

DOI: 10.14738/tmlai.82.8054
Publication Date: 30th April, 2020
URL: http://dx.doi.org/10.14738/tmlai.82.8054

 Volume 8 No 2

Primality Test and Primes Enumeration using Odd Numbers
Indexation

WOLF Marc, WOLF François
Independent researchers;

marc.wolf3@wanadoo.fr; francois.wolf@dbmail.com

ABSTRACT

Odd numbers can be indexed by the map 𝑘𝑘(𝑛𝑛) = (𝑛𝑛 − 3) 2⁄ ,𝑛𝑛 ∈ 2ℕ + 3 . We first propose a basic
primality test using this index function that was first introduced in [8]. Input size of operations is reduced
which improves computational time by a constant. We then apply similar techniques to Atkin’s prime-
numbers sieve which uses modulus operations and finally to Pritchard’s wheel sieve, in both case yielding
similar results.

Keywords: odd number index, primality test, primes enumeration, Atkin sieve, composite odd numbers,
wheel sieve.

1 Introduction

1.1 Primality test and prime enumeration

An odd number 𝑛𝑛 is prime when it is not divisble by any prime 𝑝𝑝 lower than or equal to √𝑛𝑛. This basic
primality test requires too much computational time for large integers. Faster and more efficient
deterministic and probabilistic primality tests have been designed for large numbers [1]. A deterministic
polynomial primality test was proposed by M. Agrawal, N. Kayal and N. Saxena in 2002 [2].

Enumeration of primes up to a given limit can be done by using a primality test but prime number sieves
are preferred from a performance point of view. A sieve is a type of fast algorithm to find all primes up to
a given number. There exists many such algorithms, from the simple Erastosthenes’ sieve (invented more
than 2000 years ago), to the wheel sieves of Paul Pritchard ([3], [4], [5]) and the sieve of Atkin [6]. In [7],
Gabriel Paillard, Felipe Franca and Christian Lavault present another version of the wheel sieve and give
an overview of all the existing prime-numbers sieves.

In theory, indices are a way to represent odd numbers. By adapting results from [8], we show how odd
number indices may be used in applied mathematics. In the last part, we apply [8] to Pritchard’s wheel
sieve, which leads to a 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 wheel sieve. Using the linear diophantine equation resolution method
first introduced in [9], we introduce an original way of “turning the wheel”.

1.2 Notation
We will use the following notations:

mailto:marc.wolf3@wanadoo.fr
mailto:francois.wolf@dbmail.com

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 12

1. 𝐼𝐼 designates the set of odd integers greater than 1, i.e.:

𝐼𝐼 = {𝑁𝑁𝑘𝑘 = 2𝑘𝑘 + 3|𝑘𝑘 ∈ ℕ};

2. 𝑃𝑃 the set of prime numbers, 𝑃𝑃𝑛𝑛 the set of prime numbers not greater than 𝑛𝑛;

3. 𝐶𝐶 the set of composite odd integers, i.e.:

𝐶𝐶 = 𝐼𝐼\𝑃𝑃 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|∃(𝑎𝑎, 𝑏𝑏) ∈ 𝐼𝐼,𝑁𝑁𝑘𝑘 = 𝑎𝑎𝑎𝑎}

The function 𝑓𝑓: 𝑘𝑘 ∈ ℕ⟼ 𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼 is bijective. The inverse function is 𝑓𝑓−1:𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼 ⟼ 𝑘𝑘 = 𝑁𝑁𝑘𝑘−3
2

. 𝑘𝑘 =
𝑓𝑓−1(𝑁𝑁𝑘𝑘) is the index of 𝑁𝑁𝑘𝑘. The preimage of 𝐶𝐶 is denoted by 𝑊𝑊:

𝑊𝑊 = 𝑓𝑓−1(𝐶𝐶) = {𝑘𝑘 ∈ ℕ| 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶}

4. For 𝑥𝑥 and 𝑦𝑦 two integers, we denote by 𝑥𝑥 mod 𝑦𝑦 the remainder of the Euclidean division of 𝑥𝑥 by 𝑦𝑦,
which belongs to ⟦0,𝑦𝑦 − 1⟧.

5. 𝑁𝑁1 and 𝑁𝑁2 are the subsets of 𝐼𝐼 given by:

𝑁𝑁1 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|𝑁𝑁𝑘𝑘 mod 4 = 1}

𝑁𝑁2 = {𝑁𝑁𝑘𝑘 ∈ 𝐼𝐼|𝑁𝑁𝑘𝑘 mod 4 = 3}

Similarly:

𝐶𝐶1 = 𝑁𝑁1 ∩ 𝐶𝐶

𝐶𝐶2 = 𝑁𝑁2 ∩ 𝐶𝐶

Finally, 𝑆𝑆1 and 𝑆𝑆2 designate the set of indices corresponding to elements of 𝐶𝐶1 and 𝐶𝐶2 respectively, i.e.
𝑆𝑆1 = 𝑓𝑓−1(𝐶𝐶1) and 𝑆𝑆2 = 𝑓𝑓−1(𝐶𝐶2).

2 Basic primality test and primes enumeration

2.1 Two families of infinite sequences with arithmetic difference
[8] shows that 𝑊𝑊 is the union of two families of finite sequences with arithmetic difference. Actually
proposition 2-5 says that any composite odd number 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶 can be written as a difference of two
squares, and more precisely that there exists 𝑗𝑗 ∈ ℕ and 𝑥𝑥 ∈ ⟦0, 𝑗𝑗⟧ such that:

�
(𝟏𝟏) 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1 ⇒ 𝑁𝑁𝑘𝑘 = (2𝑗𝑗 + 3)2 − (2𝑥𝑥)2,
(𝟐𝟐) 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2 ⇒ 𝑁𝑁𝑘𝑘 = (2𝑗𝑗 + 4)2 − (2𝑥𝑥 + 1)2

Corollary 2-1: Let 𝑘𝑘𝑗𝑗(𝑛𝑛) = (2𝑗𝑗 + 3)𝑛𝑛 + 𝑗𝑗. One has:

𝑊𝑊 = 𝑆𝑆1 ∪ 𝑆𝑆2

and:

𝑆𝑆1 = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥; 𝑖𝑖 ∈ ℕ, 𝑥𝑥 ∈ ℕ}
𝑆𝑆2 = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥; 𝑖𝑖 ∈ ℕ, 𝑥𝑥 ∈ ℕ}

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 13

Thus 𝑊𝑊 is the union of two families of infinite arithmetic sequences. The indices 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) of first type
reference points (or remarkable points, see[8]) are the initial terms of sequences ranging in 𝑆𝑆1. Similarly,
the indices 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) of second type reference points are the initial terms of sequences ranging in 𝑆𝑆2.

Proof: We substitute 𝑗𝑗 by 𝑖𝑖 + 𝑥𝑥 in relations (1) and (2):

(2𝑗𝑗 + 3)2 − (2𝑥𝑥)2 = (2𝑖𝑖 + 2𝑥𝑥 + 3)2 − (2𝑥𝑥)2 = (2𝑖𝑖 + 3)(2𝑖𝑖 + 4𝑥𝑥 + 3)
= 2[𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥] + 3

and similarly:

(2𝑗𝑗 + 4)2 − (2𝑥𝑥 + 1)2 = (2𝑖𝑖 + 2𝑥𝑥 + 4)2 − (2𝑥𝑥 + 1)2 = (2𝑖𝑖 + 3)(2𝑖𝑖 + 4𝑥𝑥 + 5)
= 2(2𝑖𝑖 + 3)(𝑖𝑖 + 2𝑥𝑥 + 2) + 2𝑖𝑖 + 3 = 2[𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥] + 3

Proposition 2-1: For any 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶 there exists 𝑋𝑋 ∈ 𝑃𝑃, 𝑋𝑋 ≤ �𝑁𝑁𝑘𝑘 and 𝑥𝑥 ∈ ℕ such that:

𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1 ⇒ 𝑁𝑁𝑘𝑘 = 𝑋𝑋(𝑋𝑋 + 4𝑥𝑥)

𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2 ⇒ 𝑁𝑁𝑘𝑘 = 𝑋𝑋(𝑋𝑋 + 4𝑥𝑥 + 2)

Thus, writing 𝑋𝑋 = 2𝑖𝑖 + 3, we get:

𝑊𝑊 = 𝑆𝑆1′ ∪ 𝑆𝑆2′

where:

𝑆𝑆1′ = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 1) + 2(2𝑖𝑖 + 3)𝑥𝑥; 𝑖𝑖 ∈ ℕ ∖𝑊𝑊, 𝑥𝑥 ∈ ℕ}
𝑆𝑆2′ = {𝑘𝑘𝑖𝑖(𝑥𝑥) = 𝑘𝑘𝑖𝑖(𝑖𝑖 + 2) + 2(2𝑖𝑖 + 3)𝑥𝑥; 𝑖𝑖 ∈ ℕ ∖𝑊𝑊, 𝑥𝑥 ∈ ℕ}

Proof: Take 𝑋𝑋 the smallest prime dividing 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶. Thus 𝑋𝑋 ∈ 𝑃𝑃�𝑁𝑁𝑘𝑘 and if 𝑌𝑌 = 𝑁𝑁𝑘𝑘
𝑋𝑋

 then 𝑌𝑌 ≥ 𝑋𝑋 and 𝑌𝑌 − 𝑋𝑋 is

even, and we can write it either 4𝑥𝑥 or 4𝑥𝑥 + 2. These two cases clearly correspond respectively to 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶1
and 𝑁𝑁𝑘𝑘 ∈ 𝐶𝐶2. Thus the index 𝑘𝑘 can be decomposed as in corollary 2-1, but with 𝑖𝑖 the index of a prime
number, hence in ℕ ∖𝑊𝑊.

2.2 Basic primality test
In this section, we describe a basic primality test using the previous infinite sequences.

Definition 2-2: For any 𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃 and 𝑁𝑁 ∈ 𝐼𝐼 we let:

1- 𝐴𝐴(𝑁𝑁,𝑝𝑝) = 𝑁𝑁 − 𝑝𝑝2 and 𝑓𝑓𝐴𝐴(𝑝𝑝) = 𝑝𝑝2.

2- 𝐵𝐵(𝑁𝑁,𝑝𝑝) = 𝑁𝑁 − 𝑝𝑝(𝑝𝑝 + 2) and 𝑓𝑓𝐵𝐵(𝑝𝑝) = 𝑝𝑝(𝑝𝑝 + 2).

Proposition 2-2: 𝑁𝑁 ∈ 𝑁𝑁1 is a prime number when:

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√𝑁𝑁 ,
𝐴𝐴(𝑁𝑁,𝑝𝑝)

4
 mod 𝑝𝑝 ≠ 0

𝑁𝑁 ∈ 𝑁𝑁2 is a prime number when:

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√𝑁𝑁 ,
𝐵𝐵(𝑁𝑁,𝑝𝑝)

4
 mod 𝑝𝑝 ≠ 0

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 14

Proof: This follows from the fact that 𝐴𝐴(𝑁𝑁,𝑝𝑝) mod 𝑝𝑝 = 𝑁𝑁 mod 𝑝𝑝 and likewise for 𝐵𝐵(𝑁𝑁,𝑝𝑝).

Remark 2-2: In order to reduce computation of 𝐴𝐴(𝑁𝑁,𝑝𝑝) and 𝐵𝐵(𝑁𝑁,𝑝𝑝) for two consecutive prime numbers,
we only decrement the value.

More precisely, if 𝑝𝑝 < 𝑝𝑝′ are two primes, we let 𝛼𝛼(𝑝𝑝,𝑝𝑝′) = 𝑝𝑝′ − 𝑝𝑝 and we compute:

�
𝛥𝛥𝛥𝛥(𝑁𝑁,𝑝𝑝,𝑝𝑝′) = 𝐴𝐴(𝑁𝑁,𝑝𝑝) − 𝐴𝐴(𝑁𝑁,𝑝𝑝′) = 𝛼𝛼(𝛼𝛼 + 2𝑝𝑝)
𝛥𝛥𝛥𝛥(𝑁𝑁,𝑝𝑝,𝑝𝑝′) = 𝐵𝐵(𝑁𝑁,𝑝𝑝) − 𝐵𝐵(𝑁𝑁,𝑝𝑝′) = Δ𝐴𝐴(𝑁𝑁,𝑝𝑝, 𝑝𝑝′) + 2𝛼𝛼

These two expressions are independent of 𝑁𝑁.

2.3 Primality test with indices
We adapt here the results of the previous section with indices.

Definition 2-3: For any 𝑖𝑖 index of a prime number 𝑝𝑝 ∈ 𝑃𝑃 and 𝑘𝑘 ∈ ℕ, we let:

1- 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) = (𝑘𝑘 − 3) 2⁄ − 𝑖𝑖(𝑖𝑖 + 3), 𝑓𝑓𝐴𝐴′(𝑖𝑖) = 𝑖𝑖(𝑖𝑖 + 3), 𝑔𝑔𝐴𝐴′ (𝑘𝑘) = (𝑘𝑘 − 3) 2⁄

2- 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) = (𝑘𝑘 − 6) 2⁄ − 𝑖𝑖(𝑖𝑖 + 4) and 𝑓𝑓𝐵𝐵′(𝑖𝑖) = 𝑖𝑖(𝑖𝑖 + 4), 𝑔𝑔𝐵𝐵′ (𝑘𝑘) = (𝑘𝑘 − 6) 2⁄

Proposition 2-3: 𝑘𝑘 ∈ 𝑆𝑆1 is a prime number index when:

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√2𝑘𝑘+3 ,𝐴𝐴′(𝑘𝑘, 𝑖𝑖) mod 𝑝𝑝 ≠ 0

𝑘𝑘 ∈ 𝑆𝑆2 is a prime number index when:

∀𝑝𝑝 = 2𝑖𝑖 + 3 ∈ 𝑃𝑃√2𝑘𝑘+3 ,𝐵𝐵′(𝑘𝑘, 𝑖𝑖) mod 𝑝𝑝 ≠ 0

Proof: This follows from proposition 2-2 and definition 2-2 because if we let 𝑁𝑁 = 2𝑘𝑘 + 3 then 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) =
𝐴𝐴(𝑁𝑁,𝑝𝑝)

4
 and 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) = 𝐵𝐵(𝑁𝑁,𝑝𝑝)

4
.

Remark 2-3: In order to reduce computation of 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) and 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) for two consecutive prime number
indices, we only decrement their values.

More precisely, if 𝑖𝑖 < 𝑖𝑖′ are two prime indices we let 𝛼𝛼′(𝑖𝑖, 𝑖𝑖′) = 𝑖𝑖′ − 𝑖𝑖 and we compute:

Δ𝐴𝐴′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) = 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) − 𝐴𝐴′(𝑘𝑘, 𝑖𝑖′) = 𝛼𝛼′(𝛼𝛼′ + 2𝑖𝑖 + 3)

 Δ𝐵𝐵′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) = 𝐵𝐵′(𝑘𝑘, 𝑖𝑖) − 𝐵𝐵′(𝑘𝑘, 𝑖𝑖′) = Δ𝐴𝐴′(𝑘𝑘, 𝑖𝑖, 𝑖𝑖′) + 𝛼𝛼′

These two expressions are independent of 𝑘𝑘.

2.4 First algorithms of prime enumeration
In this section, we present prime enumeration algorithms based on propostion 2-2 and 2-3. The first one
manipulates numbers and the second one indices.

2.4.1 Primality test using numbers

This first algorithm named PrimeEnumeration consists in two functions:

 The main function which determines primes in up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and returns them in a list, along
with its size.

 An auxiliary function which returns whether a number 𝑁𝑁 is prime, based on precomputed list
of primes and values of Δ𝐴𝐴 and Δ𝐵𝐵. It is called LocalTest. It is also in charge of updating the

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 15

lists Δ𝐴𝐴 and Δ𝐵𝐵 if needed.

Three zero-based lists are used and built recursively in this algorithm: the list of primes itself 𝐿𝐿𝑝𝑝, and the
lists of values for Δ𝐴𝐴 and Δ𝐵𝐵 respective to 𝐿𝐿𝑝𝑝 (remember it is independent from 𝑁𝑁). Only numbers which
are not multiples of 2 and 3 are tested. Thus we restrict to 𝑁𝑁 = 6𝑚𝑚 + 1 and 𝑁𝑁 = 6𝑚𝑚 + 5. The congruence
of 𝑁𝑁 modulo 4 depends on the parity of 𝑚𝑚 , i.e. when 𝑚𝑚 is even, 𝑁𝑁 mod 4 = 1 and when 𝑚𝑚 is odd,
𝑁𝑁 mod 4 = 3.

Algorithm 2-4-1a Function PrimeEnumeration(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is an odd integer such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 7. This
function returns the list of primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and its size.

First step : intialisation of variables

𝐿𝐿𝑝𝑝 ← {5}  List of primes from 5, initialized with one element

𝑖𝑖𝑙𝑙 ← 1  Size of the list 𝐿𝐿𝑝𝑝

  About the next two lists, see the remark 2-2

Δ𝐴𝐴 ← {16}  Δ𝐴𝐴(𝑁𝑁, 3,5) = 2 × (2 + 6) = 16

Δ𝐵𝐵 ← {20}  Δ𝐵𝐵(𝑁𝑁, 3,5) = Δ𝐴𝐴(𝑁𝑁, 3,5) + 2 × 2 = 20

𝑖𝑖𝑟𝑟1 → 0

𝐶𝐶𝐶𝐶𝐶𝐶1 ← 25

𝑖𝑖𝑟𝑟2 → 0

𝐶𝐶𝐶𝐶𝐶𝐶2 ← 35

Second step : iteration

(𝑚𝑚,𝑁𝑁) ← (1,7)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ← False  𝑚𝑚 = 1 so (6𝑚𝑚 + 1) mod 4 = 3

While 𝑁𝑁 ≤ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 Do  Loop to get odd primes in range ⟦5,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧

 If LocalTest(𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) Do

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑁𝑁

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 End If

 𝑁𝑁 ← 6𝑚𝑚 + 5

 If 𝑁𝑁 ≤ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) Do

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑁𝑁

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 End If

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 16

 𝑚𝑚 ← 𝑚𝑚 + 1

 𝑁𝑁 ← 6𝑚𝑚 + 1

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ← !𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  Switch the boolean value

End While

Return ({2,3} + 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 + 2)  Return the list of primes and the number of primes.

Algorithm 2-4-1b Function LocalTest (𝑁𝑁, 𝐿𝐿𝑝𝑝,Δ𝐴𝐴,Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁 is an odd
integer. 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 stands for 𝑖𝑖𝑟𝑟1 or 𝑖𝑖𝑟𝑟2 depending on 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. This function decides whether for all 𝑝𝑝 ∈
𝐿𝐿𝑝𝑝[0 … 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟], 𝐴𝐴(𝑁𝑁,𝑝𝑝)/4 or 𝐵𝐵(𝑁𝑁,𝑝𝑝)/4 is not divisible by 𝑝𝑝. It will also potentially update Δ𝐴𝐴, Δ𝐵𝐵, 𝑖𝑖𝑟𝑟1, 𝑖𝑖𝑟𝑟2,
𝐶𝐶𝐶𝐶𝐶𝐶1 and 𝐶𝐶𝐶𝐶𝐶𝐶2 which must be passed by reference.

First step : intialisation of variables

𝐴𝐴 ← 9  stands for 𝑓𝑓𝐴𝐴(3) = 32

𝐵𝐵 ← 15  stands for 𝑓𝑓𝐵𝐵(3) = 3 × 5

If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do  initiate references that might be updated

 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑖𝑖𝑟𝑟1

 𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶1

 Δ ← Δ𝐴𝐴

Else

 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑖𝑖𝑟𝑟2

 𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶2

 Δ = Δ𝐵𝐵

End If

If 𝑁𝑁 = 𝐶𝐶𝐶𝐶𝐶𝐶 Do

 Return False  The cap is a composite number

End If

If 𝑁𝑁 > 𝐶𝐶𝐶𝐶𝐶𝐶 Do  update references because we always want 𝑁𝑁 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶

 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 1

 𝛼𝛼 ← �𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)− 𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1)�

 If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do

 Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ← 𝛼𝛼(𝛼𝛼 + 2𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1))  Δ𝐴𝐴

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 17

 Else

 Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ← Δ𝐴𝐴(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + 2𝛼𝛼  Δ𝐵𝐵, using Δ𝐴𝐴 which must already be updated

 End If

 𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶 + Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

End If

Second step : iteration

If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do

 𝑁𝑁 ← 𝑁𝑁 − 𝐴𝐴

Else

 𝑁𝑁 ← 𝑁𝑁 − 𝐵𝐵

End If

𝑖𝑖 ← 0

While 𝑖𝑖 ≤ 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Do  Iteration at most up to 𝑖𝑖 = 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 𝑁𝑁 ← 𝑁𝑁 − Δ(𝑖𝑖)

 If (𝑁𝑁 4⁄) mod 𝐿𝐿𝑝𝑝(𝑖𝑖) = 0 Do  𝑁𝑁 is a multiple of 4, division by 4 can be done bitwise

 Return False  Test is negative

 End If

 𝑖𝑖 ← 𝑖𝑖 + 1

End While

Return True  Test is positive

2.4.2 Primality test using infinite sequences and indices

This second algorithm IndexPrimeEnumeration also consists in two functions, mirroring the previous
algorithm:

 The main function which determines primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and returns them in a list along with
its size.

 An auxiliary function which returns whether a number 𝑁𝑁 is prime based on precomputed list
of primes and values of Δ𝐴𝐴′ and Δ𝐵𝐵′. It is called LocalTest.

Four zero-based lists are used and built recursively: the list of primes 𝐿𝐿𝑝𝑝, the corresponding indices 𝐼𝐼𝐼𝐼𝑝𝑝
(indices of primes), and the lists Δ𝐴𝐴′ and Δ𝐵𝐵′ respective to 𝐿𝐿𝑝𝑝.

Only numbers which are not multiple of 2 and 3 are tested, i.e. indices of the form 𝑘𝑘 = 3𝑚𝑚 − 1 and 𝑘𝑘 =
3𝑚𝑚 + 1.

Remark 2-4-2: To avoid any division in the computation of 𝐴𝐴′ and 𝐵𝐵′ we will write 𝑚𝑚 = 2𝑡𝑡 + 1 or 2𝑡𝑡 + 2.

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 18

Algorithm 2-4-2a Function IndexPrimeEnumeration(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is an odd integer such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 7.
This function returns the list of primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and its size.

First step : intialisation of variables

𝐿𝐿𝑝𝑝 ← {5}  List of primes from 5, initialized with one element

𝐼𝐼𝐼𝐼𝑝𝑝 ← {1}  List of index of primes

𝑖𝑖𝑙𝑙 ← 1  Size of the two lists 𝐿𝐿𝑝𝑝 and 𝐼𝐼𝐿𝐿𝑝𝑝

  About the next two lists, see the remark 2-3

Δ𝐴𝐴′ ← {4}  Δ𝐴𝐴′(𝑘𝑘, 0,1) = 1 × (1 + 3) = 4

Δ𝐵𝐵′ ← {5}  Δ𝐵𝐵′(𝑘𝑘, 0,1) = Δ𝐴𝐴′(𝑘𝑘, 0,1) + 1 = 5

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄

𝑖𝑖𝑟𝑟1 → 0

𝐶𝐶𝐶𝐶𝐶𝐶1 ← 11

𝑖𝑖𝑟𝑟2 → 0

𝐶𝐶𝐶𝐶𝐶𝐶2 ← 16

Second step : iteration

(𝑡𝑡, 𝑘𝑘,𝑔𝑔′) ← (0, 2,−2)  𝑘𝑘 starts at 3(2𝑡𝑡 + 1) − 1, 𝑔𝑔′ stands for 𝑔𝑔𝐴𝐴′ (𝑘𝑘) or 𝑔𝑔𝐵𝐵′ (𝑘𝑘)

While 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 Do  Loop to get odd prime indices in range ⟦1,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧

 If LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,False) Do

 𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 End If

 𝑘𝑘 ← 𝑘𝑘 + 2  𝑘𝑘 = 3(2𝑡𝑡 + 1) + 1

 𝑔𝑔′ ← 𝑔𝑔′ + 1

 If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟2,𝐶𝐶𝐶𝐶𝐶𝐶2,False) Do

 𝐼𝐼𝐼𝐼𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 End If

 𝑘𝑘 ← 𝑘𝑘 + 1  𝑘𝑘 = 3(2𝑡𝑡 + 2) − 1

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 19

 𝑔𝑔′ ← 𝑔𝑔′ + 2

 If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1,True) Do

 𝐼𝐼𝐼𝐼𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 End If

 𝑘𝑘 ← 𝑘𝑘 + 2  𝑘𝑘 = 3(2𝑡𝑡 + 2) + 1

 𝑔𝑔′ ← 𝑔𝑔′ + 1

 If 𝑘𝑘 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟1,𝐶𝐶𝐶𝐶𝐶𝐶1,True) Do

 𝐼𝐼𝐼𝐼𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑘𝑘

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 End If

 𝑡𝑡 ← 𝑡𝑡 + 1  We do not use 𝑡𝑡 but keep it for the sake of readability

 𝑘𝑘 ← 𝑘𝑘 + 1  𝑘𝑘 = 3(2𝑡𝑡 + 1) − 1

 𝑔𝑔′ ← 𝑔𝑔′ − 1

End While

Return ({2,3} + 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 + 2)  Return the list of primes and the number of primes.

Algorithm 2-4-2b Function LocalTest(𝑔𝑔′,𝑘𝑘, 𝐿𝐿𝑝𝑝, 𝐼𝐼𝐿𝐿𝑝𝑝,Δ𝐴𝐴′,Δ𝐵𝐵′, 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝐶𝐶𝐶𝐶𝐶𝐶,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀): 𝑔𝑔′ stands for 𝑔𝑔𝐴𝐴′ (𝑘𝑘)
or 𝑔𝑔𝐵𝐵′ (𝑘𝑘) depending on 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. This function decides whether for all 𝑝𝑝 ∈ 𝐿𝐿𝑝𝑝[0 … 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟], 𝐴𝐴′(𝑘𝑘, 𝑖𝑖) or
𝐵𝐵′(𝑘𝑘, 𝑖𝑖) is coprime with 𝑝𝑝.

First step : intialisation of variables

If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do  initiate references that might be updated

 Δ ← Δ𝐴𝐴′

Else

 Δ = Δ𝐵𝐵′

End If

If 𝑘𝑘 = 𝐶𝐶𝐶𝐶𝐶𝐶 Do

 Return False  The cap is the index of a composite number

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 20

End If

If 𝑘𝑘 > 𝐶𝐶𝐶𝐶𝐶𝐶 Do  update references because we always want 𝑘𝑘 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶

 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 1

 𝛼𝛼 ← �𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)− 𝐼𝐼𝐼𝐼𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1)�

 If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Do

 Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ← 𝛼𝛼(𝛼𝛼 + 𝐿𝐿𝑝𝑝(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1))  Δ𝐴𝐴′

 Else

 Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ← Δ𝐴𝐴′(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + 𝛼𝛼  Δ𝐵𝐵′, using Δ𝐴𝐴′ which must already be updated

 End If

 𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶 + Δ(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

End If

Second step : iteration

𝑅𝑅 ← 𝑔𝑔′

𝑖𝑖 ← 0

While 𝑖𝑖 ≤ 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Do  Iteration at most up to 𝑖𝑖 = 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 𝑅𝑅 ← 𝑅𝑅 − Δ(𝑖𝑖)

 If 𝑅𝑅 mod 𝐿𝐿𝑝𝑝(𝑖𝑖) = 0 Do

 Return False  Test is negative

 End If

 𝑖𝑖 ← 𝑖𝑖 + 1

End While

Return True  Test is positive

2.5 Performance of the algorithms
In this section, we present the performance of the previous two algorithms of prime enumeration. We
first give a theoretical complexity, followed by empirical results.

Proposition 2-5: Time complexity (in terms of number of arithmetic operations) and space complexity are
the same for both PrimeEnumeration and IndexPrimeEnumeration algorithms.

Time complexity is:

𝑂𝑂�
(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)

3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�.

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 21

Space complexity is:

𝑂𝑂 �
�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�

Proof: Any number 𝑛𝑛’s primality is tested with primes in �5,√𝑛𝑛�, in 𝑂𝑂(1) operations. There are 𝜋𝜋�√𝑛𝑛� −

2 ∼ √𝑛𝑛
ln�√𝑛𝑛�

= 𝑂𝑂 � √𝑛𝑛
ln(𝑛𝑛)� such primes. We loop over range ⟦7,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧ , time complexity is thus

∑ 𝑂𝑂 � √𝑡𝑡
ln(𝑡𝑡)�

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑡𝑡=7 = 𝑂𝑂 � (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)

3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� (actually we skip two thirds of the terms in this sum by not testing

multiples of 2 and 3, but complexity remains 𝑂𝑂� (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)
3
2

ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� albeit with smaller constant.

The space complexity is related to the lists we keep in memory, which are at most of size 𝜋𝜋(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀). This

space complexity is 𝑂𝑂 � �𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)�.

Both algorithms have been implemented in Visual Studio C++ 2012. We measured execution time for
various values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and produced a regression using Maple 2017.3. Details of the Maple options used
to get the regression are given in appendix 8.1.

On the graph 2-5 below, we represent the computation time in seconds for both algorithms. Curve 𝑇𝑇1
corresponds to the algorithm PrimeEnumeration and curve 𝑇𝑇2 to IndexPrimeEnumeration. The
correlation coefficient R of each curve is given on the graph. We observe that computation time of both
algorithms is consistent with theoretical complexity, although exponent is a bit smaller than 1.5.

Figure 1: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Prime enumeration)

Both algorithms PrimeEnumeration and IndexPrimeEnumeration have the same number of modulo
operations. But the computation of the input of modulus operations is done with larger inputs for the
former than for the latter, which allows to marginally save time for large values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀.

3 The sieve of Atkin
The sieve of Atkin [6] is a modern and efficient algorithm for primes enumeration. We present two
algorithms based on it, one using numbers and the other indices. Both are based on the version which has

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 22

a complexity 𝑂𝑂(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) in time and space. Modified versions achieve up to 𝑂𝑂 � 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
ln ln(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀)� in time and

𝑂𝑂 �𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
1
2+𝑜𝑜(1)� in space.

3.1 Atkin algorithm
This algorithm is based on the following three results from [6].

Proposition 3-1 Let 𝑛𝑛 > 3 be a square-free integer. Then 𝑛𝑛 is prime if and only if one of the three following
conditions is true:

a. 𝑛𝑛 ∈ 1 + 4ℕ and there is an odd number of solutions to 𝑛𝑛 = 4𝑥𝑥2 + 𝑦𝑦2, (𝑥𝑥,𝑦𝑦) ∈ ℕ2,
b. 𝑛𝑛 ∈ 7 + 12ℕ and there is an odd number of solutions to 𝑛𝑛 = 3𝑥𝑥2 + 𝑦𝑦2, (𝑥𝑥,𝑦𝑦) ∈ ℕ2,
c. 𝑛𝑛 ∈ 11 + 12ℕ and there is an odd number of solutions to 𝑛𝑛 = 3𝑥𝑥2 − 𝑦𝑦2, 𝑥𝑥 > 𝑦𝑦, (𝑥𝑥,𝑦𝑦) ∈ ℕ2.

We observe that the first congruence condition on 𝑛𝑛 can also be replaced by 𝑛𝑛 ∈ 1 + 12ℕ or 𝑛𝑛 ∈ 5 +
12ℕ. We also observe the following for an odd integer 𝑛𝑛:

• If 𝑛𝑛 = 4𝑥𝑥2 + 𝑦𝑦2, 𝑦𝑦 must be odd.
• If 𝑛𝑛 = 3𝑥𝑥2 + 𝑦𝑦2 or 𝑛𝑛 = 3𝑥𝑥2 − 𝑦𝑦2, 𝑥𝑥 and 𝑦𝑦 must have opposite parity.

Furthermore if 𝑛𝑛 is square-free, 𝑥𝑥 and 𝑦𝑦 must be in ℕ∗, with 𝑥𝑥 < �𝑛𝑛/2 and 𝑦𝑦 < √𝑛𝑛.

Remark 3-1 We can compute the remainder modulo 12 of 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑦𝑦2 depending on remainders modulo
12 of 𝑥𝑥 and 𝑦𝑦. This gives us the different cases to check in Atkin sieve. We present them in table 3-1,
noting that there is no case for 𝑦𝑦 mod 12 = 0 and 𝑦𝑦 mod 12 = 6.

Table 1: Atkin sieve cases depending on remainders modulo 𝟏𝟏𝟏𝟏 of 𝒙𝒙 and 𝒚𝒚.

𝑥𝑥\𝑦𝑦 1 2 3 4 5 7 8 9 10 11
0 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2

4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2

1 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

2 4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2
4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2

3 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

4 4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2
4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2

5 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

6 4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2
4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2

7 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

8 4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2
4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2

9 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

10 4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2
4𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2

11 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2
3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2 3𝑥𝑥2 + 𝑦𝑦2

3𝑥𝑥2 − 𝑦𝑦2 4𝑥𝑥2 + 𝑦𝑦2

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 23

We could run the sieve looping through 12x12 blocks of (𝑥𝑥,𝑦𝑦) according to this table, but for readability
we do not implement this optimization in the algorithms below. We note however that this would save
all the modulo operations.

Algorithm 3-1 SieveOfAtkin(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 3 is an integer. This function returns the list of all prime
numbers less than 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀.

First step : intialisation of variables

𝐿𝐿𝑝𝑝 ← {2, 3}  Dynamic list of odd primes

𝑖𝑖𝑙𝑙 ← 2  Number of primes in the list

Sieve[𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀] ← {False, …,False}  Array of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 entries all initialized to False

𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀/2� − 1  Bound for 𝑥𝑥

𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀� − 1  Bound for 𝑦𝑦

Second step : iteration for first case

For 𝑥𝑥 = 1 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎

 For y = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  𝑦𝑦 must be odd

 𝑛𝑛 ← 4𝑥𝑥2 + 𝑦𝑦2

 If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 1 Or 𝑛𝑛 mod 12 = 5) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]  Switch the boolean value Sieve[𝑛𝑛]

 End If

 End For

End For

Third step : iteration for second and third cases

For 𝑥𝑥 = 1 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 Step 2

 For 𝑦𝑦 = 2 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  case where 𝑥𝑥 is odd and 𝑦𝑦 even

 𝑛𝑛 ← 3𝑥𝑥2 + 𝑦𝑦2

 If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 7) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]

 End If

 If 𝑥𝑥 > 𝑦𝑦 Do

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 24

 𝑛𝑛 ← 3𝑥𝑥2 − 𝑦𝑦2

 If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 11) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]

 End If

 End If

 End For

End For

For 𝑥𝑥 = 2 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 Step 2

 For y = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  case where 𝑥𝑥 is even and 𝑦𝑦 is odd

 𝑛𝑛 ← 3𝑥𝑥2 + 𝑦𝑦2

 If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 7) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]

 End If

 If 𝑥𝑥 > 𝑦𝑦 Do

 𝑛𝑛 ← 3𝑥𝑥2 − 𝑦𝑦2

 If 𝑛𝑛 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑛𝑛 mod 12 = 11) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]

 End If

 End If

 End For

End For

Fourth step : remove multiples of prime squares

For 𝑛𝑛 = 5 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  multiples of 2 and 3 are ignored by the previous iterations

 If Sieve[𝑛𝑛] Do

 For 𝑖𝑖 = 𝑛𝑛2 To 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step 2𝑛𝑛2

 Sieve[𝑖𝑖] ← False

 End For

 End If

End For

Last step : return list of primes from the sieve

For 𝑛𝑛 = 5 To 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step 2

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 25

 If Sieve[𝑛𝑛] Do

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝑛𝑛

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 End If

End For

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙)

3.2 Atkin algorithm with indices
We can rewrite proposition 3-1 as:

Corollary 3-2: 𝑘𝑘 is the index of a prime number if and only if 2𝑘𝑘 + 3 is square-free and one of the three
following conditions is true:

a. 𝑘𝑘 ∈ (1 + 6ℕ) ∪ (5 + 6ℕ) and there is an odd number of solutions to 𝑘𝑘 = 2𝑥𝑥2 + 𝑦𝑦2−3
2

,

b. 𝑘𝑘 ∈ 2 + 6ℕ and there is an odd number of solutions to 𝑘𝑘 = 3𝑥𝑥2+𝑦𝑦2−3
2

,

c. 𝑘𝑘 ∈ 4 + 6ℕ and there is an odd number of solutions to 𝑘𝑘 = 3𝑥𝑥2−𝑦𝑦2−3
2

 with 𝑦𝑦 < 𝑥𝑥.

The relationships presented in the following remark are used in the next algorithm.

Remark 3-2: For the fourth step (square multiples elimination), we note that if 𝑛𝑛 = 2𝑘𝑘 + 3, the index of
𝑛𝑛2 is 2𝑘𝑘2 + 6𝑘𝑘 + 3 and that the step of 2𝑛𝑛2 translates into a step of 𝑛𝑛2 = (2𝑘𝑘 + 3)2 for indices.

Algorithm 3-2 IndexSieveOfAtkin(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 3 is an odd integer. This function returns the list of all
prime numbers less than 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀.

First step : intialisation of variables

𝐿𝐿𝑝𝑝 ← {2, 3}  Dynamic list of primes

𝑖𝑖𝑙𝑙 ← 2  Number of primes in the list

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄  Index of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

Sieve[𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀] ← {False, …,False}  Array of 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 entries all initialized to False

𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀/2� − 1  Bound for 𝑥𝑥

𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 ← ��𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀� − 1  Bound for 𝑦𝑦

Second step : iteration for first case

For 𝑥𝑥 = 1 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎

 For y = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  𝑦𝑦 must be odd

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 26

 𝑘𝑘 ← 2𝑥𝑥2 + 𝑦𝑦2−3
2

 If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 1 Or 𝑘𝑘 mod 6 = 5) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]  Switch the boolean value Sieve[𝑛𝑛]

 End If

 End For

End For

Third step : iteration for second and third cases

For 𝑥𝑥 = 1 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 Step 2

 For 𝑦𝑦 = 2 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  case where 𝑥𝑥 is odd and 𝑦𝑦 even

 𝑘𝑘 ← 3𝑥𝑥2+𝑦𝑦2−3
2

 If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 2) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]

 End If

 If 𝑥𝑥 > 𝑦𝑦 Do

 𝑘𝑘 ← 3𝑥𝑥2−𝑦𝑦2−3
2

 If 𝑘𝑘 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 4) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]

 End If

 End If

 End For

End For

For 𝑥𝑥 = 2 To 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 Step 2

 For y = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 Step 2  case where 𝑥𝑥 is even and 𝑦𝑦 is odd

 𝑘𝑘 ← 3𝑥𝑥2+𝑦𝑦2−3
2

 If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 2) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]

 End If

 If 𝑥𝑥 > 𝑦𝑦 Do

 𝑘𝑘 ← 3𝑥𝑥2−𝑦𝑦2−3
2

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 27

 If 𝑘𝑘 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 And (𝑘𝑘 mod 6 = 4) Do

 Sieve[𝑛𝑛] ← !Sieve[𝑛𝑛]

 End If

 End If

 End For

End For

Fourth step : remove multiples of prime squares

For 𝑘𝑘 = 1 To 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎−𝟑𝟑
𝟐𝟐

  multiples of 3 are ignored by the previous iterations

 If Sieve[𝑘𝑘] Do

 For 𝑖𝑖 = 2𝑘𝑘2 + 6𝑘𝑘 + 3 To 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 − 1 Step (2𝑘𝑘 + 3)2

 Sieve[𝑖𝑖] ← False

 End For

 End If

End For

Last step : return list of primes from the sieve

For 𝑘𝑘 = 1 To 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 − 1

 If Sieve[𝑘𝑘] Do

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 2𝑘𝑘 + 3

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 End If

End For

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙)

3.3 Performance of algorithms
In this section, we discuss theoretical complexity and present our results with the two algorithms
implementing the sieve of Atkin.

The reference algorithm SieveOfAtkin has less operations index-based IndexSieveOfAtkin, which juggles
between numbers and indices. But on the other hand SieveOfAtkin performs Euclidian divisions by 12,
whereas IndexSieveOfAtkin does divisions by 6. This is due to the conversion of number 𝑛𝑛 into its index

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 28

𝑘𝑘 = (𝑛𝑛 − 3) 2⁄ . Furthermore, the latter only performs the sieve on odd numbers, which means effectively
the memory space for the sieve is twice smaller.

On the graph 3-3 below, we plot the computation time in seconds for both algorithms. The curve 𝑇𝑇3
corresponds to SieveOfAtkin and the curve 𝑇𝑇4 to IndexSieveOfAtkin. We observe empirically that
computation time of both algorithms looks slightly higher than linear, even though theoretically the
number of operations appears to be linear in 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. Details of the Maple options used to get the regression
are given in appendix 8.2.

Graph 2: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Sieve of Atkin)

The second algorithm is faster for larger values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, roughly for 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 109. For such values the cost
of encoding numbers to indices is offset by the gain on modulo operations and halving the size of the
sieve. We note also that memory size is halved for the second algorithm.

4 Wheel sieve with indices
We first describe Pritchard’s wheel sieve. Then we adapt it to indices and discuss a way to generate the
integers of the turning wheel.

4.1 Description of Pritchard’s wheel sieve
This description is based on [7] and [4]. The wheel sieve operates by generating a set of numbers that are
coprime with the first 𝑞𝑞 prime numbers. The second of these is the next prime, multiples of which are
then eliminated (by turning the wheel).

More precisely, let 𝑝𝑝0 = 2,𝑝𝑝1 = 3 … the sequence of prime numbers and let:

Π𝑞𝑞 = �𝑝𝑝𝑘𝑘

𝑞𝑞

𝑘𝑘=0

ℛ(𝑚𝑚) = {𝑥𝑥 ∈ ⟦1,𝑚𝑚− 1⟧| gcd(𝑥𝑥,𝑚𝑚) = 1}

𝒲𝒲𝑞𝑞 = ℛ�Π𝑞𝑞�

The following proposition describes a “turn of the wheel”.

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 29

Proposition 4-1-1: We have the following inductive formula for 𝒲𝒲𝑞𝑞:

𝒲𝒲0 = {1},𝒲𝒲1 = {1,5},𝒲𝒲2 = {1,7,11,13,17,19,23,29}

∀𝑞𝑞 ∈ ℕ,𝒲𝒲𝑞𝑞+1 = � � �𝒲𝒲𝑞𝑞 + 𝑥𝑥Π𝑞𝑞�

𝑝𝑝𝑞𝑞+1−1

𝑥𝑥=0

� ∖ 𝑝𝑝𝑞𝑞+1�1,Π𝑞𝑞 − 1�

Proof: The Chinese theorem ensures that 𝑚𝑚 ∈ 𝒲𝒲𝑞𝑞+1 if and only if 𝑚𝑚 mod Π𝑞𝑞 ∈ 𝒲𝒲𝑞𝑞 and 𝑚𝑚 ∉ 𝑝𝑝𝑞𝑞+1ℕ. This
gives the desired set equality.

Furthermore, induction formula for 𝒲𝒲𝑞𝑞 can also be used to recursively build the sequence of prime
numbers:

Proposition 4-1-2: The second smallest element of 𝒲𝒲𝑞𝑞 (𝑞𝑞 ≥ 1) is the next prime 𝑝𝑝𝑞𝑞+1.

Proof: The first element is 1, which is obviously not prime. For 𝑞𝑞 ≥ 1, 𝑝𝑝𝑞𝑞 ≥ 3 and from proposition 4-1-1
we can show (see corollary 4-2-2 later on) that 𝒲𝒲𝑞𝑞 has at least 2 elements. The second one must then be
the smallest integer coprime with 𝑝𝑝0 …𝑝𝑝𝑞𝑞, and thus must be 𝑝𝑝𝑞𝑞+1.

The elements of 𝒲𝒲𝑞𝑞 are called pseudo-primes (at order 𝑞𝑞). Some of them are primes and others are not.
However, we have a boundary condition to identify some of the primes:

Proposition 4-1-3: All integers in 𝒲𝒲𝑞𝑞 and less than 𝑝𝑝𝑞𝑞2 are sure to be primes.

Proof: Any integer less than 𝑝𝑝𝑞𝑞2 is either prime or has a divisor among 𝑝𝑝0 …𝑝𝑝𝑞𝑞. The latter is impossible by
definition of 𝒲𝒲𝑞𝑞.

To enumerate primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, we thus have to keep turning the wheel as long as 𝑝𝑝𝑞𝑞+12 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀.

As Π𝑞𝑞 grows exponentially (in particular it can be easily proven from Bertrand’s postulate that Π𝑞𝑞 > 𝑝𝑝𝑞𝑞2
from 𝑞𝑞 = 2), while we are only interested in pseudo-primes up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, we may replace in practice 𝒲𝒲𝑞𝑞

by 𝒲𝒲𝑞𝑞
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒲𝒲𝑞𝑞 ∩ ⟦1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧.

Proposition 4-1-4: The following inductive formula (or wheel turn) is true for all 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀:

∀𝑞𝑞 ∈ ℕ,𝒲𝒲𝑞𝑞+1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 =

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛

� �𝒲𝒲𝑞𝑞 + 𝑥𝑥Π𝑞𝑞�

max�𝑝𝑝𝑞𝑞+1−1,�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝛱𝛱𝑞𝑞

��

𝑥𝑥=0
⎠

⎟
⎞
∖ 𝑝𝑝𝑞𝑞+1 �1, �

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑝𝑝𝑞𝑞+1

��

⎦
⎥
⎥
⎥
⎤
∩ ⟦1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀⟧.

Furthermore, if 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9, then as soon as 𝑝𝑝𝑞𝑞2 ≥ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑝𝑝0 …𝑝𝑝𝑞𝑞� ∪ �𝑊𝑊𝑞𝑞
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ∖ {1}�.

Proof: By double inclusion (cf. proof of proposition 4-2-3). The second identity comes from the fact that if
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9, 𝑝𝑝𝑞𝑞2 ≥ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 implies 𝑞𝑞 ≥ 2.

Thus, when we turn the wheel, we remove integers that are, for a given 𝑚𝑚 ∈ 𝒲𝒲𝑞𝑞, and 𝑥𝑥,𝑦𝑦 integers, of the
form:

𝑚𝑚 + 𝑥𝑥Π𝑞𝑞 = 𝑦𝑦𝑝𝑝𝑞𝑞+1

One way to do that is to remove all multiples of 𝑝𝑝𝑞𝑞+1. We will show however in section 4.2 that there is a
relationship between the value of 𝑥𝑥, the multiples of Π𝑞𝑞 which are added to 𝒲𝒲𝑞𝑞 , and the composite

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 30

numbers 𝑦𝑦𝑝𝑝𝑞𝑞+1 which must be removed of the wheel 𝒲𝒲𝑞𝑞+1 , so that the index 𝑥𝑥 to remove can be
predicted from 𝑚𝑚 or conversely.

4.2 Index wheel sieve
Definition 4-2: We note Π𝑞𝑞′ the product of all odd primes up to 𝑝𝑝𝑞𝑞, i.e. Π𝑞𝑞 = 2Π𝑞𝑞′ .

We also note:

𝑁𝑁(𝑚𝑚,𝑎𝑎, 𝑞𝑞) = 𝑚𝑚Π𝑞𝑞 + 𝑎𝑎

and, with 𝑎𝑎′ the index of 𝑎𝑎:

𝑘𝑘(𝑚𝑚,𝑎𝑎′, 𝑞𝑞) =
𝑁𝑁(𝑚𝑚, 2𝑎𝑎′ + 3, 𝑞𝑞) − 3

2
= 𝑚𝑚Π𝑞𝑞′ + 𝑎𝑎′

the index of 𝑁𝑁(𝑚𝑚, 𝑎𝑎, 𝑞𝑞).

We let 𝒲𝒲𝑞𝑞
′ be the set of indices corresponding to 𝒲𝒲𝑞𝑞, with 1 replaced by Π𝑞𝑞 + 1 (which index is Π𝑞𝑞′ − 1):

𝒲𝒲𝑞𝑞
′ = �

𝑛𝑛 − 3
2

,𝑛𝑛 ∈ 𝒲𝒲𝑞𝑞 ∖ {1}� ∪ �Π𝑞𝑞′ − 1�

In this section, we describe how we adapt the wheel sieve to work with indices of odd integers. The limit
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is supposed to be an odd integer of index 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀.

Recurrence relation verified by the index wheel sieve:

The initial index wheels are 𝒲𝒲0
′ = {0}, 𝒲𝒲1

′ = {1,2}, 𝒲𝒲2
′ = {2,4,5,7,8,10,13,14}.

Remark 4-2-1: The first element of 𝒲𝒲𝑞𝑞
′ is the index of the prime number 𝑝𝑝𝑞𝑞+1 . 𝒲𝒲𝑞𝑞

′ is included in

�𝑝𝑝𝑞𝑞+1−3
2

,Π𝑞𝑞′ − 1�.

Proof: Since we remapped 1 to Π𝑞𝑞 + 1 in 𝒲𝒲𝑞𝑞 to define 𝒲𝒲𝑞𝑞
′, and because the indexing map is increasing,

the first element of 𝒲𝒲𝑞𝑞
′ is the index of prime 𝑝𝑝𝑞𝑞+1 from proposition 4-1-2 (we note that it works even for

𝑞𝑞 = 0), and its last element is Π𝑞𝑞′ − 1.

Proposition 4-2-1: The index wheel sieve is the only sequence of sets verifying:

𝒲𝒲0
′ = {0}

∀𝑞𝑞 ∈ ℕ,𝒲𝒲𝑞𝑞+1
′ = � � �𝒲𝒲𝑞𝑞

′ +𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1

𝑚𝑚=0

� ∖ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ − 1��

Furthermore, indices in the wheel 𝒲𝒲𝑞𝑞
′ up to 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 correspond to all remaining prime numbers up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

(on top of 𝑝𝑝0 …𝑝𝑝𝑞𝑞) as soon as:

𝑝𝑝𝑞𝑞2 − 3
2

≥ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀

Proof: This comes from the definition 4-2 of the index wheel sieve, the proposition 4-1-1 and from
observing that the index of any odd multiple 𝑦𝑦𝑝𝑝𝑞𝑞 of 𝑝𝑝𝑞𝑞 is of the form:

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 31

𝑦𝑦𝑝𝑝𝑞𝑞 − 3
2

=
𝑝𝑝𝑞𝑞 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞 ,𝑦𝑦′ =

𝑦𝑦 − 1
2

If we let 𝑝𝑝 = 2𝑖𝑖 + 3, this corresponds to the definition of 𝑘𝑘(𝑦𝑦′, 𝑖𝑖) in [8]: 𝑘𝑘(𝑦𝑦′, 𝑖𝑖) = 𝑖𝑖 + (2𝑖𝑖 + 3)𝑦𝑦′.

Eliminating multiples of the next prime by solving a Diophantine equation:

Proposition 4-2-2: For a given 𝑐𝑐 ∈ �0,Π𝑞𝑞′ − 1�, there exists a unique (𝑚𝑚𝑐𝑐 ,𝑦𝑦𝑐𝑐) ∈ �0,𝑝𝑝𝑞𝑞+1 − 1� ×𝒲𝒲𝑞𝑞 such
that 𝑐𝑐 +𝑚𝑚𝑐𝑐Π𝑞𝑞′ = 𝑦𝑦𝑐𝑐𝑝𝑝𝑞𝑞+1 . Furthermore, 𝑚𝑚𝑐𝑐 only depends of 𝑐𝑐 mod 𝑝𝑝𝑞𝑞+1 , 𝑚𝑚0 = 0 and for 𝑐𝑐1 =
�−Π𝑞𝑞′ � mod 𝑝𝑝𝑞𝑞+1,

𝑚𝑚𝑐𝑐1 = 1.

For all 𝑐𝑐 ∈ 𝒲𝒲𝑞𝑞 one has 𝑐𝑐 mod 𝑝𝑝𝑞𝑞+1 = 𝑚𝑚𝑐𝑐𝑐𝑐1 mod 𝑝𝑝𝑞𝑞+1

Remark 4-2-2: Using indices, we must solve (𝑚𝑚,𝑦𝑦′) in the following equations for 𝑎𝑎′ ∈ 𝒲𝒲𝑞𝑞
′ :

 𝑎𝑎′ + 𝑚𝑚Π𝑞𝑞′ =
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1

so we will let 𝑐𝑐 = 𝑎𝑎′ − 𝑝𝑝𝑞𝑞+1−3
2

.

Proof: Because Π𝑞𝑞′ and 𝑝𝑝𝑞𝑞+1 are coprime, existence and unicity of the solution are well-known. In [9] we
introduced the concept of normalizer of such a Diophantine equation, and have shown its additive and
multiplicative property.

Clearly if 𝑐𝑐 ≡ 𝑑𝑑 [𝑝𝑝𝑞𝑞+1] then (𝑚𝑚𝑐𝑐 −𝑚𝑚𝑑𝑑)Π𝑞𝑞′ ≡ 0 �𝑝𝑝𝑞𝑞+1� and as Π𝑞𝑞′ and 𝑝𝑝𝑞𝑞+1 are coprime, 𝑚𝑚𝑐𝑐 ≡
𝑚𝑚𝑑𝑑 �𝑝𝑝𝑞𝑞+1�.

Also, because 0 + 0.Π𝑞𝑞′ = 0.𝑝𝑝𝑞𝑞+1 we deduce that 𝑚𝑚0 = 0.

Then from the fact that 𝑐𝑐1 + Π𝑞𝑞′ ∈ 𝑝𝑝𝑞𝑞+1ℤ we get that 𝑚𝑚𝑐𝑐1 = 1.

Furthermore, for all 𝑐𝑐, by multiplicative property:

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐1 ≡ 𝑚𝑚𝑐𝑐 .𝑚𝑚𝑐𝑐1 ≡ 𝑚𝑚𝑐𝑐 �𝑝𝑝𝑞𝑞+1�

Thus, 𝑐𝑐 ≡ −𝑚𝑚𝑐𝑐Π𝑞𝑞′ ≡ −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐1Π𝑞𝑞
′ ≡ 𝑚𝑚𝑐𝑐𝑐𝑐1 �𝑝𝑝𝑞𝑞+1�.

This proposition gives us an effective way of building all couples (𝑐𝑐,𝑚𝑚𝑐𝑐) modulo 𝑝𝑝𝑞𝑞+1: start from (𝑐𝑐1, 1)
and add it to itself (modulo 𝑝𝑝𝑞𝑞+1) up to 𝑝𝑝𝑞𝑞+1 − 1 times (the last time we will get the couple (0,0 = 𝑚𝑚0)).

Corollary 4-2-2: 𝒲𝒲𝑞𝑞 and 𝒲𝒲𝑞𝑞
′ have ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞

𝑘𝑘=1 elements.

Proof: Let us proceed by induction on 𝑞𝑞. The property is true for 𝑞𝑞 = 0. Assume it is true for a given 𝑞𝑞 ∈
ℕ. From proposition 4-2-1,

𝒲𝒲𝑞𝑞+1
′ = � � �𝒲𝒲𝑞𝑞

′ + 𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1

𝑚𝑚=0

� ∖ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ − 1��.

Thus ⋃ �𝒲𝒲𝑞𝑞
′ + 𝑚𝑚Π𝑞𝑞′ �

𝑝𝑝𝑞𝑞+1−1
𝑚𝑚=0 = ⋃ �𝑐𝑐′ + Π𝑞𝑞′ �0,𝑝𝑝𝑞𝑞+1 − 1��𝑐𝑐′∈𝒲𝒲𝑞𝑞

′ has exactly 𝑝𝑝𝑞𝑞+1 ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1 elements,

from which we must remove the indices of multiples of 𝑝𝑝𝑞𝑞+1. For a given 𝑐𝑐′ ∈ 𝒲𝒲𝑞𝑞
′, from proposition 4-2-

2 there is exactly one couple (𝑚𝑚,𝑦𝑦) such that:

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 32

𝑐𝑐′ + 𝑚𝑚Π𝑞𝑞′ =
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1

i.e. there is only one element of 𝑐𝑐′ + Π𝑞𝑞′ �0,𝑝𝑝𝑞𝑞+1 − 1� in �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ − 1��. So in total

there are exactly ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1 elements in �⋃ (𝒲𝒲𝑞𝑞

′ +𝑚𝑚Π𝑞𝑞′)𝑝𝑝𝑞𝑞+1−1
𝑚𝑚=0 � ∩ �𝑝𝑝𝑞𝑞+1−3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ −

1��, thus �𝑝𝑝𝑞𝑞+1 − 1�∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞
𝑘𝑘=1 = ∏ (𝑝𝑝𝑘𝑘 − 1)𝑞𝑞+1

𝑘𝑘=1 elements in 𝒲𝒲𝑞𝑞+1
′ .

Proposition 4-2-3: 𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒲𝒲𝑞𝑞

′ ∩ ⟦0,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧ verifies the following induction property.

For all 𝑞𝑞 ∈ ℕ,𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 is equal to:

⎝

⎜
⎜
⎛

⎝

⎜⎜
⎛

� �𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚Π𝑞𝑞′ �

min�𝑝𝑝𝑞𝑞+1−1,�𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀
Π𝑞𝑞′

��

𝑚𝑚=0

⎠

⎟⎟
⎞
∖ �

𝑝𝑝𝑞𝑞+1 − 3
2 + 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0, min �𝛱𝛱𝑞𝑞′ − 1, �

2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 3
2𝑝𝑝𝑞𝑞+1

−
1
2���

�

⎠

⎟
⎟
⎞
∩ ⟦0, 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧

Proof: Let 𝑥𝑥 ∈ 𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. From proposition 4-2-1, there exists 𝑐𝑐′ ∈ 𝒲𝒲𝑞𝑞

′, 𝑚𝑚 ∈ �0,𝑝𝑝𝑞𝑞+1 − 1� such that 𝑥𝑥 =

𝑐𝑐′ +𝑚𝑚Π𝑞𝑞′ . But 𝑥𝑥 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 so 𝑚𝑚 ≤ �𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 Π𝑞𝑞′⁄ �. Furthermore, 𝑥𝑥 ∉ �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0,Π𝑞𝑞′ − 1�� so a

fortiori:

𝑥𝑥 ∉ �
𝑝𝑝𝑞𝑞+1 − 3

2
+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �

2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 3
2𝑝𝑝𝑞𝑞+1

−
1
2
����.

Conversely, let 𝑥𝑥 ∈ �⋃ �𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑚𝑚Π𝑞𝑞′ �

min�𝑝𝑝𝑞𝑞+1−1,�𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 Π𝑞𝑞′⁄ ��
𝑚𝑚=0 � ∩ ⟦0,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀⟧ such that 𝑥𝑥 ∉

�𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀−3
2𝑝𝑝𝑞𝑞+1

− 1
2
���� . The first condition means that 𝑥𝑥 ∈ 𝒲𝒲𝑞𝑞+1

′ if

𝑥𝑥 ∉ �𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦 ∈ �0,Π𝑞𝑞′ − 1��. But if that were the case, there would be 𝑦𝑦′ ∈ �1,Π𝑞𝑞′ − 1� such

that 𝑥𝑥 = 𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1. Thus 𝑦𝑦 ≤ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀−(𝑝𝑝𝑞𝑞+1−3) 2⁄
𝑝𝑝𝑞𝑞+1

= 2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀+3
2𝑝𝑝𝑞𝑞+1

− 1
2
, which cannot happen because 𝑥𝑥 ∉

�𝑝𝑝𝑞𝑞+1−3
2

+ 𝑦𝑦′𝑝𝑝𝑞𝑞+1,𝑦𝑦′ ∈ �0, min�𝛱𝛱𝑞𝑞′ − 1, �2𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀+3
2𝑝𝑝𝑞𝑞+1

− 1
2
���� .

4.3 Wheel sieve algorithms
As per sections 4.1 and 4.2, the wheel sieve algorithms will consist in two steps:

(A) A first step where the wheel will always grow, as long as Π𝑞𝑞 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, or:
Π𝑞𝑞′ − 1 < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀,

(B) A second step where we will no longer grow the wheel, but will have to keep eliminating
composite numbers, as long as 𝑝𝑝𝑞𝑞2 < 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, or:

𝑝𝑝𝑞𝑞2 − 3
2

< 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀.

This is equivalent to saying that we replace 𝒲𝒲𝑞𝑞+1 by 𝒲𝒲𝑞𝑞+1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and similarly 𝒲𝒲𝑞𝑞+1

′ by 𝒲𝒲𝑞𝑞+1
′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀. During

step (B) we do not add new pseudo-primes, only remove those that we rule out as multiples of the next
prime. Because Π𝑞𝑞 grows exponentially, there will generally be more iterations in step (B) than in step (A).

Quick description of the steps of the index wheel sieve algorithm (see appendix for full algorithm):

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 33

As for the previous algorithms, we note 𝐿𝐿𝑝𝑝 the list of primes and 𝑖𝑖𝑙𝑙 its number of elements. 𝐼𝐼𝐿𝐿𝑝𝑝 represents
the list of indices of odd primes, and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 the list of indices of squared odd primes. At step 𝑞𝑞, 𝐿𝐿𝑝𝑝 will
contain all primes up to 𝑝𝑝𝑞𝑞2, coming from the wheel 𝒲𝒲𝑞𝑞

′, 𝐼𝐼𝐿𝐿𝑝𝑝 and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 being filled with the corresponding
indices.

1- Intialisation of the sieve for 𝑞𝑞 = 1: 𝐿𝐿𝑝𝑝 = {2,3,5,7}, 𝑖𝑖𝑙𝑙 = 4 𝐼𝐼𝐼𝐼𝑝𝑝 = {0,1,2}, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 = {3,11,23} and
𝒲𝒲1

′ = {1, 2} with Π1′ = 3.
2- While Π𝑞𝑞′ < 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 (step A):

a. We take 𝑝𝑝𝑞𝑞+1 from 𝐿𝐿𝑝𝑝 (or equivalently the first element of 𝒲𝒲𝑞𝑞). The list of pairs (𝑐𝑐,𝑚𝑚𝑐𝑐)
such that 𝑐𝑐 + 𝑚𝑚𝑐𝑐Π𝑞𝑞′ has to be eliminated is then computed, according to proposition 4-
2-2. Then we build the wheel 𝒲𝒲𝑞𝑞+1

′ .
b. Once this is done primes in the interval ⟦𝑝𝑝𝑖𝑖𝑙𝑙−1 + 2,𝑝𝑝𝑞𝑞+12 − 2⟧ are added to 𝐿𝐿𝑝𝑝 and 𝑖𝑖𝑙𝑙, 𝐼𝐼𝐿𝐿𝑝𝑝

and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 are updated accordingly. Indices of the primes to add are those in 𝒲𝒲𝑞𝑞+1
′ ∩

�𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 1, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞) − 1�.
3- While 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞) < 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 (step B):

a. Remove indices of multiples of 𝑝𝑝𝑞𝑞+1 from 𝒲𝒲𝑞𝑞
′𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 to get 𝒲𝒲𝑞𝑞+1

′ 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀.
b. Once this is done primes in the interval ⟦𝑝𝑝𝑖𝑖𝑙𝑙−1 + 2,𝑝𝑝𝑞𝑞+12 − 2⟧ are added to 𝐿𝐿𝑝𝑝 and 𝑖𝑖𝑙𝑙, 𝐼𝐼𝐿𝐿𝑝𝑝

and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 are updated accordingly. Indices of the primes to add are those in 𝒲𝒲𝑞𝑞+1
′ ∩

�𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 1, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞) − 1�.

Remark 4-3-1: Let 𝑘𝑘1 and 𝑘𝑘2 be the indices of two odd numbers, respectively 𝑛𝑛1 and 𝑛𝑛2, such as 𝑛𝑛2 −
𝑛𝑛1 > 0. Let 𝛼𝛼 = 𝑘𝑘2 − 𝑘𝑘1. The difference between the indices 𝑛𝑛12 and 𝑛𝑛22 is:

𝛽𝛽 = 2𝛼𝛼2 + 2𝛼𝛼𝑛𝑛1.

Furthermore, if 𝑚𝑚 is another integer, the difference between the indices of 𝑛𝑛1𝑚𝑚 and 𝑛𝑛2𝑚𝑚 is:

𝛾𝛾 = 𝛼𝛼𝑚𝑚.

Proof: Note that 𝑛𝑛2 − 𝑛𝑛1 = 2𝛼𝛼 and thus:
𝑛𝑛22 − 3

2
−
𝑛𝑛12 − 3

2
=

1
2

(𝑛𝑛2 − 𝑛𝑛1)(𝑛𝑛2 + 𝑛𝑛1) = 𝛼𝛼(𝑛𝑛2 + 𝑛𝑛1) = 𝛼𝛼(2𝑛𝑛1 + 2𝛼𝛼) = 𝛽𝛽.

Similarly:

𝑛𝑛2𝑚𝑚 − 3
2

−
𝑛𝑛1𝑚𝑚 − 3

2
= 𝛼𝛼𝛼𝛼 = 𝛾𝛾.

This last remark is used in steps 2-b. and 3-b. to fill 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 and to perform step 3-a.

Remark 4-3-2: The index wheel sieve involves operations with reduced input size compared with the
number version. This is clear from remark 4-3-1 where 𝛽𝛽 is exactly half of 𝑛𝑛22 − 𝑛𝑛12, for instance. Similarly
Π𝑞𝑞′ is half of Π𝑞𝑞 so modulo operation input is also reduced.

4.4 Performance of algorithms
In this section, we present results from the previous algorithm of index wheel sieve, which we compare
with a similar one on numbers (unspecified for to avoid a lengthy duplication). These results are similar to
those obtained in the previous sections. As for the sieve of Atkin, we did not go for refinements that give

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 34

a better time complexity, so theoretical complexity in terms of number of operations is 𝑂𝑂(𝑁𝑁) for both
algorithms.

On the graph 4-4 below, we plot the computation time in seconds for both algorithms, for 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 up to
6.109. The curve 𝑇𝑇5 corresponds to the the algorithm WheelSieveReference and the curve 𝑇𝑇6 corresponds
to the the algorithm IndexWheelSieve. The correlation coefficient 𝑅𝑅 of each regression is given on the
graph. Details of the Maple options used to get the regression are given in appendix 8.3. We notice that
complexity of both algorithms again seems empirically slightly higher than linear.

Graph 4-4: computation time 𝑻𝑻 (𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds for both algorithms (Wheel sieve)

Complexity is reduced by using indices, due to reduction of input size in the modulo and the multiplication
operations (see Remark 4-3-2) and despite a higher number of operations with the algorithm
IndexWheelSieve. Moreover, the amount of memory space used with indices is halved, due to the fact
that we avoid even numbers completely.

5 Conclusion
In theory, indices are a way to work with odd numbers only by not representing even numbers. Most
mathematical relations must be reformulated for indices, which lead to a higher number of (conversion)
operations, but in return the input size of other operations is reduced. In this article, we have shown how
this indexing translates into optimized algorithms in applied mathematics. From a basic primality test
implementation, to the sieve of Atkin and Pritchard’s wheel sieve, indices speeded up these algorithms,
not by changing their complexity but by reducing the time cost by a constant factor, and generally also
made them more efficient from a memory point of view.

Acknowledgments: We would like to thank François-Xavier VILLEMIN for his attentive comments and
suggestions.

𝑇𝑇6 (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 1.33 × 10−9 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀1.06

𝑅𝑅 = 0.9999

𝑇𝑇5 (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 5.25 × 10−10 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀1.11

𝑅𝑅 = 0.9998

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 35

REFERENCES

[1]. René SCHOOF (2008), Four primality testing algorithms. Algorithmic Number Theory, MSRI
Publications, Volume 44. http://www.math.leidenuniv.nl/~psh/ANTproc/05rene.pdf.

[2]. Manindra AGRAWAL, Neeraj KAYAL, Nitin SAXENA (2004), PRIMES is in P. Ann. of Math. (2) 160,
No. 2, pp. 781-793. MR2123939 (2006a:11170). http://annals.math.princeton.edu/wp-
content/uploads/annals-v160-n2-p12.pdf.

[3]. Paul PRITCHARD (1981), A sublinear additive sieve for finding prime numbers. Communications
of the ACM 24(1), pp. 18-23.
https://dl.acm.org/doi/pdf/10.1145/358527.358540?download=true.

[4]. Paul PRITCHARD (1982), Explaining the Wheel Sieve. Acta Informatica 17, pp. 477-485.
http://fuuu.be/polytech/INFOF404/Doc/Explaining%20the%20wheel%20sieve.pdf.

[5]. Paul PRITCHARD (1994), Improved Incremental Prime Number Sieves. Algorithmic Number
Theory Symposium. pp. 280–288. CiteSeerX 10.1.1.52.835.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.835&rep=rep1&type=pdf.

[6]. Arthur ATKIN AND Daniel BERNSTEIN (2003), Prime sieves using binary quadratic forms.
Mathematics of Computation Volume 73, Number 246, pp. 1023-1030.
https://www.ams.org/journals/mcom/2004-73-246/S0025-5718-03-01501-1/S0025-5718-03-
01501-1.pdf.

[7]. Gabriel PAILLARD, Felipe FRANCA, Christian LAVAULT (2013), A distributed wheel sieve algorithm
using Scheduling by Multiple Edge Reversal. HAL-00794389. https://hal.archives-
ouvertes.fr/hal-00794389.

[8]. Marc WOLF, François WOLF (2018), Representation theorem of composite odd numbers indices.
SCIREA Journal of Mathematics, Vol. 3, pp. 106-117. http://article.scirea.org/pdf/11066.pdf.

[9]. Marc WOLF, François WOLF, Corentin LE COZ (2018), Calculation of extended gcd by
normalization. SCIREA Journal of Mathematics. Vol. 3, pp. 118-131.
http://article.scirea.org/pdf/11067.pdf.

6 APPENDIX: ALGORITHM OF THE INDEX WHEEL SIEVE

This algorithm enumerates odd primes up to the limit 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. It is composed of a main function that is
called IndexWheelSieve and the following auxilliary other functions:

7-2- DiophantineSolutions(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′)
7-3- WheelTurn(𝒲𝒲𝑞𝑞

′ ,𝑞𝑞,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀)
7-4- RemoveMultiples(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝒲𝒲𝑞𝑞

′)
7-5- GetNewPrimes(𝒲𝒲𝑞𝑞

′ ,𝑞𝑞, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝,𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝)

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 36

Some marginal optimizations can still be performed, for instance modulo operations inside a loop can be
replaced by substractions, and memory can be managed better. For the sake of readability we leave these
optimizations out of scope.

Algorithm 6-1 IndexWheelSieve(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀): 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 > 9 is an odd integer.

This function returns the list of all prime numbers up to 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀.

First step : intialisation of variables

𝐿𝐿𝑝𝑝 ← {2, 3,5,7}  Dynamic list of primes

𝑖𝑖𝑙𝑙 ← 4  Number of primes in the list

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 ← (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 − 3) 2⁄  Index of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝐼𝐼𝐼𝐼𝑝𝑝 ← {0,1,2}

𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 ← {3,11,23}

𝒲𝒲𝑞𝑞
′ ← {1, 2}

Π𝑞𝑞′ ← 3

𝑞𝑞 ← 1

Second step : Wheel inflation.

Do

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐿𝐿𝑝𝑝(𝑞𝑞 + 1)

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐼𝐼𝐿𝐿𝑝𝑝(𝑞𝑞)

 Π𝑞𝑞+1′ ← Π𝑞𝑞′ × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

  Compute values of the new wheel from the previous one

 𝒲𝒲𝑞𝑞
′ ←WheelTurn(𝒲𝒲𝑞𝑞

′ ,𝑞𝑞,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀)

 GetNewPrimes(𝒲𝒲𝑞𝑞
′ ,𝑞𝑞, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝)

 Π𝑞𝑞′ ← Π𝑞𝑞+1′

 𝑞𝑞 ← 𝑞𝑞 + 1

While 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 > Π𝑞𝑞′

Third step : Wheel deflation.

While 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝(𝑞𝑞 − 1) < 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐿𝐿𝑝𝑝(𝑞𝑞 + 1)

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞)

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 37

 𝒲𝒲𝑞𝑞
′ ←RemoveMultiples(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝒲𝒲𝑞𝑞

′)

 GetNewPrimes (𝒲𝒲𝑞𝑞
′ ,𝑞𝑞, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝)

 𝑞𝑞 ← 𝑞𝑞 + 1

End While

Return (𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙)

Algorithm 6-2 DiophantineSolutions(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′)

𝑐𝑐1 ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − �Π𝑞𝑞′ mod 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  Solution such that 𝑚𝑚 = 1

𝑐𝑐 ← 0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← {0 … 0}  Array of size 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

For 𝑚𝑚 = 1 To 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 1 Do

 𝑐𝑐 ← (𝑐𝑐 + 𝑐𝑐1) mod 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐) ← 𝑚𝑚

End For

Return 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Algorithm 6-3 WheelTurn(𝒲𝒲𝑞𝑞
′ ,𝑞𝑞,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′ ,𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀)

This function computes 𝒲𝒲𝑞𝑞+1
′ by duplicating the wheel 𝒲𝒲𝑞𝑞

′ and removing indices of multiples of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑝𝑝𝑞𝑞+1.

First step : Compute all the pairs (𝑐𝑐,𝑚𝑚𝑐𝑐) in the function DiophantineSolutions

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← DiophantineSolutions(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,Π𝑞𝑞′)

Second step : Iteration

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ← Size(𝒲𝒲𝑞𝑞
′)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← Range({},𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

For 𝑗𝑗 = 0 To 𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 1 Do

 𝑎𝑎′ ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗)

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 38

 𝑐𝑐 ← (𝑎𝑎′ − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) mod 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 𝑚𝑚 ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐)

 For 𝑦𝑦 = 0 To 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 1 Do

 𝑛𝑛 ← 𝑎𝑎′ + 𝑦𝑦Π𝑞𝑞′

 If 𝑛𝑛 > 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 Do

 Break

 End If

 If 𝑦𝑦 ≠ 𝑚𝑚 Do

 Append(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑦𝑦),𝑛𝑛)

 End If

 End For

End For

Third step : Build 𝒲𝒲𝑞𝑞+1
′ by concatenation

𝒲𝒲𝑞𝑞+1
′ ← {}

For 𝑦𝑦 = 0 To 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 1 Do

 Concatenate(𝒲𝒲𝑞𝑞+1
′ ,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑦𝑦))

End For

Return 𝒲𝒲𝑞𝑞+1
′

Algorithm 6-4 RemoveMultiples(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝒲𝒲𝑞𝑞
′)

𝒲𝒲𝑞𝑞+1
′ ← {}

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

For 𝑗𝑗 = 1 To Size(𝒲𝒲𝑞𝑞
′)−1 Do

 If 𝓦𝓦𝑞𝑞
′ (𝑗𝑗) > 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Do

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 𝑗𝑗 ← 𝑗𝑗 − 1

 Else If 𝓦𝓦𝑞𝑞
′ (𝑗𝑗) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Do

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 Else

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 39

 Append(𝒲𝒲𝑞𝑞+1
′ ,𝓦𝓦𝑞𝑞

′ (𝑗𝑗))

 End If

End For

Return 𝒲𝒲𝑞𝑞+1
′

Algorithm 6-5 GetNewPrimes(𝒲𝒲𝑞𝑞
′ ,𝑞𝑞, 𝐿𝐿𝑝𝑝, 𝑖𝑖𝑙𝑙 , 𝐼𝐼𝐿𝐿𝑝𝑝,𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝)

This function adds new primes to the list 𝐿𝐿𝑝𝑝 and updates 𝑖𝑖𝑙𝑙 and the other lists 𝐼𝐼𝐿𝐿𝑝𝑝 and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 (all passed by
reference).

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑞𝑞 + 1)

𝑗𝑗 ← 𝑖𝑖𝑙𝑙 − 𝑞𝑞 − 2  Offset to take into account already known primes

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗)

While 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Do

 𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 𝛼𝛼 ← 𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) − 𝐼𝐼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2)

 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) ← 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 2) + 2𝛼𝛼2 + 2𝛼𝛼𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1)

 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙) ← 𝐿𝐿𝑝𝑝(𝑖𝑖𝑙𝑙 − 1) + 2𝛼𝛼

 𝑖𝑖𝑙𝑙 ← 𝑖𝑖𝑙𝑙 + 1

 𝑗𝑗 ← 𝑗𝑗 + 1

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝒲𝒲𝑞𝑞
′(𝑗𝑗)

End While

7 APPENDIXES: MAPLE REGRESSIONS

Here are numeric values obtained from our implementation (Visual Studio C++ 2012) of the algorithms
presented in this article.

7.1 BASIC PRIMALITY TEST AND PRIMES ENUMERATION

In table 8.1, numeric values of 𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) are obtained respectively from the
PrimeEnumeration and IndexPrimeEnumeration algorithms.

WOLF Marc, WOLF François.; Primality Test and Primes Enumeration using Odd Numbers Indexation, Transactions
on Machine Learning and Artificial Intelligence, Volume 8 No 2 April, (2020); pp: 11-41

URL: http://dx.doi.org/10.14738/tmlai.82.8054 40

Table 2: numeric values of 𝑻𝑻𝟏𝟏(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟐𝟐(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds.

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 107 108 5 × 108 109 2 × 109 3 × 109 4 × 109

𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 2.403 56.031 493.163 1306.884 3414.713 6271.249 8908.814

𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 2.375 54.725 487.568 1275.921 3329.573 6105.386 8664.438

To fit these observations, Maple’s NonlinearFit function is used with the parameters below. Initial values
for 𝑎𝑎 and 𝑏𝑏 were determined empirically.
NonlinearFit(𝑎𝑎 × 𝑛𝑛𝑏𝑏/ ln(𝑛𝑛), X, Y, n, initialvalues = [𝑎𝑎 = 5.9 × 10−9, 𝑏𝑏 = 1.41],

output = [leastsquaresfunction, residuals])

We get the following mathematical relationships:

𝑇𝑇1(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 5.79409775129480 × 10−9 × 𝑛𝑛1.40966993452829

ln(𝑛𝑛)
, 𝑅𝑅 = .99962000

𝑇𝑇2(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 6.10602965467609 × 10−9 × 𝑛𝑛1.406040046365699

𝑙𝑙𝑙𝑙(𝑛𝑛)
, 𝑅𝑅 = .99962009

7.2 THE SIEVE OF ATKIN

In table 8.2, numeric values of 𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) are obtained respectively from the SieveOfAtkin
and IndexSieveOfAtkin algorithms.

Table 3: numeric values of 𝑻𝑻𝟑𝟑(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟒𝟒(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds.

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 108 5 × 108 109 1.5 × 109 1.6 × 109 2 × 109 3 × 109

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.719 3.797 8.033 12.48 13.967 18.843 28.217

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.727 3.921 8.225 12.152 12.953 16.507 25.342

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 4 × 109 5 × 109 6 × 109 7 × 109 8 × 109 9 × 109 1010

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 41.534 54.871 72.044 84.511 100.727 116.093 133.184

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 35.27 46.261 57.418 70.311 84.291 98.047 110.96

This time we used Maple’s function Fit as below:

Fit(𝑎𝑎 × 𝑛𝑛2 + 𝑏𝑏 × 𝑛𝑛, X, Y, 𝑛𝑛, summarize = embed)
We get the following mathematical relationships:

𝑇𝑇3(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 4.90268369826396 × 10−19 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀2 + 8.54576412559177 × 10−9 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑅𝑅 =
.999647

𝑇𝑇4(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 3.78795281632082 × 10−19 × 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀2 + 7.39595089422000 × 10−9 ×𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀,

𝑅𝑅 = .999926

http://dx.doi.org/10.14738/tmlai.82.8054

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 8 , Issue 2, Apr i l 2020

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 41

7.3 WHEEL SIEVE WITH INDICES

In table 4, numeric values of 𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) are obtained respectively from the
WheelSieveReference and IndexWheelSieve algorithms.

Table 4 : numeric values of 𝑻𝑻𝟓𝟓(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) and 𝑻𝑻𝟔𝟔(𝑵𝑵𝑴𝑴𝑴𝑴𝑴𝑴) in seconds.

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 107 108 5 × 108 109 2 × 109 3 × 109 4 × 109 5 × 109 6 × 109

𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.071 0.496 2.783 5.407 10.931 17.070 23.944 31.150 37.501

𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) 0.064 0.457 2.657 4.936 9.995 15.121 20.995 26.260 32.351

We used again NonlinearFit with empirically determined initial values 𝑎𝑎 and 𝑏𝑏:

NonlinearFit(𝑎𝑎 × 𝑛𝑛𝑏𝑏, X, Y, n, initialvalues = [𝑎𝑎 = 1.97461115539853 × 10−6, 𝑏𝑏 =
 1.1], output = [leastsquaresfunction, residuals]).

We get the following mathematical relationships:

𝑇𝑇5(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 5.25118782575365 × 10−10 × 𝑛𝑛1.11016647384427, 𝑅𝑅 = .99982444

𝑇𝑇6(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) ≃ 1.33020583039257 × 10−9 × 𝑛𝑛1.06187203820827, 𝑅𝑅 = .99986693

	Primality Test and Primes Enumeration using Odd Numbers Indexation
	Abstract
	1 Introduction
	1.1 Primality test and prime enumeration
	1.2 Notation

	2 Basic primality test and primes enumeration
	2.1 Two families of infinite sequences with arithmetic difference
	2.2 Basic primality test
	2.3 Primality test with indices
	2.4 First algorithms of prime enumeration
	2.4.1 Primality test using numbers
	2.4.2 Primality test using infinite sequences and indices

	2.5 Performance of the algorithms

	3 The sieve of Atkin
	3.1 Atkin algorithm
	3.2 Atkin algorithm with indices
	3.3 Performance of algorithms

	4 Wheel sieve with indices
	4.1 Description of Pritchard’s wheel sieve
	4.2 Index wheel sieve
	4.3 Wheel sieve algorithms
	4.4 Performance of algorithms

	5 Conclusion
	References
	6 Appendix: algorithm of the index wheel sieve
	7 APPENDIXES: Maple regressions
	7.1 Basic primality test and primes enumeration
	7.2 The sieve of Atkin
	7.3 Wheel sieve with indices

