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ABSTRACT 

The class imbalance problem is widespread in Data Mining and it can reduce the general performance of 
a classification model. Many techniques have been proposed in order to overcome it, thanks to which a 
model able to handling rare events can be trained. The methodology presented in this paper, called 
Controlled Over-Sampling Method (COSM), includes a controller model able to reject new synthetic 
elements for which there is no certainty of belonging to the minority class. It combines the common 
Machine Learning method for holdout with an oversampling algorithm, for example the classic SMOTE 
algorithm. The proposal explained and designed here represents a guideline for the application of 
oversampling algorithms, but also a brief overview on techniques for overcoming the problem of the 
unbalanced class in Data Mining.  

Keywords: Class imbalance problem; Data Mining; Holdout Method; Oversampling; Rare Class Mining; 
Undersampling. 

1 Introduction  
In many real application fields, the discovery and modeling of rare events is crucial for understanding 
complex phenomena [1]. For example, rare weather conditions, if not forecasted, can be very dangerous 
for the population, housing, air traffic, and so on; unauthorized and fraudulent use of a credit card must 
be detected as soon as possible; an unidentified cyberattack is very dangerous for companies, causing 
huge economic losses. Sometimes such events are so diluted in the database that the Data Mining 
algorithms used for training analytical models fail to characterize them: such events are exchanged as 
noise [2]; if these events constitute a class value (+), the trained model could always give the same answer 
(-), ignoring the minority class. The main problem with class imbalance states is that standard models are 
often biased towards the majority class.  

In Data Mining this condition is called class imbalance problem and it occurs when one of the two classes 
(in the binary case) has many more samples than the other class. What “many more” means is not clearly 
quantifiable and depends on the case. Most of the time, being able to train a model capable of classifying 
rare events, in conditions of high class imbalance, is an impossible goal, unless ad hoc strategies are first 
adopted. This problem is one of the main problem that degrades the performance of classification models 
[3] [4]. Various techniques have been proposed in order to solve the problem of class imbalance, including 
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over-sampling of the minority class or under-sampling of the majority one. Another widely used approach 
is focused on the cost-sensitive learning techniques included in meta-learning approaches [5]. These 
techniques take the misclassification cost in its account by assigning higher cost of misclassifications to 
the minority class, penalizing the correct classifications to the majority class, and generating the model 
with lowest cost. 

In this paper, a design of a methodology for oversampling is proposed. By using an oversampling 
technique, the minority class is oversampled by taking each minority class sample and adding new 
synthetic records by applying various strategies that are deepened and compared. The method is called 
Controlled Over-sampling Methodology (COSM) because a classification model – the controller – is 
created that can check if the new synthetic examples really belong to the minority class. The controller 
assists the entire sampling procedure, eventually rejecting the misclassified examples. 

Various aspects of the proposed method are also considered, including its relationship with the holdout 
method. 

2 Holdout Method 
The holdout method [6] is a very common strategy in Data Mining, mainly aimed at providing a useful 
scheme for datasets split and design, in order to train a model and evaluate its performances. 

2.1 Basic Holdout 
The whole dataset is randomly partitioned into two disjoint sets, called training and test sets. It is common 
to hold out one-third of data for testing and use the remaining two-third for training, but other 
proportions are possible, depending on the amount of data and other factors discussed later in the paper. 

This simple subdivision does not take into consideration the distribution of the target class. In spite of the 
random partitioning, the two subsets could have very different distributions of the target class. In order 
to overcome this unlikely event, the training and test sets must not only be obtained randomly but they 
must be also stratified, so that the class distribution of the records in each set is approximately the same 
as that in the initial dataset. 

This subdivision scheme can be enriched by considering a further subset of the training set, called 
validation set. More in detail, the validation set is used to select the algorithm parameters and then 
choose the model with the best performance metrics. This step is essential to mitigate the overfitting 
problem [7] [8]. Also in this case, the subdivision is random, can be stratified, and the subdivision 
percentages can vary, or be the same as the first splitting. 

 

Figure 1. The general holdout method schema 

Figure. 1 shows the framework of the complete holdout method. To recap: 
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• 𝑆𝑆 is the dataset with all the records; it can be subpart of a much larger database; this set has 
undergone all the preparation steps: for example, possible selection, cleaning and normalization 
of data, selection and extraction of features if useful, and any other operations on the data.  

• 𝐴𝐴 is the intermediate Training set, starting from which the final training is obtained.  
• 𝐵𝐵 is the final Training set; a model, for example a classifier, is built on this set by applying mainly 

a statistical or a Machine Learning algorithm.  
• 𝑉𝑉 is the Validation set; it is useful to tune and select the parameters (or hyper-parameters) of the 

algorithm chosen for training the model. In other words, 𝑉𝑉 is used to compare the performances 
of all the trained models and decide which one to take.  

• 𝑇𝑇 is the Test set; the model is then tested on this set; 𝑇𝑇 is used to obtain the performance metrics, 
such as accuracy, sensitivity, specificity, AUC, F-measure, and so on; moreover, 𝑇𝑇 is useful to 
understand if the model is overfitted. Generally, 𝑇𝑇∪𝐴𝐴=𝑆𝑆.  

The holdout method is not recommended when working with small datasets. In these cases, some 
variations may be applied to avoid that the dataset subdivisions can further reduce the number of data 
for the training and test phases.  

2.2 Some Variations on the Theme: k-Fold Cross-Validation  
The holdout method is the simplest kind of cross-validation method; the latter represents a more general 
method. In this approach, also called k-fold cross-validation, the original dataset is randomly partitioned 
into 𝑘𝑘 (generally 𝑘𝑘=10) equal sized subsamples. For each of 𝑘𝑘 experiments, 𝑘𝑘−1 folds are used for the 
training phase and the remaining one for testing phase. This procedure is repeated 𝑘𝑘 times. The error 
estimates are averaged to yield an overall error estimate, as well as the other performance metrics. 𝑘𝑘-
fold cross-validation seems to give better approximations of generalization than the holdout method [6] 
[8].  

In some uses of the method described, such as when the multi-division of holdout reduces the number of 
records in the training set too much, a mixed approach between holdout and 𝑘𝑘-fold cross-validation can 
be applied. In few words, the training set is not further subdivided into validation (𝑉𝑉), but the model is 
trained on Training set (𝐴𝐴) with the 𝑘𝑘-fold cross-validation method: we can say that the model is cross-
validated. Finally, as usual, it is tested on the test set (𝑇𝑇) in order to calculate the performances of model.  

3 Class Imbalance Problem  
The class imbalance problem consists in a skewed distribution of instances that belong to different classes; 
because class distribution plays a key role in Data Mining and Machine Learning classification task, this 
problem can compromise the training phase and the performance of the classification model.  

3.1 Examples in Real Datasets  
In many real world applications, datasets suffer the problem of the class imbalance. In these situations, 
discovering instances of rare class is “akin to finding a needle in a haystack”. Furthermore, a model able 
to describe the minority class tends to be highly specialized, and this condition is not desired because a 
good model is a model that is able to generalize, otherwise the model goes into overfitting. However, 
most Data Mining algorithms do not work very well with imbalanced datasets [8].  

Briefly, a dataset is affected by the unbalanced class problem when one of the classes has many more 
samples than the other ones. The most of machine learning algorithms is more focusing on classification 
of samples belonging to the majority class while ignoring or misclassifying samples of the minority one. 
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For example, if the target class has only two values (binary class case) “0” and “1”, and if the distribution 
is 99.9% of “1” and 0.01% of ”0“, a classifier that always says ”1“ is a very accurate model, because it never 
exhibits a false ”0“ and has a very low percentage (precisely the 0.01%) of false “1”.  

There exist many case studies that do not have a balanced data set. Some examples are:  

• Discovery of fake news;  
• Distinction among earthquakes, nuclear and non-nuclear explosions;  
• Document selection and filtering;  
• Forecast of extreme weather conditions;  
• Recognition of fraudulent telephone calls.  

 

3.2 Strategies to Handle Imbalanced Datasets  
As mentioned above, imbalance datasets can degrade the performance of a model that has been trained 
by applying a data driven technique; the Machine Learning algorithms lead to misclassifying the minority 
class records or treated them as noise. Even if the evaluation metric is changed, it is hard for the model 
to be accurate on the minority class, or that the chosen metric has a good result.  

Many techniques have been proposed in order to overcome the problem of learning models on an 
unbalanced class. They can be categorized into three main categories: re-sampling [8], cost-sensitive 
learning [9] [10], and ensemble-based methods [11]. Some of them are summarized in Table 1. 
Nevertheless, the choice of the strategy to be followed strictly depends on the data and on the learning 
algorithm, and there is no absolute advantageous technique.  

Strategies for overcoming the problem of the unbalanced class can be natively incorporated into the 
learning algorithm for training a classifier. 

Table1. Techniques for Imbalanced Problem 

 

3.3 SMOTE and ADASYN  
Synthetic Minority Over-sampling Technique (SMOTE) [13] is an oversampling method able to create new 
artificial examples of minority class based on the similarity among the existing elements. SMOTE is the 
most used algorithm for oversampling, and there are numerous variants of it [28] [29] [30].  



Gaetano Zazzaro; COSM: Controlled Over-Sampling Method. A Methodological Proposal to Overcome the Class 
Imbalance Problem in Data Mining, Transactions on Machine Learning and Artificial Intelligence, Volume 8 No 2 
April, (2020); pp: 42-51 

 

URL: http://dx.doi.org/10.14738/tmlai.82.7925       46 
 

Let 𝑥𝑥𝑖𝑖 be a record belonging to the minority class, 𝑥𝑥𝑖̂𝑖 one of the 𝑘𝑘-nearest neighbors of 𝑥𝑥𝑖𝑖, and 𝛿𝛿𝑖𝑖 a random 
number belonging to [0,1]. A new synthetic example of the minority class is calculated as: 
𝑥𝑥𝑛𝑛𝑒𝑒𝑒𝑒=𝑥𝑥𝑖𝑖+(𝑥𝑥𝑖̂𝑖−𝑥𝑥𝑖𝑖)∙𝛿𝛿𝑖𝑖  

The new 𝑥𝑥 belongs to the line between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖̂𝑖.  

The main shortcoming of SMOTE is the problem of overgeneralization. SMOTE’s algorithm does not regard 
to the majority class and, in the case of highly skewed class distributions, a harmful mixture of the classes 
is obtained.  

However, SMOTE yields among the best results as far as re-sampling and modifying the probabilistic 
estimate techniques go [31].  

Another very common oversampling algorithm is Adaptive Synthetic (ADASYN) sampling procedure [14]. 
Its key idea is, in few words, to automatically find the number of synthetic observations to be generated 
for each observation belonging to the rare class by using a density distribution function. The number of 
synthetic samples, generated for each observation of the minority class, is determined by the percentage 
of samples belonging to the majority class in its neighborhood. The steps of the ADASYN are:  

• Calculate the ratio of minority to majority examples using 𝑑𝑑=𝑚𝑚𝑠𝑠𝑚𝑚𝑙𝑙, where 𝑚𝑚𝑠𝑠 and 𝑚𝑚𝑙𝑙 are the 
number of minority and majority class examples respectively. 𝑑𝑑 is the Degree of Imbalance.  

• Calculate the total number of synthetic minority data to generate, by using 𝐺𝐺=𝛽𝛽∙(𝑚𝑚𝑙𝑙−𝑚𝑚𝑠𝑠); 𝐺𝐺 is 
the total number of minority class data to generate. 𝛽𝛽 is the ratio of minority: majority data 
desired after ADASYN. 𝛽𝛽=1 means a perfectly balance between two classes after ADASYN.  

• For each 𝑥𝑥𝑖𝑖 of the minority samples, find its 𝑘𝑘-nearest neighbors and calculate the ratio 𝑟𝑟𝑖𝑖=Δ𝑖𝑖𝑘𝑘, 
where Δ𝑖𝑖 is the number of majority class examples.  

• Normalize the 𝑟𝑟𝑖𝑖 values: 𝑟𝑟𝑖̂𝑖=𝑟𝑟𝑖𝑖Σ𝑟𝑟𝑖𝑖, and Σ𝑟𝑟𝑖̂𝑖=1.  
• Calculate the amount of new synthetic examples to generate in each neighborhood: 𝐺𝐺𝑖𝑖=𝐺𝐺𝐺𝐺𝑖̂𝑖.  
• Generate 𝐺𝐺𝑖𝑖 new data for each neighborhood, taking 𝑥𝑥𝑖𝑖. Select in random manner another 

minority example 𝑥𝑥𝑧𝑧𝑧𝑧 within the same neighborhood. The new synthetic example can be 
calculated by using:  

 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛=𝑥𝑥𝑖𝑖+(𝑥𝑥𝑧𝑧𝑧𝑧−𝑥𝑥𝑖𝑖)∙𝛿𝛿 

where 𝛿𝛿 is a random number belonging to [0,1], 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑧𝑧𝑧𝑧 are two minority examples within a same 
neighborhood.  

4 COSM Framework  
One of the main disadvantages of the methods for oversampling is that the synthetic examples may not 
have the minority label or that they could never occur in the real world. 

COSM is a general framework for the application of oversampling algorithms. Its main strength is the 
controller model 𝐶𝐶, trained using an undersampling technique ℳ and a machine learning algorithm; 
furthermore, 𝐶𝐶 is tested on an independent set, which has the same class distribution as the original 
dataset, and which is also used to test the final classifier ℱ.  

4.1 General Description  
Figure 2 shows the framework of COSM. COSM can be entirely employed, for example, by using the 
operators, filters and algorithms of the WEKA open source software [32] [33]. 
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Figure 2. The complete schema of the subdivision of the dataset in COSM.  

The Data Preparation step of CRISP-DM methodology [34] for the knowledge discovery in large database 
process covers all activities needed to build the final dataset from the raw data. After this phase, the full 
prepared and imbalanced dataset 𝑆𝑆 is splitted into test set (𝑇𝑇) and training set 1 (𝐴𝐴), in accordance with 
the holdout method. 𝑇𝑇 has the same distribution of the class target of 𝑆𝑆 by applying a stratified filter, and 
𝑇𝑇 is, for example, the 34% of 𝑆𝑆.  

The set 𝐵𝐵 is obtained by randomly undersampling the set 𝐴𝐴. 𝐵𝐵 has the same number of records tagged 
with (+) and (-)  

Since the undersampling technique can lead to a loss of information, in a more advanced way, the random 
removal of minority class records (+) can be replaced by applying a “bootstrap” (“bagging”) approach [35]. 
In a nutshell, the set 𝐴𝐴 is subdivided into N subsets, in which the elements of the minority class (+) are all 
fixed, while the records of the majority class (-) are randomly sampled with replacement in a number 
equal to records tagged with minority class (+). In this way, each of the N subsets is balanced, the elements 
tagged with “+” do not vary, and may have records tagged with “-” in common. In a formal way:  

𝐵𝐵𝑖𝑖=𝐷𝐷∪𝑅𝑅𝑖𝑖 (𝑖𝑖=1,…,N)  
where 𝐷𝐷={𝑥𝑥∈𝐴𝐴:𝑥𝑥 ℎ𝑎𝑎𝑎𝑎 "+" 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐} and |𝐷𝐷|=𝑚𝑚  
𝑅𝑅𝑖𝑖={𝑥𝑥∈𝐴𝐴:𝑥𝑥 ℎ𝑎𝑎𝑎𝑎 "−" 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}, |𝑅𝑅𝑖𝑖|=𝑚𝑚,∀𝑖𝑖=1,…,N  
𝐵𝐵=⋃𝐵𝐵𝑖𝑖𝑖𝑖=1,…,𝑁𝑁 

The model 𝐶𝐶 (Figure 3), called controller, is an ensemble [36] of 𝑁𝑁 classifiers 𝐶𝐶𝑖𝑖 (𝑖𝑖=1,…,𝑁𝑁). Each 𝐶𝐶𝑖𝑖 is a 
cross-validated classifier trained on a different balanced set 𝐵𝐵𝑖𝑖. Moreover, each 𝐶𝐶𝑖𝑖 is trained by a different 
learning algorithm. Finally, the class can be obtained by taking a majority vote on the individual predictions 
of the 𝐶𝐶𝑖𝑖 base classifier 
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Figure 3. Combine classifiers in the ensemble schema of COSM 

Additionally, 𝐶𝐶 is tested on the set 𝑇𝑇, by calculating the metrics of the Table 2, based on confusion matrix 
[8].  

The COSM procedure proceeds by considering the subset 𝐷𝐷 of 𝐴𝐴 consisting of only the 𝑚𝑚 elements of the 
minority class (𝐷𝐷={𝑥𝑥∈𝐴𝐴:𝑥𝑥 ℎ𝑎𝑎𝑎𝑎 "+" 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}), and by applying an oversampling technique ℳ to 𝐷𝐷 in order 
to create a set (𝑀𝑀2) of new synthetic minority class examples.  

𝑀𝑀1 is the set of all the minority class examples, including the new synthetic ones (𝑀𝑀2=𝑀𝑀1−𝐷𝐷). The 
number of elements of 𝑀𝑀2 depends on ℳ and its parameters.  

The controller model 𝐶𝐶 is applied on the new set 𝑀𝑀2 in order to reject the examples that are misclassified 
by 𝐶𝐶: these elements are false positives according to classifier 𝐶𝐶. 

Table 2. Classification Performance Evaluation Metrics 

 

Finally, 𝑊𝑊 is the subset of 𝑀𝑀2 well classified by 𝐶𝐶: it is made up of non-rejected elements. And 𝐸𝐸=𝐴𝐴∪𝑊𝑊 is 
the new extended training set, which is the training set for the final classification model ℱ and which is 
tested on the test set 𝑇𝑇. The performances of ℱ on 𝑇𝑇 can be compared with the performances of 𝐶𝐶 on 𝑇𝑇.  

5 Conclusion  
Overcoming the problem of the unbalanced class depends on numerous elements. It depends on 
complexity of the data, severity of class imbalance, size of data and classifier involved. The framework 
designed here can be applied independently of the Machine Learning algorithm or the selected 
oversampling technique.  

COSM needs to be tried and tested, especially to define a strategy for selecting the following its 
parameters:  

• the percentage of 𝑆𝑆 to get the test set 𝑇𝑇;  
• the algorithm to obtain the controller model 𝐶𝐶 trained on set 𝐵𝐵;  
• the oversampling technique ℳ;  
• the algorithm to obtain the final classifier trained on the set 𝐸𝐸.  
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As mentioned above, COSM can be entirely employed, for example, by using WEKA software. The paper 
describes the design of the methodology, while its implementation with all the experimental tests will be 
addressed in a future work.  
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