝐶 

𝐶𝐶2 = 𝑁𝑁2 ∩ 𝐶𝐶 

Finally, 𝑆𝑆1 and 𝑆𝑆2 designate the set of indices corresponding to elements of 𝐶𝐶1 and 𝐶𝐶2 respectively, i.e. 
𝑆𝑆1 = 𝑓𝑓−1(𝐶𝐶1) and 𝑆𝑆2 = 𝑓𝑓−1(𝐶𝐶2). 

 

2 Basic primality test and primes enumeration 

2.1 Two families of infinite sequences with arithmetic difference 
[8] shows that 𝑊𝑊  is the union of two families of finite sequences with arithmetic difference. Actually 
proposition 2-5 says that any composite odd number 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶  can be written as a difference of two 
squares, and more precisely that there exists 𝑗𝑗 ∈ ℕ and 𝑥𝑥 ∈ ⟦0, 𝑗𝑗⟧ such that: 

�
(𝟏𝟏) 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1 ⇒ 𝑁𝑁𝑘𝑘 = (2𝑗𝑗 + 3)2 − (2𝑥𝑥)2,       
(𝟐𝟐) 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2 ⇒ 𝑁𝑁𝑘𝑘 = (2𝑗𝑗 + 4)2 − (2𝑥𝑥 + 1)2 

 

Corollary 2-1: Let 𝑘𝑘𝑗𝑗(𝑛𝑛) = (2𝑗𝑗 + 3)𝑛𝑛 + 𝑗𝑗. One has: 

𝑊𝑊 = 𝑆𝑆1 ∪ 𝑆𝑆2 

and: 

𝑆𝑆1 = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥;  𝑖𝑖 ∈ ℕ, 𝑥𝑥 ∈ ℕ}
𝑆𝑆2 = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥; 𝑖𝑖 ∈ ℕ, 𝑥𝑥 ∈ ℕ}  
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Thus 𝑊𝑊 is the union of two families of infinite arithmetic sequences. The indices 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) of first type 
reference points (or remarkable points, see[8]) are the initial terms of sequences ranging in 𝑆𝑆1. Similarly, 
the indices 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) of second type reference points are the initial terms of sequences ranging in 𝑆𝑆2. 

Proof: We substitute 𝑗𝑗 by 𝑖𝑖 + 𝑥𝑥 in relations (1) and (2):  

(2𝑗𝑗 + 3)2 − (2𝑥𝑥)2 = (2𝑖𝑖 + 2𝑥𝑥 + 3)2 − (2𝑥𝑥)2 = (2𝑖𝑖 + 3)(2𝑖𝑖 + 4𝑥𝑥 + 3)
= 2[𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥] + 3 

and similarly: 

(2𝑗𝑗 + 4)2 − (2𝑥𝑥 + 1)2 = (2𝑖𝑖 + 2𝑥𝑥 + 4)2 − (2𝑥𝑥 + 1)2 = (2𝑖𝑖 + 3)(2𝑖𝑖 + 4𝑥𝑥 + 5)
= 2(2𝑖𝑖 + 3)(𝑖𝑖 + 2𝑥𝑥 + 2) + 2𝑖𝑖 + 3 = 2[𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥] + 3 

 

Proposition 2-1: For any 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶 there exists 𝑋𝑋 ∈ 𝑃𝑃, 𝑋𝑋 ≤ �𝑁𝑁𝑘𝑘  and 𝑥𝑥 ∈ ℕ such that: 

𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1 ⇒ 𝑁𝑁𝑘𝑘 = 𝑋𝑋(𝑋𝑋 + 4𝑥𝑥) 

𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2 ⇒ 𝑁𝑁𝑘𝑘 = 𝑋𝑋(𝑋𝑋 + 4𝑥𝑥 + 2) 

Thus, writing 𝑋𝑋 = 2𝑖𝑖 + 3, we get: 

𝑊𝑊 = 𝑆𝑆1′ ∪ 𝑆𝑆2′  

where: 

𝑆𝑆1′ = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥;  𝑖𝑖 ∈ ℕ ∖𝑊𝑊, 𝑥𝑥 ∈ ℕ}
𝑆𝑆2′ = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥; 𝑖𝑖 ∈ ℕ ∖𝑊𝑊, 𝑥𝑥 ∈ ℕ}  

Proof: Take 𝑋𝑋 the smallest prime dividing 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶. Thus 𝑋𝑋 ∈ 𝑃𝑃�𝑁𝑁𝑘𝑘  and if 𝑌𝑌 = 𝑁𝑁𝑘𝑘
𝑋𝑋

 then 𝑌𝑌 ≥ 𝑋𝑋 and 𝑌𝑌 − 𝑋𝑋 is 

even, and we can write it either 4𝑥𝑥 or 4𝑥𝑥 + 2. These two cases clearly correspond respectively to 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1 
and 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2. Thus the index 𝑘𝑘 can be decomposed as in corollary 2-1, but with 𝑖𝑖 the index of a prime 
number, hence in ℕ ∖𝑊𝑊. 

2.2 Basic primality test 
In this section, we describe a basic primality test using the previous infinite sequences. 

Definition 2-2: For any 𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃 and 𝑁𝑁 ∈ 𝐼𝐼 we let: 

1- 𝐴𝐴(𝑁𝑁,𝑝𝑝) = 𝑁𝑁 − 𝑝𝑝2 and 𝑓𝑓𝐴𝐴(𝑝𝑝) = 𝑝𝑝2. 
 

2- 𝐵𝐵(𝑁𝑁,𝑝𝑝) = 𝑁𝑁 − 𝑝𝑝(𝑝𝑝 + 2) and 𝑓𝑓𝐵𝐵(𝑝𝑝) = 𝑝𝑝(𝑝𝑝 + 2). 
 

Proposition 2-2: 𝑁𝑁 ∈ 𝑁𝑁1 is a prime number when: 

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√𝑁𝑁  ,
𝐴𝐴(𝑁𝑁,𝑝𝑝)

4
 mod 𝑝𝑝 ≠ 0 

𝑁𝑁 ∈ 𝑁𝑁2 is a prime number when: 

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√𝑁𝑁  ,
𝐵𝐵(𝑁𝑁,𝑝𝑝)

4
 mod 𝑝𝑝 ≠ 0 



WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions 
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41 

 

URL: http://dx.doi.org/10.14738/tmlai.82.8054       14 
 

Proof: This follows from the fact that 𝐴𝐴(𝑁𝑁,𝑝𝑝) mod 𝑝𝑝 = 𝑁𝑁 mod 𝑝𝑝 and likewise for 𝐵𝐵(𝑁𝑁,𝑝𝑝). 

Remark 2-2: In order to reduce computation of 𝐴𝐴(𝑁𝑁,𝑝𝑝) and 𝐵𝐵(𝑁𝑁,𝑝𝑝) for two consecutive prime numbers, 
we only decrement the value. 

More precisely, if 𝑝𝑝 < 𝑝𝑝′ are two primes, we let 𝛼𝛼(𝑝𝑝,𝑝𝑝′) = 𝑝𝑝′ − 𝑝𝑝 and we compute: 

�
𝛥𝛥𝛥𝛥(𝑁𝑁,𝑝𝑝,𝑝𝑝′) = 𝐴𝐴(𝑁𝑁,𝑝𝑝) − 𝐴𝐴(𝑁𝑁,𝑝𝑝′) = 𝛼𝛼(𝛼𝛼 + 2𝑝𝑝)
𝛥𝛥𝛥𝛥(𝑁𝑁,𝑝𝑝,𝑝𝑝′) = 𝐵𝐵(𝑁𝑁,𝑝𝑝) − 𝐵𝐵(𝑁𝑁,𝑝𝑝′) = Δ𝐴𝐴(𝑁𝑁,𝑝𝑝, 𝑝𝑝′) + 2𝛼𝛼 

These two expressions are independent of 𝑁𝑁. 

2.3 Primality test with indices 
We adapt here the results of the previous section with indices. 

Definition 2-3: For any 𝑖𝑖 index of a prime number 𝑝𝑝 ∈ 𝑃𝑃 and 𝑘𝑘 ∈ ℕ, we let: 

1- 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) = (𝑘𝑘 − 3) 2⁄ − 𝑖𝑖(𝑖𝑖 + 3), 𝑓𝑓𝐴𝐴′(𝑖𝑖) = 𝑖𝑖(𝑖𝑖 + 3), 𝑔𝑔𝐴𝐴′ (𝑘𝑘) = (𝑘𝑘 − 3) 2⁄  
 

2- 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) = (𝑘𝑘 − 6) 2⁄ − 𝑖𝑖(𝑖𝑖 + 4) and 𝑓𝑓𝐵𝐵′(𝑖𝑖) = 𝑖𝑖(𝑖𝑖 + 4), 𝑔𝑔𝐵𝐵′ (𝑘𝑘) = (𝑘𝑘 − 6) 2⁄  
 

Proposition 2-3: 𝑘𝑘 ∈ 𝑆𝑆1 is a prime number index when: 

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√2𝑘𝑘+3 ,𝐴𝐴′(𝑘𝑘, 𝑖𝑖) mod 𝑝𝑝 ≠ 0 

𝑘𝑘 ∈ 𝑆𝑆2 is a prime number index when: 

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√2𝑘𝑘+3 ,𝐵𝐵′(𝑘𝑘, 𝑖𝑖) mod 𝑝𝑝 ≠ 0 

Proof: This follows from proposition 2-2 and definition 2-2 because if we let 𝑁𝑁 = 2𝑘𝑘 + 3 then 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) =
𝐴𝐴(𝑁𝑁,𝑝𝑝)

4
 and 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) = 𝐵𝐵(𝑁𝑁,𝑝𝑝)

4
. 

Remark 2-3: In order to reduce computation of 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) and 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) for two consecutive prime number 
indices, we only decrement their values. 

More precisely, if 𝑖𝑖 < 𝑖𝑖′ are two prime indices we let 𝛼𝛼′(𝑖𝑖, 𝑖𝑖′) = 𝑖𝑖′ − 𝑖𝑖 and we compute: 

Δ𝐴𝐴′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) = 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) − 𝐴𝐴′(𝑘𝑘, 𝑖𝑖′) = 𝛼𝛼′(𝛼𝛼′ + 2𝑖𝑖 + 3) 

 Δ𝐵𝐵′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) = 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) − 𝐵𝐵′(𝑘𝑘, 𝑖𝑖′) = Δ𝐴𝐴′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) + 𝛼𝛼′ 

These two expressions are independent of 𝑘𝑘. 

2.4 First algorithms of prime enumeration 
In this section, we present prime enumeration algorithms based on propostion 2-2 and 2-3. The first one 
manipulates numbers and the second one indices. 

2.4.1 Primality test using numbers 

This first algorithm named PrimeEnumeration consists in two functions: 

 The main function which determines primes in up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and returns them in a list, along 
with its size. 

 An auxiliary function which returns whether a number 𝑁𝑁 is prime, based on precomputed list 
of primes and values of Δ𝐴𝐴 and Δ𝐵𝐵. It is called LocalTest. It is also in charge of updating the 
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lists Δ𝐴𝐴 and Δ𝐵𝐵 if needed. 

Three zero-based lists are used and built recursively in this algorithm: the list of primes itself 𝐿𝐿𝑝𝑝, and the 
lists of values for Δ𝐴𝐴 and Δ𝐵𝐵 respective to 𝐿𝐿𝑝𝑝 (remember it is independent from 𝑁𝑁). Only numbers which 
are not multiples of 2 and 3 are tested. Thus we restrict to 𝑁𝑁 = 6𝑚𝑚 + 1 and 𝑁𝑁 = 6𝑚𝑚 + 5. The congruence 
of 𝑁𝑁  modulo 4  depends on the parity of 𝑚𝑚 , i.e. when 𝑚𝑚  is even, 𝑁𝑁 mod 4 = 1  and when 𝑚𝑚  is odd, 
𝑁𝑁 mod 4 = 3. 

 

Algorithm 2-4-1a Function PrimeEnumeration(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is an odd integer such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 7. This 
function returns the list of primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and its size. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {5}      List of primes from 5, initialized with one element 

𝑖𝑖𝑙𝑙 ← 1      Size of the list 𝐿𝐿𝑝𝑝 

      About the next two lists, see the remark 2-2 

Δ𝐴𝐴 ← {16}     Δ𝐴𝐴(𝑁𝑁, 3,5) = 2 × (2 + 6) = 16 

Δ𝐵𝐵 ← {20}     Δ𝐵𝐵(𝑁𝑁, 3,5) = Δ𝐴𝐴(𝑁𝑁, 3,5) + 2 × 2 = 20 

𝑖𝑖𝑟𝑟1 → 0  

𝐶𝐶𝐶𝐶𝐶𝐶1 ← 25  

𝑖𝑖𝑟𝑟2 → 0  

𝐶𝐶𝐶𝐶𝐶𝐶2 ← 35  

Second step : iteration 

(𝑚𝑚,𝑁𝑁) ← (1,7)  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ← False    𝑚𝑚 = 1 so (6𝑚𝑚 + 1) mod 4 = 3 

While 𝑁𝑁 ≤ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 Do    Loop to get odd primes in range ⟦5,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧ 

  If LocalTest(𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) Do 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑁𝑁 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑁𝑁 ← 6𝑚𝑚 + 5 

  If 𝑁𝑁 ≤ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) Do 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑁𝑁 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 
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  𝑚𝑚 ← 𝑚𝑚 + 1 

  𝑁𝑁 ← 6𝑚𝑚 + 1 

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ← !𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  Switch the boolean value 

End While 

Return ({2,3} + 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 + 2)  Return the list of primes and the number of primes. 

 

 

Algorithm 2-4-1b Function LocalTest (𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ): 𝑁𝑁  is an odd 
integer. 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  stands for 𝑖𝑖𝑟𝑟1 or 𝑖𝑖𝑟𝑟2 depending on 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. This function decides whether for all 𝑝𝑝 ∈
𝐿𝐿𝑝𝑝[0 … 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟], 𝐴𝐴(𝑁𝑁,𝑝𝑝)/4 or 𝐵𝐵(𝑁𝑁,𝑝𝑝)/4 is not divisible by 𝑝𝑝. It will also potentially update Δ𝐴𝐴, Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1, 𝑖𝑖𝑟𝑟2, 
𝐶𝐶𝐶𝐶𝐶𝐶1 and 𝐶𝐶𝐶𝐶𝐶𝐶2 which must be passed by reference. 

 

First step : intialisation of variables 

𝐴𝐴 ← 9      stands for 𝑓𝑓𝐴𝐴(3) = 32 

𝐵𝐵 ← 15     stands for 𝑓𝑓𝐵𝐵(3) = 3 × 5 

If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do   initiate references that might be updated 

  𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑖𝑖𝑟𝑟1 

  𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶1 

  Δ ← Δ𝐴𝐴 

Else 

  𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑖𝑖𝑟𝑟2 

  𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶2 

  Δ = Δ𝐵𝐵 

End If 

If 𝑁𝑁 = 𝐶𝐶𝐶𝐶𝐶𝐶 Do 

  Return False    The cap is a composite number 

End If 

If 𝑁𝑁 > 𝐶𝐶𝐶𝐶𝐶𝐶 Do    update references because we always want 𝑁𝑁 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶 

  𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 1 

  𝛼𝛼 ← �𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)− 𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1)� 

  If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do 

    Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ← 𝛼𝛼(𝛼𝛼 + 2𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1))   Δ𝐴𝐴 
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  Else 

    Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ← Δ𝐴𝐴(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + 2𝛼𝛼    Δ𝐵𝐵, using Δ𝐴𝐴 which must already be updated 

  End If 

  𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶 + Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

End If 

Second step : iteration 

If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do 

  𝑁𝑁 ← 𝑁𝑁 − 𝐴𝐴 

Else 

  𝑁𝑁 ← 𝑁𝑁 − 𝐵𝐵 

End If 

𝑖𝑖 ← 0   

While 𝑖𝑖 ≤ 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Do   Iteration at most up to 𝑖𝑖 = 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

  𝑁𝑁 ← 𝑁𝑁 − Δ(𝑖𝑖) 

  If (𝑁𝑁 4⁄ ) mod 𝐿𝐿𝑝𝑝(𝑖𝑖) = 0 Do  𝑁𝑁 is a multiple of 4, division by 4 can be done bitwise 

    Return False    Test is negative 

  End If 

  𝑖𝑖 ← 𝑖𝑖 + 1 

End While 

Return True    Test is positive 

 

2.4.2 Primality test using infinite sequences and indices 

This second algorithm IndexPrimeEnumeration also consists in two functions, mirroring the previous 
algorithm: 

 The main function which determines primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and returns them in a list along with 
its size. 

 An auxiliary function which returns whether a number 𝑁𝑁 is prime based on precomputed list 
of primes and values of Δ𝐴𝐴′ and Δ𝐵𝐵′. It is called LocalTest. 

Four zero-based lists are used and built recursively: the list of primes 𝐿𝐿𝑝𝑝, the corresponding indices 𝐼𝐼𝐼𝐼𝑝𝑝 
(indices of primes), and the lists Δ𝐴𝐴′ and Δ𝐵𝐵′ respective to 𝐿𝐿𝑝𝑝.  

Only numbers which are not multiple of 2 and 3 are tested, i.e. indices of the form 𝑘𝑘 = 3𝑚𝑚 − 1 and 𝑘𝑘 =
3𝑚𝑚 + 1. 

Remark 2-4-2: To avoid any division in the computation of 𝐴𝐴′ and 𝐵𝐵′ we will write 𝑚𝑚 = 2𝑡𝑡 + 1 or 2𝑡𝑡 + 2. 
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Algorithm 2-4-2a Function IndexPrimeEnumeration(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is an odd integer such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 7. 
This function returns the list of primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and its size. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {5}     List of primes from 5, initialized with one element 

𝐼𝐼𝐼𝐼𝑝𝑝 ← {1}    List of index of primes 

𝑖𝑖𝑙𝑙 ← 1     Size of the two lists 𝐿𝐿𝑝𝑝 and 𝐼𝐼𝐿𝐿𝑝𝑝 

     About the next two lists, see the remark 2-3 

Δ𝐴𝐴′ ← {4}    Δ𝐴𝐴′(𝑘𝑘, 0,1) = 1 × (1 + 3) = 4 

Δ𝐵𝐵′ ← {5}    Δ𝐵𝐵′(𝑘𝑘, 0,1) = Δ𝐴𝐴′(𝑘𝑘, 0,1) + 1 = 5 

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄  

𝑖𝑖𝑟𝑟1 → 0  

𝐶𝐶𝐶𝐶𝐶𝐶1 ← 11  

𝑖𝑖𝑟𝑟2 → 0  

𝐶𝐶𝐶𝐶𝐶𝐶2 ← 16  

Second step : iteration 

(𝑡𝑡, 𝑘𝑘,𝑔𝑔′) ← (0, 2,−2)    𝑘𝑘 starts at 3(2𝑡𝑡 + 1) − 1, 𝑔𝑔′ stands for 𝑔𝑔𝐴𝐴′ (𝑘𝑘) or 𝑔𝑔𝐵𝐵′ (𝑘𝑘) 

While 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 Do   Loop to get odd prime indices in range ⟦1,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧ 

  If LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,False) Do 

    𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑘𝑘 ← 𝑘𝑘 + 2    𝑘𝑘 = 3(2𝑡𝑡 + 1) + 1 

  𝑔𝑔′ ← 𝑔𝑔′ + 1 

  If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,False) Do 

    𝐼𝐼𝐼𝐼𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑘𝑘 ← 𝑘𝑘 + 1    𝑘𝑘 = 3(2𝑡𝑡 + 2) − 1 
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  𝑔𝑔′ ← 𝑔𝑔′ + 2 

  If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1,True) Do 

    𝐼𝐼𝐼𝐼𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑘𝑘 ← 𝑘𝑘 + 2    𝑘𝑘 = 3(2𝑡𝑡 + 2) + 1 

  𝑔𝑔′ ← 𝑔𝑔′ + 1 

  If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1,True) Do 

    𝐼𝐼𝐼𝐼𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

  𝑡𝑡 ← 𝑡𝑡 + 1    We do not use 𝑡𝑡 but keep it for the sake of readability 

  𝑘𝑘 ← 𝑘𝑘 + 1    𝑘𝑘 = 3(2𝑡𝑡 + 1) − 1 

  𝑔𝑔′ ← 𝑔𝑔′ − 1 

End While 

Return ({2,3} + 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 + 2)  Return the list of primes and the number of primes. 

 

 

Algorithm 2-4-2b Function LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝐶𝐶𝐶𝐶𝐶𝐶,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀): 𝑔𝑔′ stands for 𝑔𝑔𝐴𝐴′ (𝑘𝑘) 
or 𝑔𝑔𝐵𝐵′ (𝑘𝑘) depending on 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. This function decides whether for all 𝑝𝑝 ∈ 𝐿𝐿𝑝𝑝[0 … 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟], 𝐴𝐴′(𝑘𝑘, 𝑖𝑖)  or 
𝐵𝐵′(𝑘𝑘, 𝑖𝑖) is coprime with 𝑝𝑝. 

 

First step : intialisation of variables 

If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do    initiate references that might be updated 

  Δ ← Δ𝐴𝐴′ 

Else 

  Δ = Δ𝐵𝐵′ 

End If 

If 𝑘𝑘 = 𝐶𝐶𝐶𝐶𝐶𝐶 Do 

  Return False    The cap is the index of a composite number 
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End If 

If 𝑘𝑘 > 𝐶𝐶𝐶𝐶𝐶𝐶 Do    update references because we always want 𝑘𝑘 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶 

  𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 1 

  𝛼𝛼 ← �𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)− 𝐼𝐼𝐼𝐼𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1)� 

  If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do 

    Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ← 𝛼𝛼(𝛼𝛼 + 𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1))   Δ𝐴𝐴′ 

  Else 

    Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ← Δ𝐴𝐴′(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + 𝛼𝛼    Δ𝐵𝐵′, using Δ𝐴𝐴′ which must already be updated 

  End If 

  𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶 + Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

End If 

Second step : iteration 

𝑅𝑅 ← 𝑔𝑔′  

𝑖𝑖 ← 0   

While 𝑖𝑖 ≤ 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Do   Iteration at most up to 𝑖𝑖 = 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

  𝑅𝑅 ← 𝑅𝑅 − Δ(𝑖𝑖) 

  If 𝑅𝑅 mod 𝐿𝐿𝑝𝑝(𝑖𝑖) = 0 Do 

    Return False    Test is negative 

  End If 

  𝑖𝑖 ← 𝑖𝑖 + 1 

End While 

Return True    Test is positive 

 

2.5 Performance of the algorithms 
In this section, we present the performance of the previous two algorithms of prime enumeration. We 
first give a theoretical complexity, followed by empirical results. 

Proposition 2-5: Time complexity (in terms of number of arithmetic operations) and space complexity are 
the same for both PrimeEnumeration and IndexPrimeEnumeration algorithms.  

Time complexity is:  

𝑂𝑂�
(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)

3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�. 
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Space complexity is: 

𝑂𝑂 �
�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� 

Proof: Any number 𝑛𝑛’s primality is tested with primes in �5,√𝑛𝑛�, in 𝑂𝑂(1) operations. There are  𝜋𝜋�√𝑛𝑛� −

2 ∼ √𝑛𝑛
ln�√𝑛𝑛�

= 𝑂𝑂 � √𝑛𝑛
ln(𝑛𝑛)�  such primes. We loop over range ⟦7,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧ , time complexity is thus 

∑ 𝑂𝑂 � √𝑡𝑡
ln(𝑡𝑡)�

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑡𝑡=7 = 𝑂𝑂 � (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)

3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�  (actually we skip two thirds of the terms in this sum by not testing 

multiples of 2 and 3, but complexity remains 𝑂𝑂� (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)
3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� albeit with smaller constant. 

The space complexity is related to the lists we keep in memory, which are at most of size 𝜋𝜋(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀). This 

space complexity is 𝑂𝑂 � �𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�. 

Both algorithms have been implemented in Visual Studio C++ 2012. We measured execution time for 
various values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and produced a regression using Maple 2017.3. Details of the Maple options used 
to get the regression are given in appendix 8.1. 

On the graph 2-5 below, we represent the computation time in seconds for both algorithms. Curve 𝑇𝑇1 
corresponds to the algorithm PrimeEnumeration and curve 𝑇𝑇2  to IndexPrimeEnumeration. The 
correlation coefficient R of each curve is given on the graph. We observe that computation time of both 
algorithms is consistent with theoretical complexity, although exponent is a bit smaller than 1.5. 

 

Figure 1: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Prime enumeration) 

 

Both algorithms PrimeEnumeration and IndexPrimeEnumeration have the same number of modulo 
operations. But the computation of the input of modulus operations is done with larger inputs for the 
former than for the latter, which allows to marginally save time for large values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

3 The sieve of Atkin 
The sieve of Atkin [6] is a modern and efficient algorithm for primes enumeration. We present two 
algorithms based on it, one using numbers and the other indices. Both are based on the version which has 
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a complexity 𝑂𝑂(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) in time and space. Modified versions achieve up to 𝑂𝑂 � 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
ln ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� in time and 

𝑂𝑂 �𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
1
2+𝑜𝑜(1)� in space. 

3.1 Atkin algorithm 
This algorithm is based on the following three results from [6]. 

Proposition 3-1 Let 𝑛𝑛 > 3 be a square-free integer. Then 𝑛𝑛 is prime if and only if one of the three following 
conditions is true: 

a. 𝑛𝑛 ∈ 1 + 4ℕ and there is an odd number of solutions to 𝑛𝑛 = 4𝑥𝑥2 + 𝑦𝑦2, (𝑥𝑥,𝑦𝑦) ∈ ℕ2, 
b. 𝑛𝑛 ∈ 7 + 12ℕ and there is an odd number of solutions to 𝑛𝑛 = 3𝑥𝑥2 + 𝑦𝑦2, (𝑥𝑥,𝑦𝑦) ∈ ℕ2, 
c. 𝑛𝑛 ∈ 11 + 12ℕ and there is an odd number of solutions to 𝑛𝑛 = 3𝑥𝑥2 − 𝑦𝑦2, 𝑥𝑥 > 𝑦𝑦, (𝑥𝑥,𝑦𝑦) ∈ ℕ2. 

 

We observe that the first congruence condition on 𝑛𝑛 can also be replaced by 𝑛𝑛 ∈ 1 + 12ℕ or 𝑛𝑛 ∈ 5 +
12ℕ. We also observe the following for an odd integer 𝑛𝑛: 

• If 𝑛𝑛 = 4𝑥𝑥2 + 𝑦𝑦2, 𝑦𝑦 must be odd. 
• If 𝑛𝑛 = 3𝑥𝑥2 + 𝑦𝑦2 or 𝑛𝑛 = 3𝑥𝑥2 − 𝑦𝑦2, 𝑥𝑥 and 𝑦𝑦 must have opposite parity. 

Furthermore if 𝑛𝑛 is square-free, 𝑥𝑥 and 𝑦𝑦 must be in ℕ∗, with 𝑥𝑥 < �𝑛𝑛/2  and 𝑦𝑦 < √𝑛𝑛. 

Remark 3-1 We can compute the remainder modulo 12 of 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑦𝑦2 depending on remainders modulo 
12 of 𝑥𝑥 and 𝑦𝑦. This gives us the different cases to check in Atkin sieve. We present them in table 3-1, 
noting that there is no case for 𝑦𝑦 mod 12 = 0 and 𝑦𝑦 mod 12 = 6. 

Table 1: Atkin sieve cases depending on remainders modulo 𝟏𝟏𝟏𝟏 of 𝒙𝒙 and 𝒚𝒚. 

𝑥𝑥\𝑦𝑦 1 2 3 4 5 7 8 9 10 11 
0 4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2    4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 

4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2    4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 

1 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 

2 4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 
4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 

3 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 

4 4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 
4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 

5 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 

6 4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2    4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 
4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2    4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 

7 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 

8 4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 
4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 

9 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 

10 4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 
4𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2  4𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 

11 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2 

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 
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We could run the sieve looping through 12x12 blocks of (𝑥𝑥,𝑦𝑦) according to this table, but for readability 
we do not implement this optimization in the algorithms below. We note however that this would save 
all the modulo operations. 

 

Algorithm 3-1 SieveOfAtkin(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 3 is an integer. This function returns the list of all prime 
numbers less than 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {2, 3}     Dynamic list of odd primes 

𝑖𝑖𝑙𝑙 ← 2      Number of primes in the list 

Sieve[𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀] ← {False, …,False}  Array of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 entries all initialized to False 

 

𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀/2� − 1  Bound for 𝑥𝑥 

𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀� − 1    Bound for 𝑦𝑦 

 

Second step : iteration for first case 

For 𝑥𝑥 = 1 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 

  For y = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  𝑦𝑦 must be odd 

    𝑛𝑛 ← 4𝑥𝑥2 + 𝑦𝑦2 

    If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 1 Or 𝑛𝑛 mod 12 = 5) Do 

      Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]   Switch the boolean value Sieve[𝑛𝑛] 

    End If 

  End For 

End For 

Third step : iteration for second and third cases 

For 𝑥𝑥 = 1 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  

  For 𝑦𝑦 = 2 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  case where 𝑥𝑥 is odd and 𝑦𝑦 even 

    𝑛𝑛 ← 3𝑥𝑥2 + 𝑦𝑦2 

    If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 7) Do 

      Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

    End If 

    If 𝑥𝑥 > 𝑦𝑦 Do 
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      𝑛𝑛 ← 3𝑥𝑥2 − 𝑦𝑦2 

      If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  And (𝑛𝑛 mod 12 = 11) Do 

        Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

      End If 

    End If 

  End For 

End For 

For 𝑥𝑥 = 2 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  

  For y = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  case where 𝑥𝑥 is even and 𝑦𝑦 is odd 

    𝑛𝑛 ← 3𝑥𝑥2 + 𝑦𝑦2 

    If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 7) Do 

     Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

    End If 

    If 𝑥𝑥 > 𝑦𝑦 Do 

      𝑛𝑛 ← 3𝑥𝑥2 − 𝑦𝑦2 

      If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  And (𝑛𝑛 mod 12 = 11) Do 

        Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

      End If 

    End If 

  End For 

End For 

Fourth step : remove multiples of prime squares 

For 𝑛𝑛 = 5 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  multiples of 2 and 3 are ignored by the previous iterations 

  If Sieve[𝑛𝑛] Do 

    For 𝑖𝑖 = 𝑛𝑛2 To 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step 2𝑛𝑛2 

      Sieve[𝑖𝑖] ← False 

    End For 

  End If 

End For 

Last step : return list of primes from the sieve 

For 𝑛𝑛 = 5 To 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step 2 
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  If Sieve[𝑛𝑛] Do 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑛𝑛 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

End For 

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙) 

 

3.2 Atkin algorithm with indices 
We can rewrite proposition 3-1 as: 

Corollary 3-2: 𝑘𝑘 is the index of a prime number if and only if 2𝑘𝑘 + 3 is square-free and one of the three 
following conditions is true: 

a. 𝑘𝑘 ∈ (1 + 6ℕ) ∪ (5 + 6ℕ) and there is an odd number of solutions to 𝑘𝑘 = 2𝑥𝑥2 + 𝑦𝑦2−3
2

, 

b. 𝑘𝑘 ∈ 2 + 6ℕ and there is an odd number of solutions to 𝑘𝑘 = 3𝑥𝑥2+𝑦𝑦2−3
2

, 

c. 𝑘𝑘 ∈ 4 + 6ℕ and there is an odd number of solutions to 𝑘𝑘 = 3𝑥𝑥2−𝑦𝑦2−3
2

 with 𝑦𝑦 < 𝑥𝑥. 
 

The relationships presented in the following remark are used in the next algorithm. 

Remark 3-2: For the fourth step (square multiples elimination), we note that if 𝑛𝑛 = 2𝑘𝑘 + 3, the index of 
𝑛𝑛2 is 2𝑘𝑘2 + 6𝑘𝑘 + 3 and that the step of 2𝑛𝑛2 translates into a step of 𝑛𝑛2 = (2𝑘𝑘 + 3)2 for indices. 

 

Algorithm 3-2 IndexSieveOfAtkin(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 3 is an odd integer. This function returns the list of all 
prime numbers less than 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {2, 3}     Dynamic list of primes 

𝑖𝑖𝑙𝑙 ← 2      Number of primes in the list 

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄     Index of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 

Sieve[𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀] ← {False, …,False}   Array of 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 entries all initialized to False 

𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀/2� − 1  Bound for 𝑥𝑥 

𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀� − 1    Bound for 𝑦𝑦 

Second step : iteration for first case 

For 𝑥𝑥 = 1 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 

  For y = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2   𝑦𝑦 must be odd 



WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions 
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41 

 

URL: http://dx.doi.org/10.14738/tmlai.82.8054       26 
 

    𝑘𝑘 ← 2𝑥𝑥2 + 𝑦𝑦2−3
2

 

    If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 1 Or 𝑘𝑘 mod 6 = 5) Do 

      Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]    Switch the boolean value Sieve[𝑛𝑛] 

    End If 

  End For 

End For 

Third step : iteration for second and third cases 

For 𝑥𝑥 = 1 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  

  For 𝑦𝑦 = 2 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2   case where 𝑥𝑥 is odd and 𝑦𝑦 even 

    𝑘𝑘 ← 3𝑥𝑥2+𝑦𝑦2−3
2

 

    If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 2) Do 

      Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

    End If 

    If 𝑥𝑥 > 𝑦𝑦 Do 

      𝑘𝑘 ← 3𝑥𝑥2−𝑦𝑦2−3
2

 

      If 𝑘𝑘 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  And (𝑘𝑘 mod 6 = 4) Do 

        Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

      End If 

    End If 

  End For 

End For 

For 𝑥𝑥 = 2 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  

  For y = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2   case where 𝑥𝑥 is even and 𝑦𝑦 is odd 

    𝑘𝑘 ← 3𝑥𝑥2+𝑦𝑦2−3
2

 

    If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 2) Do 

     Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

    End If 

    If 𝑥𝑥 > 𝑦𝑦 Do 

      𝑘𝑘 ← 3𝑥𝑥2−𝑦𝑦2−3
2
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      If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 4) Do 

        Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛] 

      End If 

    End If 

  End For 

End For 

Fourth step : remove multiples of prime squares 

For 𝑘𝑘 = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎−𝟑𝟑
𝟐𝟐

    multiples of 3 are ignored by the previous iterations 

  If Sieve[𝑘𝑘] Do 

    For 𝑖𝑖 = 2𝑘𝑘2 + 6𝑘𝑘 + 3 To 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step (2𝑘𝑘 + 3)2 

      Sieve[𝑖𝑖] ← False 

    End For 

  End If 

End For 

Last step : return list of primes from the sieve 

For 𝑘𝑘 = 1 To 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 − 1 

  If Sieve[𝑘𝑘] Do 

    𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3 

    𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  End If 

End For 

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙) 

 

 
 

3.3 Performance of algorithms 
In this section, we discuss theoretical complexity and present our results with the two algorithms 
implementing the sieve of Atkin. 

The reference algorithm SieveOfAtkin has less operations index-based IndexSieveOfAtkin, which juggles 
between numbers and indices. But on the other hand SieveOfAtkin performs Euclidian divisions by 12, 
whereas IndexSieveOfAtkin does divisions by 6. This is due to the conversion of number 𝑛𝑛 into its index 



WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions 
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41 

 

URL: http://dx.doi.org/10.14738/tmlai.82.8054       28 
 

𝑘𝑘 = (𝑛𝑛 − 3) 2⁄ . Furthermore, the latter only performs the sieve on odd numbers, which means effectively 
the memory space for the sieve is twice smaller. 

On the graph 3-3 below, we plot the computation time in seconds for both algorithms. The curve 𝑇𝑇3 
corresponds to SieveOfAtkin and the curve 𝑇𝑇4  to IndexSieveOfAtkin. We observe empirically that 
computation time of both algorithms looks slightly higher than linear, even though theoretically the 
number of operations appears to be linear in 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. Details of the Maple options used to get the regression 
are given in appendix 8.2. 

 

Graph 2: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Sieve of Atkin) 

The second algorithm is faster for larger values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, roughly for 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 109. For such values the cost 
of encoding numbers to indices is offset by the gain on modulo operations and halving the size of the 
sieve. We note also that memory size is halved for the second algorithm. 

4 Wheel sieve with indices 
We first describe Pritchard’s wheel sieve. Then we adapt it to indices and discuss a way to generate the 
integers of the turning wheel. 

4.1 Description of Pritchard’s wheel sieve 
This description is based on [7] and [4]. The wheel sieve operates by generating a set of numbers that are 
coprime with the first 𝑞𝑞 prime numbers. The second of these is the next prime, multiples of which are 
then eliminated (by turning the wheel). 

More precisely, let 𝑝𝑝0 = 2,𝑝𝑝1 = 3 … the sequence of prime numbers and let:  

Π𝑞𝑞 = �𝑝𝑝𝑘𝑘

𝑞𝑞

𝑘𝑘=0

 

ℛ(𝑚𝑚) = {𝑥𝑥 ∈ ⟦1,𝑚𝑚− 1⟧| gcd(𝑥𝑥,𝑚𝑚) = 1} 

𝒲𝒲𝑞𝑞 = ℛ�Π𝑞𝑞� 

The following proposition describes a “turn of the wheel”. 
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Proposition 4-1-1: We have the following inductive formula for 𝒲𝒲𝑞𝑞: 

𝒲𝒲0 = {1},𝒲𝒲1 = {1,5},𝒲𝒲2 = {1,7,11,13,17,19,23,29} 

∀𝑞𝑞 ∈ ℕ,𝒲𝒲𝑞𝑞+1 = � � �𝒲𝒲𝑞𝑞 + 𝑥𝑥Π𝑞𝑞�

𝑝𝑝𝑞𝑞+1−1

𝑥𝑥=0

� ∖ 𝑝𝑝𝑞𝑞+1�1,Π𝑞𝑞 − 1� 

Proof: The Chinese theorem ensures that 𝑚𝑚 ∈ 𝒲𝒲𝑞𝑞+1 if and only if 𝑚𝑚 mod Π𝑞𝑞 ∈ 𝒲𝒲𝑞𝑞 and 𝑚𝑚 ∉ 𝑝𝑝𝑞𝑞+1ℕ. This 
gives the desired set equality. 

Furthermore, induction formula for 𝒲𝒲𝑞𝑞  can also be used to recursively build the sequence of prime 
numbers: 

Proposition 4-1-2: The second smallest element of 𝒲𝒲𝑞𝑞 (𝑞𝑞 ≥ 1) is the next prime 𝑝𝑝𝑞𝑞+1. 

Proof: The first element is 1, which is obviously not prime. For 𝑞𝑞 ≥ 1, 𝑝𝑝𝑞𝑞 ≥ 3 and from proposition 4-1-1 
we can show (see corollary 4-2-2 later on) that 𝒲𝒲𝑞𝑞 has at least 2 elements. The second one must then be 
the smallest integer coprime with 𝑝𝑝0 …𝑝𝑝𝑞𝑞, and thus must be 𝑝𝑝𝑞𝑞+1. 

The elements of 𝒲𝒲𝑞𝑞 are called pseudo-primes (at order 𝑞𝑞). Some of them are primes and others are not. 
However, we have a boundary condition to identify some of the primes: 

Proposition 4-1-3: All integers in 𝒲𝒲𝑞𝑞 and less than 𝑝𝑝𝑞𝑞2 are sure to be primes. 

Proof: Any integer less than 𝑝𝑝𝑞𝑞2 is either prime or has a divisor among 𝑝𝑝0 …𝑝𝑝𝑞𝑞. The latter is impossible by 
definition of 𝒲𝒲𝑞𝑞. 

To enumerate primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, we thus have to keep turning the wheel as long as 𝑝𝑝𝑞𝑞+12 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

As Π𝑞𝑞 grows exponentially (in particular it can be easily proven from Bertrand’s postulate that Π𝑞𝑞 > 𝑝𝑝𝑞𝑞2 
from 𝑞𝑞 = 2), while we are only interested in pseudo-primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, we may replace in practice 𝒲𝒲𝑞𝑞 

by 𝒲𝒲𝑞𝑞
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒲𝒲𝑞𝑞 ∩ ⟦1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧. 

Proposition 4-1-4: The following inductive formula (or wheel turn) is true for all 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀: 

∀𝑞𝑞 ∈ ℕ,𝒲𝒲𝑞𝑞+1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 =

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛

� �𝒲𝒲𝑞𝑞 + 𝑥𝑥Π𝑞𝑞�

max�𝑝𝑝𝑞𝑞+1−1,�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝛱𝛱𝑞𝑞

��

𝑥𝑥=0
⎠

⎟
⎞
∖ 𝑝𝑝𝑞𝑞+1 �1, �

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑝𝑝𝑞𝑞+1

��

⎦
⎥
⎥
⎥
⎤
∩ ⟦1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧. 

Furthermore, if 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9, then as soon as 𝑝𝑝𝑞𝑞2 ≥ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑝𝑝0 …𝑝𝑝𝑞𝑞� ∪ �𝑊𝑊𝑞𝑞
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ∖ {1}�. 

Proof: By double inclusion (cf. proof of proposition 4-2-3). The second identity comes from the fact that if 
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9, 𝑝𝑝𝑞𝑞2 ≥ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 implies 𝑞𝑞 ≥ 2. 

Thus, when we turn the wheel, we remove integers that are, for a given 𝑚𝑚 ∈ 𝒲𝒲𝑞𝑞, and 𝑥𝑥,𝑦𝑦 integers, of the 
form: 

𝑚𝑚 + 𝑥𝑥Π𝑞𝑞 = 𝑦𝑦𝑝𝑝𝑞𝑞+1 

One way to do that is to remove all multiples of 𝑝𝑝𝑞𝑞+1. We will show however in section 4.2 that there is a 
relationship between the value of 𝑥𝑥, the multiples of Π𝑞𝑞  which are added to 𝒲𝒲𝑞𝑞 , and the composite 
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numbers 𝑦𝑦𝑝𝑝𝑞𝑞+1  which must be removed of the wheel 𝒲𝒲𝑞𝑞+1 , so that the index 𝑥𝑥  to remove can be 
predicted from 𝑚𝑚 or conversely. 

4.2 Index wheel sieve 
Definition 4-2: We note Π𝑞𝑞′  the product of all odd primes up to 𝑝𝑝𝑞𝑞, i.e. Π𝑞𝑞 = 2Π𝑞𝑞′ . 

We also note: 

𝑁𝑁(𝑚𝑚,𝑎𝑎, 𝑞𝑞) = 𝑚𝑚Π𝑞𝑞 + 𝑎𝑎 

and, with 𝑎𝑎′ the index of 𝑎𝑎: 

𝑘𝑘(𝑚𝑚,𝑎𝑎′, 𝑞𝑞) =
𝑁𝑁(𝑚𝑚, 2𝑎𝑎′ + 3, 𝑞𝑞) − 3

2
= 𝑚𝑚Π𝑞𝑞′ + 𝑎𝑎′ 

the index of 𝑁𝑁(𝑚𝑚, 𝑎𝑎, 𝑞𝑞). 

We let 𝒲𝒲𝑞𝑞
′ be the set of indices corresponding to 𝒲𝒲𝑞𝑞, with 1 replaced by Π𝑞𝑞 + 1 (which index is Π𝑞𝑞′ − 1): 

𝒲𝒲𝑞𝑞
′ = �

𝑛𝑛 − 3
2

,𝑛𝑛 ∈ 𝒲𝒲𝑞𝑞 ∖ {1}� ∪ �Π𝑞𝑞′ − 1� 

In this section, we describe how we adapt the wheel sieve to work with indices of odd integers. The limit 
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is supposed to be an odd integer of index 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. 

Recurrence relation verified by the index wheel sieve: 

The initial index wheels are 𝒲𝒲0
′ = {0}, 𝒲𝒲1

′ = {1,2}, 𝒲𝒲2
′ = {2,4,5,7,8,10,13,14}. 

Remark 4-2-1: The first element of 𝒲𝒲𝑞𝑞
′  is the index of the prime number 𝑝𝑝𝑞𝑞+1 . 𝒲𝒲𝑞𝑞

′  is included in 

�𝑝𝑝𝑞𝑞+1−3
2

,Π𝑞𝑞′ − 1�. 

Proof: Since we remapped 1 to Π𝑞𝑞 + 1 in 𝒲𝒲𝑞𝑞 to define 𝒲𝒲𝑞𝑞
′, and because the indexing map is increasing, 

the first element of 𝒲𝒲𝑞𝑞
′ is the index of prime 𝑝𝑝𝑞𝑞+1 from proposition 4-1-2 (we note that it works even for 

𝑞𝑞 = 0), and its last element is Π𝑞𝑞′ − 1. 

Proposition 4-2-1: The index wheel sieve is the only sequence of sets verifying: 

𝒲𝒲0
′ = {0} 

∀𝑞𝑞 ∈ ℕ,𝒲𝒲𝑞𝑞+1
′ = � � �𝒲𝒲𝑞𝑞

′ +𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1

𝑚𝑚=0

� ∖ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ − 1�� 

Furthermore, indices in the wheel 𝒲𝒲𝑞𝑞
′ up to 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 correspond to all remaining prime numbers up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 

(on top of 𝑝𝑝0 …𝑝𝑝𝑞𝑞) as soon as: 

𝑝𝑝𝑞𝑞2 − 3
2

≥ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 

Proof: This comes from the definition 4-2 of the index wheel sieve, the proposition 4-1-1 and from 
observing that the index of any odd multiple 𝑦𝑦𝑝𝑝𝑞𝑞  of 𝑝𝑝𝑞𝑞 is of the form: 
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𝑦𝑦𝑝𝑝𝑞𝑞 − 3
2

=
𝑝𝑝𝑞𝑞 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞 ,𝑦𝑦′ =

𝑦𝑦 − 1
2

 

If we let 𝑝𝑝 = 2𝑖𝑖 + 3, this corresponds to the definition of 𝑘𝑘(𝑦𝑦′, 𝑖𝑖) in [8]: 𝑘𝑘(𝑦𝑦′, 𝑖𝑖) = 𝑖𝑖 + (2𝑖𝑖 + 3)𝑦𝑦′. 

Eliminating multiples of the next prime by solving a Diophantine equation: 

Proposition 4-2-2: For a given 𝑐𝑐 ∈ �0,Π𝑞𝑞′ − 1�, there exists a unique (𝑚𝑚𝑐𝑐 ,𝑦𝑦𝑐𝑐) ∈ �0,𝑝𝑝𝑞𝑞+1 − 1� ×𝒲𝒲𝑞𝑞 such 
that 𝑐𝑐 +𝑚𝑚𝑐𝑐Π𝑞𝑞′ = 𝑦𝑦𝑐𝑐𝑝𝑝𝑞𝑞+1 . Furthermore, 𝑚𝑚𝑐𝑐  only depends of 𝑐𝑐 mod 𝑝𝑝𝑞𝑞+1 , 𝑚𝑚0 = 0  and for 𝑐𝑐1 =
�−Π𝑞𝑞′ � mod 𝑝𝑝𝑞𝑞+1, 

𝑚𝑚𝑐𝑐1 = 1. 

For all 𝑐𝑐 ∈ 𝒲𝒲𝑞𝑞 one has 𝑐𝑐 mod 𝑝𝑝𝑞𝑞+1 = 𝑚𝑚𝑐𝑐𝑐𝑐1 mod 𝑝𝑝𝑞𝑞+1 

Remark 4-2-2: Using indices, we must solve (𝑚𝑚,𝑦𝑦′)  in the following equations for 𝑎𝑎′ ∈ 𝒲𝒲𝑞𝑞
′ : 

 𝑎𝑎′ + 𝑚𝑚Π𝑞𝑞′ =
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1 

so we will let 𝑐𝑐 = 𝑎𝑎′ − 𝑝𝑝𝑞𝑞+1−3
2

. 

Proof: Because Π𝑞𝑞′  and 𝑝𝑝𝑞𝑞+1 are coprime, existence and unicity of the solution are well-known. In [9] we 
introduced the concept of normalizer of such a Diophantine equation, and have shown its additive and 
multiplicative property. 

Clearly if 𝑐𝑐 ≡ 𝑑𝑑 [𝑝𝑝𝑞𝑞+1]  then (𝑚𝑚𝑐𝑐 −𝑚𝑚𝑑𝑑)Π𝑞𝑞′ ≡ 0 �𝑝𝑝𝑞𝑞+1�  and as Π𝑞𝑞′  and 𝑝𝑝𝑞𝑞+1  are coprime, 𝑚𝑚𝑐𝑐 ≡
𝑚𝑚𝑑𝑑  �𝑝𝑝𝑞𝑞+1�. 

Also, because 0 + 0.Π𝑞𝑞′ = 0.𝑝𝑝𝑞𝑞+1 we deduce that 𝑚𝑚0 = 0. 

Then from the fact that 𝑐𝑐1 + Π𝑞𝑞′ ∈ 𝑝𝑝𝑞𝑞+1ℤ we get that 𝑚𝑚𝑐𝑐1 = 1. 

Furthermore, for all 𝑐𝑐, by multiplicative property: 

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐1 ≡ 𝑚𝑚𝑐𝑐 .𝑚𝑚𝑐𝑐1 ≡ 𝑚𝑚𝑐𝑐  �𝑝𝑝𝑞𝑞+1� 

Thus, 𝑐𝑐 ≡ −𝑚𝑚𝑐𝑐Π𝑞𝑞′ ≡ −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐1Π𝑞𝑞
′ ≡ 𝑚𝑚𝑐𝑐𝑐𝑐1 �𝑝𝑝𝑞𝑞+1�. 

This proposition gives us an effective way of building all couples (𝑐𝑐,𝑚𝑚𝑐𝑐) modulo 𝑝𝑝𝑞𝑞+1: start from (𝑐𝑐1, 1) 
and add it to itself (modulo 𝑝𝑝𝑞𝑞+1) up to 𝑝𝑝𝑞𝑞+1 − 1 times (the last time we will get the couple (0,0 = 𝑚𝑚0)). 

Corollary 4-2-2: 𝒲𝒲𝑞𝑞 and 𝒲𝒲𝑞𝑞
′ have ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞

𝑘𝑘=1  elements. 

Proof: Let us proceed by induction on 𝑞𝑞. The property is true for 𝑞𝑞 = 0. Assume it is true for a given 𝑞𝑞 ∈
ℕ. From proposition 4-2-1, 

𝒲𝒲𝑞𝑞+1
′ = � � �𝒲𝒲𝑞𝑞

′ + 𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1

𝑚𝑚=0

� ∖ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ − 1��. 

Thus ⋃ �𝒲𝒲𝑞𝑞
′ + 𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1
𝑚𝑚=0 = ⋃ �𝑐𝑐′ + Π𝑞𝑞′ �0,𝑝𝑝𝑞𝑞+1 − 1��𝑐𝑐′∈𝒲𝒲𝑞𝑞

′  has exactly 𝑝𝑝𝑞𝑞+1 ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1  elements, 

from which we must remove the indices of multiples of 𝑝𝑝𝑞𝑞+1. For a given 𝑐𝑐′ ∈ 𝒲𝒲𝑞𝑞
′, from proposition 4-2-

2 there is exactly one couple (𝑚𝑚,𝑦𝑦) such that: 
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𝑐𝑐′ + 𝑚𝑚Π𝑞𝑞′ =
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1 

i.e. there is only one element of 𝑐𝑐′ + Π𝑞𝑞′ �0,𝑝𝑝𝑞𝑞+1 − 1� in �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ − 1��. So in total 

there are exactly ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1  elements in �⋃ (𝒲𝒲𝑞𝑞

′ +𝑚𝑚Π𝑞𝑞′ )𝑝𝑝𝑞𝑞+1−1
𝑚𝑚=0 � ∩ �𝑝𝑝𝑞𝑞+1−3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ −

1��, thus �𝑝𝑝𝑞𝑞+1 − 1�∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1 = ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞+1

𝑘𝑘=1  elements in 𝒲𝒲𝑞𝑞+1
′ . 

Proposition 4-2-3: 𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒲𝒲𝑞𝑞

′ ∩ ⟦0,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧ verifies the following induction property. 

For all 𝑞𝑞 ∈ ℕ,𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀  is equal to: 

⎝

⎜
⎜
⎛

⎝

⎜⎜
⎛

� �𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚Π𝑞𝑞′ �

min�𝑝𝑝𝑞𝑞+1−1,�𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀
Π𝑞𝑞′

��

𝑚𝑚=0

⎠

⎟⎟
⎞
∖ �

𝑝𝑝𝑞𝑞+1 − 3
2 + 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0, min �𝛱𝛱𝑞𝑞′ − 1, �

2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 3
2𝑝𝑝𝑞𝑞+1

−
1
2���

�

⎠

⎟
⎟
⎞
∩ ⟦0, 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧ 

Proof: Let 𝑥𝑥 ∈ 𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. From proposition 4-2-1, there exists 𝑐𝑐′ ∈ 𝒲𝒲𝑞𝑞

′, 𝑚𝑚 ∈ �0,𝑝𝑝𝑞𝑞+1 − 1� such that 𝑥𝑥 =

𝑐𝑐′ +𝑚𝑚Π𝑞𝑞′ . But 𝑥𝑥 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 so 𝑚𝑚 ≤ �𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 Π𝑞𝑞′⁄ �. Furthermore, 𝑥𝑥 ∉ �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ − 1�� so a 

fortiori: 

𝑥𝑥 ∉ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �

2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 3
2𝑝𝑝𝑞𝑞+1

−
1
2
����. 

Conversely, let 𝑥𝑥 ∈ �⋃ �𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚Π𝑞𝑞′ �

min�𝑝𝑝𝑞𝑞+1−1,�𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 Π𝑞𝑞′⁄ ��
𝑚𝑚=0 � ∩ ⟦0,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧  such that        𝑥𝑥 ∉

�𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀−3
2𝑝𝑝𝑞𝑞+1

− 1
2
���� . The first condition means that 𝑥𝑥 ∈ 𝒲𝒲𝑞𝑞+1

′  if 

𝑥𝑥 ∉ �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦 ∈ �0,Π𝑞𝑞′ − 1��. But if that were the case, there would be 𝑦𝑦′ ∈ �1,Π𝑞𝑞′ − 1� such 

that 𝑥𝑥 = 𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1. Thus 𝑦𝑦 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀−(𝑝𝑝𝑞𝑞+1−3) 2⁄
𝑝𝑝𝑞𝑞+1

= 2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀+3
2𝑝𝑝𝑞𝑞+1

− 1
2
, which cannot happen because 𝑥𝑥 ∉

�𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀+3
2𝑝𝑝𝑞𝑞+1

− 1
2
���� . 

 

4.3 Wheel sieve algorithms 
As per sections 4.1 and 4.2, the wheel sieve algorithms will consist in two steps: 

(A) A first step where the wheel will always grow, as long as Π𝑞𝑞 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, or: 
Π𝑞𝑞′ − 1 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀, 

(B) A second step where we will no longer grow the wheel, but will have to keep eliminating 
composite numbers, as long as 𝑝𝑝𝑞𝑞2 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, or: 

𝑝𝑝𝑞𝑞2 − 3
2

< 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. 

This is equivalent to saying that we replace 𝒲𝒲𝑞𝑞+1 by 𝒲𝒲𝑞𝑞+1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  and similarly 𝒲𝒲𝑞𝑞+1

′  by 𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. During 

step (B) we do not add new pseudo-primes, only remove those that we rule out as multiples of the next 
prime. Because Π𝑞𝑞 grows exponentially, there will generally be more iterations in step (B) than in step (A). 

Quick description of the steps of the index wheel sieve algorithm (see appendix for full algorithm): 
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As for the previous algorithms, we note 𝐿𝐿𝑝𝑝 the list of primes and 𝑖𝑖𝑙𝑙  its number of elements. 𝐼𝐼𝐿𝐿𝑝𝑝 represents 
the list of indices of odd primes, and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 the list of indices of squared odd primes. At step 𝑞𝑞, 𝐿𝐿𝑝𝑝 will 
contain all primes up to 𝑝𝑝𝑞𝑞2, coming from the wheel 𝒲𝒲𝑞𝑞

′, 𝐼𝐼𝐿𝐿𝑝𝑝 and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 being filled with the corresponding 
indices. 

1- Intialisation of the sieve for 𝑞𝑞 = 1: 𝐿𝐿𝑝𝑝 = {2,3,5,7}, 𝑖𝑖𝑙𝑙 = 4 𝐼𝐼𝐼𝐼𝑝𝑝 = {0,1,2}, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 = {3,11,23} and 
𝒲𝒲1

′ = {1, 2} with Π1′ = 3. 
2- While Π𝑞𝑞′ < 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 (step A): 

a. We take 𝑝𝑝𝑞𝑞+1 from 𝐿𝐿𝑝𝑝 (or equivalently the first element of 𝒲𝒲𝑞𝑞). The list of pairs (𝑐𝑐,𝑚𝑚𝑐𝑐) 
such that 𝑐𝑐 + 𝑚𝑚𝑐𝑐Π𝑞𝑞′  has to be eliminated is then computed, according to proposition 4-
2-2. Then we build the wheel 𝒲𝒲𝑞𝑞+1

′ . 
b. Once this is done primes in the interval ⟦𝑝𝑝𝑖𝑖𝑙𝑙−1 + 2,𝑝𝑝𝑞𝑞+12 − 2⟧ are added to 𝐿𝐿𝑝𝑝 and 𝑖𝑖𝑙𝑙, 𝐼𝐼𝐿𝐿𝑝𝑝 

and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝  are updated accordingly. Indices of the primes to add are those in 𝒲𝒲𝑞𝑞+1
′ ∩

�𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 1, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞) − 1�. 
3- While  𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞) < 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 (step B): 

a. Remove indices of multiples of 𝑝𝑝𝑞𝑞+1 from 𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀  to get 𝒲𝒲𝑞𝑞+1

′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. 
b. Once this is done primes in the interval ⟦𝑝𝑝𝑖𝑖𝑙𝑙−1 + 2,𝑝𝑝𝑞𝑞+12 − 2⟧ are added to 𝐿𝐿𝑝𝑝 and 𝑖𝑖𝑙𝑙, 𝐼𝐼𝐿𝐿𝑝𝑝 

and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝  are updated accordingly. Indices of the primes to add are those in 𝒲𝒲𝑞𝑞+1
′ ∩

�𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 1, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞) − 1�. 
 

Remark 4-3-1: Let 𝑘𝑘1 and 𝑘𝑘2 be the indices of two odd numbers, respectively 𝑛𝑛1 and 𝑛𝑛2, such as 𝑛𝑛2 −
𝑛𝑛1 > 0. Let 𝛼𝛼 = 𝑘𝑘2 − 𝑘𝑘1. The difference between the indices 𝑛𝑛12 and 𝑛𝑛22 is: 

𝛽𝛽 = 2𝛼𝛼2 + 2𝛼𝛼𝑛𝑛1. 

Furthermore, if 𝑚𝑚 is another integer, the difference between the indices of 𝑛𝑛1𝑚𝑚 and 𝑛𝑛2𝑚𝑚 is: 

𝛾𝛾 = 𝛼𝛼𝑚𝑚. 

Proof: Note that 𝑛𝑛2 − 𝑛𝑛1 = 2𝛼𝛼 and thus: 
𝑛𝑛22 − 3

2
−
𝑛𝑛12 − 3

2
=

1
2

(𝑛𝑛2 − 𝑛𝑛1)(𝑛𝑛2 + 𝑛𝑛1) = 𝛼𝛼(𝑛𝑛2 + 𝑛𝑛1) = 𝛼𝛼(2𝑛𝑛1 + 2𝛼𝛼) = 𝛽𝛽. 

Similarly: 

𝑛𝑛2𝑚𝑚 − 3
2

−
𝑛𝑛1𝑚𝑚 − 3

2
= 𝛼𝛼𝛼𝛼 = 𝛾𝛾. 

This last remark is used in steps 2-b. and 3-b. to fill 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 and to perform step 3-a. 

Remark 4-3-2: The index wheel sieve involves operations with reduced input size compared with the 
number version. This is clear from remark 4-3-1 where 𝛽𝛽 is exactly half of 𝑛𝑛22 − 𝑛𝑛12, for instance. Similarly 
Π𝑞𝑞′  is half of Π𝑞𝑞 so modulo operation input is also reduced. 

4.4 Performance of algorithms 
In this section, we present results from the previous algorithm of index wheel sieve, which we compare 
with a similar one on numbers (unspecified for to avoid a lengthy duplication). These results are similar to 
those obtained in the previous sections. As for the sieve of Atkin, we did not go for refinements that give 
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a better time complexity, so theoretical complexity in terms of number of operations is 𝑂𝑂(𝑁𝑁) for both 
algorithms. 

On the graph 4-4 below, we plot the computation time in seconds for both algorithms, for 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 up to 
6.109. The curve 𝑇𝑇5 corresponds to the the algorithm WheelSieveReference and the curve 𝑇𝑇6 corresponds 
to the the algorithm IndexWheelSieve. The correlation coefficient 𝑅𝑅 of each regression is given on the 
graph. Details of the Maple options used to get the regression are given in appendix 8.3. We notice that 
complexity of both algorithms again seems empirically slightly higher than linear. 

 

 

 

Graph 4-4: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Wheel sieve) 

Complexity is reduced by using indices, due to reduction of input size in the modulo and the multiplication 
operations (see Remark 4-3-2) and despite a higher number of operations with the algorithm 
IndexWheelSieve. Moreover, the amount of memory space used with indices is halved, due to the fact 
that we avoid even numbers completely. 

5 Conclusion 
In theory, indices are a way to work with odd numbers only by not representing even numbers. Most 
mathematical relations must be reformulated for indices, which lead to a higher number of (conversion) 
operations, but in return the input size of other operations is reduced. In this article, we have shown how 
this indexing translates into optimized algorithms in applied mathematics. From a basic primality test 
implementation, to the sieve of Atkin and Pritchard’s wheel sieve, indices speeded up these algorithms, 
not by changing their complexity but by reducing the time cost by a constant factor, and generally also 
made them more efficient from a memory point of view. 

Acknowledgments: We would like to thank François-Xavier VILLEMIN for his attentive comments and 
suggestions. 

𝑇𝑇6 (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃  1.33 × 10−9 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀1.06 

𝑅𝑅 = 0.9999  

𝑇𝑇5 (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃  5.25 × 10−10 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀1.11 

𝑅𝑅 = 0.9998  
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6 APPENDIX: ALGORITHM OF THE INDEX WHEEL SIEVE 

This algorithm enumerates odd primes up to the limit 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. It is composed of a main function that is 
called IndexWheelSieve and the following auxilliary other functions:  

7-2- DiophantineSolutions(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ) 
7-3- WheelTurn(𝒲𝒲𝑞𝑞

′ ,𝑞𝑞,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀) 
7-4- RemoveMultiples(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝒲𝒲𝑞𝑞

′) 
7-5- GetNewPrimes(𝒲𝒲𝑞𝑞

′ ,𝑞𝑞, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝,𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝) 
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Some marginal optimizations can still be performed, for instance modulo operations inside a loop can be 
replaced by substractions, and memory can be managed better. For the sake of readability we leave these 
optimizations out of scope. 

 

Algorithm 6-1 IndexWheelSieve(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9 is an odd integer. 

This function returns the list of all prime numbers up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 

 

First step : intialisation of variables 

𝐿𝐿𝑝𝑝 ← {2, 3,5,7}    Dynamic list of primes 

𝑖𝑖𝑙𝑙 ← 4     Number of primes in the list 

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄    Index of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 

𝐼𝐼𝐼𝐼𝑝𝑝 ← {0,1,2}  

𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 ← {3,11,23}   

𝒲𝒲𝑞𝑞
′ ← {1, 2}  

Π𝑞𝑞′ ← 3  

𝑞𝑞 ← 1  

Second step : Wheel inflation. 

Do 

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐿𝐿𝑝𝑝(𝑞𝑞 + 1) 

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐼𝐼𝐿𝐿𝑝𝑝(𝑞𝑞) 

  Π𝑞𝑞+1′ ← Π𝑞𝑞′ × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

   Compute values of the new wheel from the previous one 

  𝒲𝒲𝑞𝑞
′ ←WheelTurn(𝒲𝒲𝑞𝑞

′ ,𝑞𝑞,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀) 

  GetNewPrimes(𝒲𝒲𝑞𝑞
′ ,𝑞𝑞, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝) 

  Π𝑞𝑞′ ← Π𝑞𝑞+1′  

  𝑞𝑞 ← 𝑞𝑞 + 1 

While 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 > Π𝑞𝑞′  

Third step : Wheel deflation. 

While 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝(𝑞𝑞 − 1) < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐿𝐿𝑝𝑝(𝑞𝑞 + 1) 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞) 
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  𝒲𝒲𝑞𝑞
′ ←RemoveMultiples(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝒲𝒲𝑞𝑞

′) 

  GetNewPrimes (𝒲𝒲𝑞𝑞
′ ,𝑞𝑞, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝) 

  𝑞𝑞 ← 𝑞𝑞 + 1 

End While 

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙) 

 

 

Algorithm 6-2 DiophantineSolutions(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ) 

 

𝑐𝑐1 ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − �Π𝑞𝑞′  mod 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�   Solution such that 𝑚𝑚 = 1 

𝑐𝑐 ← 0  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← {0 … 0}     Array of size 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 

For 𝑚𝑚 = 1 To 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 1 Do 

  𝑐𝑐 ← (𝑐𝑐 + 𝑐𝑐1) mod 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐) ← 𝑚𝑚  

End For 

Return 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

 

 

Algorithm 6-3 WheelTurn(𝒲𝒲𝑞𝑞
′ ,𝑞𝑞,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀) 

This function computes 𝒲𝒲𝑞𝑞+1
′  by duplicating the wheel 𝒲𝒲𝑞𝑞

′ and removing indices of multiples of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑝𝑝𝑞𝑞+1. 

 

First step : Compute all the pairs (𝑐𝑐,𝑚𝑚𝑐𝑐) in the function DiophantineSolutions 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← DiophantineSolutions(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ) 

Second step : Iteration 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ← Size(𝒲𝒲𝑞𝑞
′) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← Range({},𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) 

For 𝑗𝑗 = 0 To 𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 1 Do 

  𝑎𝑎′ ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗) 
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  𝑐𝑐 ← (𝑎𝑎′ − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) mod 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

  𝑚𝑚 ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐)  

  For 𝑦𝑦 = 0 To 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 1 Do 

    𝑛𝑛 ← 𝑎𝑎′ + 𝑦𝑦Π𝑞𝑞′  

    If 𝑛𝑛 > 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 Do 

      Break 

    End If 

    If 𝑦𝑦 ≠ 𝑚𝑚 Do 

      Append(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑦𝑦),𝑛𝑛) 

    End If 

  End For 

End For 

Third step : Build 𝒲𝒲𝑞𝑞+1
′  by concatenation 

𝒲𝒲𝑞𝑞+1
′ ← {}  

For 𝑦𝑦 = 0 To 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 1 Do 

  Concatenate(𝒲𝒲𝑞𝑞+1
′ ,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑦𝑦)) 

End For 

Return 𝒲𝒲𝑞𝑞+1
′  

 

 

Algorithm 6-4 RemoveMultiples(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝒲𝒲𝑞𝑞
′) 

 

𝒲𝒲𝑞𝑞+1
′ ← {}  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  

For 𝑗𝑗 = 1 To Size(𝒲𝒲𝑞𝑞
′)−1 Do 

  If 𝓦𝓦𝑞𝑞
′ (𝑗𝑗) > 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Do 

    𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

    𝑗𝑗 ← 𝑗𝑗 − 1  

  Else If 𝓦𝓦𝑞𝑞
′ (𝑗𝑗) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Do 

    𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

  Else 
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    Append(𝒲𝒲𝑞𝑞+1
′ ,𝓦𝓦𝑞𝑞

′ (𝑗𝑗)) 

  End If 

End For 

Return 𝒲𝒲𝑞𝑞+1
′  

 

 

Algorithm 6-5 GetNewPrimes(𝒲𝒲𝑞𝑞
′ ,𝑞𝑞, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝,𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝) 

This function adds new primes to the list 𝐿𝐿𝑝𝑝 and updates 𝑖𝑖𝑙𝑙  and the other lists 𝐼𝐼𝐿𝐿𝑝𝑝 and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 (all passed by 
reference).  

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞 + 1)  

𝑗𝑗 ← 𝑖𝑖𝑙𝑙 − 𝑞𝑞 − 2      Offset to take into account already known primes 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗)  

While 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Do 

  𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

  𝛼𝛼 ←  𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) − 𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) 

  𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) ←  𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 2𝛼𝛼2 + 2𝛼𝛼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) 

  𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) + 2𝛼𝛼 

  𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1 

  𝑗𝑗 ← 𝑗𝑗 + 1 

  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗)  

End While 

 

7 APPENDIXES: MAPLE REGRESSIONS 

Here are numeric values obtained from our implementation (Visual Studio C++ 2012) of the algorithms 
presented in this article. 

7.1 BASIC PRIMALITY TEST AND PRIMES ENUMERATION 

In table 8.1, numeric values of 𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)  and 𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)  are obtained respectively from the 
PrimeEnumeration and IndexPrimeEnumeration algorithms. 
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Table 2: numeric values of 𝑻𝑻𝟏𝟏(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟐𝟐(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds. 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 107 108 5 × 108 109 2 × 109 3 × 109 4 × 109 

𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 2.403 56.031 493.163 1306.884 3414.713 6271.249 8908.814 

𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 2.375 54.725 487.568 1275.921 3329.573 6105.386 8664.438 

 
To fit these observations, Maple’s NonlinearFit function is used with the parameters below. Initial values 
for 𝑎𝑎 and 𝑏𝑏 were determined empirically. 
NonlinearFit(𝑎𝑎 × 𝑛𝑛𝑏𝑏/ ln(𝑛𝑛), X, Y, n, initialvalues = [𝑎𝑎 = 5.9 × 10−9, 𝑏𝑏 = 1.41], 

output = [leastsquaresfunction, residuals]) 

We get the following mathematical relationships: 

𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 5.79409775129480 × 10−9 × 𝑛𝑛1.40966993452829

ln(𝑛𝑛)
,  𝑅𝑅 = .99962000 

𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 6.10602965467609 × 10−9 × 𝑛𝑛1.406040046365699

𝑙𝑙𝑙𝑙(𝑛𝑛)
, 𝑅𝑅 = .99962009 

7.2 THE SIEVE OF ATKIN 

In table 8.2, numeric values of 𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) are obtained respectively from the SieveOfAtkin 
and IndexSieveOfAtkin algorithms. 

Table 3: numeric values of 𝑻𝑻𝟑𝟑(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟒𝟒(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds. 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 108 5 × 108 109 1.5 × 109 1.6 × 109 2 × 109 3 × 109 

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.719 3.797 8.033 12.48 13.967 18.843 28.217 

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.727 3.921 8.225 12.152 12.953 16.507 25.342 
 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 4 × 109 5 × 109 6 × 109 7 × 109 8 × 109 9 × 109 1010 

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 41.534 54.871 72.044 84.511 100.727 116.093 133.184 

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 35.27 46.261 57.418 70.311 84.291 98.047 110.96 

 
This time we used Maple’s function Fit as below:  

Fit(𝑎𝑎 × 𝑛𝑛2 + 𝑏𝑏 × 𝑛𝑛, X, Y, 𝑛𝑛, summarize = embed) 
We get the following mathematical relationships: 

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 4.90268369826396 × 10−19 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀2 + 8.54576412559177 × 10−9 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑅𝑅 =
.999647 

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 3.78795281632082 × 10−19 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀2 + 7.39595089422000 × 10−9 ×𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀,  

𝑅𝑅 = .999926 
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7.3 WHEEL SIEVE WITH INDICES 

In table 4, numeric values of 𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)  and 𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)  are obtained respectively from the 
WheelSieveReference and IndexWheelSieve algorithms. 

Table 4 : numeric values of 𝑻𝑻𝟓𝟓(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟔𝟔(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds. 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 107 108 5 × 108 109 2 × 109 3 × 109 4 × 109 5 × 109 6 × 109 

𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.071 0.496 2.783 5.407 10.931 17.070 23.944 31.150 37.501 

𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.064 0.457 2.657 4.936 9.995 15.121 20.995 26.260 32.351 

 
We used again NonlinearFit with empirically determined initial values 𝑎𝑎 and 𝑏𝑏: 

NonlinearFit(𝑎𝑎 × 𝑛𝑛𝑏𝑏, X, Y, n, initialvalues = [𝑎𝑎 =  1.97461115539853 × 10−6, 𝑏𝑏 =
 1.1], output = [leastsquaresfunction, residuals]). 

We get the following mathematical relationships: 

𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 5.25118782575365 × 10−10 × 𝑛𝑛1.11016647384427, 𝑅𝑅 = .99982444 

𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 1.33020583039257 × 10−9 × 𝑛𝑛1.06187203820827,  𝑅𝑅 = .99986693 
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