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Abstract

The occurrence of censored data due to less than detectable measurements
is a common problem with environmental data such as quality and quantity
monitoring applications of water, soil, and air samples. The log-normal distri-
bution is one of the most common distributions used for modeling skewed and
positive data. Over the past decades, various methods for comparing the pa-
rameters of two lognormal distributions in the presence censored data have been
proposed. Some of them are differing in terms of how the statistic test adjust
to accept or to reject the null hypothesis. As a model distribution of measured
environmental and/or biomedical data, log-normal distribution is considered.
Logmormal means can be compared either by confidence intervals or hypothe-
sis testing procedures. In this article, a new test procedure for comparing the
means of k (k >= 3) lognormal distributions in the presence of left-censored
data is introduced and evaluated. Asymptotic chi-square test is used in the
proposed test procedure. A simulation study was performed to examine the
power and the size of the proposed test procedure introduced in this article
utilizing a computer program written in the R language. We find analytically
that the considered test procedure is doing well through comparing the size and
power of the statistic test.
Key words: multiple detection limits, left censored data, normal and lognor-
mal distributions, maximum likelihood estimators, expectation maximization
algorithm, likelihood ratio test.

1 Introduction

Left-censored data commonly arise in environmental contexts. Left-censored ob-
servations (observations reported as leass than a detection limit DL can occur when
the substance or attribute being measured is either absent or exists at such low con-
centrations that the substance is not present above the DL. Data sets containing
left-censored observations are referred to as left-censored data. In many environmen-
tal applications the distribution of variables such as concentration, inhalation, diges-
tion, and consumption rates are positive and skewed to the right. Hence, censored
observations occur between zero and DL. In some instances a log transformation can
provide a more natural scale to analyze such measurements. Many environmental
data sets are characterized by a small number of high concentrations and a large



number of low concentrations and are often right-skewed (Shumway et al., 1989).
The log-normal distribution is positively skewed and hence can incorporate the few
unusually high measurements of such environmental data in its long right-hand tail.
For this reason the log-normal distribution is often applied to environmental data
(Gilbert, 1987). While analyzing environmental and exposure data, a very common
phenomenon is the occurrence of non-detects, i.e., observations below an analytical
detection limit (DL), resulting in Type I singly left censored samples. Detection limit
is the lowest concentration level that can be determined to be statistically different
from a blank. The presence of observations below the DL significantly complicates
the data analysis. Faced with such data, several strategies have been recommended
for data analysis. One approach consists of replacing the below DL values with a
constant such as DL

2
, and using methods available for complete samples. It is easy

to demonstrate that the conclusions resulting from this routine practice can be seri-
ously imperfect; in fact, the conclusions may depend on the substitution value used
for replacing sample values below the DL. In general, censoring means that obser-
vations at one or both tails are not available. Left-censored data commonly arise
in environmental contexts. Left-censored data (data reported as less than detection
limit) can occur when the substance or attribute being measured is either absent or
exists at such low concentrations that the substance is not present above the DL
level. Data sets containing left-censored observations are referred to as left-censored
data. A sample is multiply censored if there are several detection limits. When more
than two distinct detection limits DL1, DL2 , ..., DLmc (mc ≥ 3) are reported, the
data are said to be multiply-left-censored. Samples to be considered in this paper are
those that are Type I multiple-left-censored. Suppose that a sample of n data points
is given of which m data points are non-censored (fully measured), and the remaining
mc = n−m observations are left-censored with multiple detection limits DL1, DL2,
..., DLmc . In such Type I censored samples detection limits are fixed, whereas m and
mc are random. It is common to have environmental data contains detection limits.
Multiple censoring commonly occurs with environmental data because detection lim-
its can change over time (e.g., because of analytical improvements), or detection limits
can depend on the type of sample or the background matrix. Millard and Deverel
(1988) give three possible causes for multiple censoring on the left when measuring
the concentration of zinc in shallow groundwater. First, there may be more than
one method available, and each method may be optimal in different ranges of zinc
concentration. A second cause involves the amount of dilution that a lab technician
may use. Note that the detection limit depends on the number of dilutions. A third
cause may be decreasing detection limits over time as the measurement technique
improves. In many environmental applications the distribution of variables such as
chemical concentration, inhalation, digestion, and consumption rates are positive and
skewed to the right. Hence, censored observations occur between zero and DL. In
some instances a log transformation can provide a more natural scale to analyze such
measurements.



Nondetect values can cause an especially difficult problem when the goal is to
compare k(k ≥ 3) different populations. There has been a great deal of literature on
the subject of the statistical inference of the parameters of normal and log-normal
populations from both fully measured and censored data. Gupta and Li (2006) devel-
oped a score test for testing the equality of the means of two independent log-normal
populations from fully measured data. Zhou et al (1997) considered two methods for
comparing the means of two independent log-normal non-censored samples. Harris
(1991) considered two parametric and two non-parametric methods for testing the
equality of medians of two independent log-normal distributions when some data are
left-censored. Paul and Gary (2007) compare the performance of several methods
for statistically analyzing censored data sets when estimating the 95th percentile and
the mean of right-skewed occupational exposure data. Krishnamoorthy et al (2014)
proposed tests and confidence intervals for the ratio of the two means of two log-
normal distributions, based on pivotal quantities involving the maximum likelihood
estimators. Other suggested methods for comparing the means of two log-normal
distributions are discussed in Krishnamoorthy et al (2014, 2011, 2007, 2006, 2003).
Some of these methods are based on the generalized p-value and generalized con-
fidence intervals, and others are based on the generalized test variable. Aboueissa
(2015) introduced a test procedure for comparing the means of two independent log-
normal populations when data is singly censored. Abdollahnezhad et al (2012) intro-
duced a new method of test for comparing the means of two log- normal populations
through the generalized measure of evidence to have against the null hypothesis.
Prentice (1978) developed linear rank tests with right censored data. Millard and
Deverel (1988) adapted several existing right censored non-parametric procedure so
that they can be used in environmental setting with left-censored data. Methods
for the estimation of the log-normal parameters for one-sample cases where there
may exist left-censored data are discussed by El-Shaarawi (1989). Stoline (1993)
extended results first suggested by Harris (1991) and proposed a procedure for com-
paring medians of two independent log-normal distributions where some data may be
left-censored. Stoline (1993)used the Expectation Maximization (EM) algorithm in-
troduced by Dempster et al. (1977) to calculate the maximum likelihood estimates of
population parameters µ and σ. Other suggested methods for estimating population
parameters from censored samples are discussed in Marco (2005), Jin et al (2011),
Gibbons (1994), Gleit (1985), El-Shaarawi and Esterby (1992), Elshaarawi and Dolan
(1989), Gilbert (1987), Stavros (2004) and Schneider (1986).

The purpose of this paper is to develop a parametric procedure to test the equal-
ity of k (k ≥ 3) lognormal distribution means when data are multiply left-censored.
This procedure may be used to compare the concentration of a pollutant in shallow
groundwater among k ≥ 3 geological zones found in different geographical areas. For
example, the pollutant may be copper in low concentrations (micrograms per liter



of water) in different geographical areas that have different types of soil. The EM
algorithm will be used to obtain the maximum likelihood estimates of population
parameters under different hypotheses. A simulation study was performed to inspect
the size and the power of the proposed test procedure. To facilitate the application
of this procedure, a computer program is written in the R language which calculates
the maximum likelihood estimates, and asymptotic chi-square test statistics and their
p-values.

2 Assumptions and Notations

Assume that there exists k random samples of ni data values: yi1, yi2, ..., yimi
,

yimi+1, ..., yini
taken from k independent log-normal populations LN(µi, σi) for i =

1, 2, ..., k. Where LN(µ, σ) denotes a log-normally distributed variable y with the
probability density function

f(y; µ, σ) =
1

y σ
√

2π
e−

(log y−µ)2

2σ2 , for y > 0,

where −∞ < µ < ∞ and σ > 0. For convenience, for each sample i let us assume
that the first mi observations yi1, yi2, ..., yimi

are non-censored (fully measured) and
the remaining mci

= ni − mi observations are left-censored for i = 1, 2, ..., k. For
left censored observations, it is assumed that for each sample i it is only known that
yij < LDLij for j = mi + 1, ..., ni (or j = 1, 2, ...,mci

) and i = 1, 2, ..., k. The
parameters for the ith log-normal population can be expressed as functions of the
parameters µi and σi as:

mean: µyi
= eµi+

σ2
i
2

medain: Myi
= eµi

variance: σ2
yi

= γi(γi − 1) e2µi

skewness: syi
= (γi + 2)

√
(γi − 1)

where γi = eσ2
i for i = 1, 2, ..., k.

Let

xij =

{
log(yij) , for i = 1, 2, ..., k and j = 1, 2, ...,mi,

DLij = log(LDLij) , for i = 1, 2, ..., k and j = mi + 1, mi + 2, ..., ni.

where LDLij are the detection limits in the ith log-normal sample and mi + mci
= ni

and j = mi + 1, mi + 2, ..., ni for i = 1, 2, ..., k.



To simplify the presentation in this paper, the analysis is described and illustrated
by reference to the analysis of normally distributed data, though this condition occurs
infrequently in typical environmental data analysis. However, it is frequently neces-
sary to transform real environmental data before analysis; typically the logarithmic
transformation of xij = log(yij) is used, although other transformations are possi-
ble. When the logarithmic or other transformation is used prior to censored data set
analysis, it is necessary to transform the analysis results back to the original scale of
measurement following parameter estimation. For each sample i let

x̄mi
=

1

mi

mi∑
j=1

xij , and s2
mi

=
1

mi

mi∑
j=1

(xij − x̄mi
)2

be the sample mean and sample variance of the mi non-censored observations xi1, xi2, ...,
ximi

, for i = 1, 2, ..., k. Let the functions φ(.) and Φ(.) be the pdf and cdf of the stan-
dard unit normal. Define

Φ(ξij) =

∫ ξij

−∞
φ(t)dt , where ξij =

DLij − µi

σi

,

for i = 1, 2, ..., k and j = mi + 1, mi + 2, ..., ni.

We also define

W (x) =
φ(x)

Φ(x)
and zij =

xij − µi

σi

for i = 1, 2, ..., k and j = 1, 2, ...,mi.

The likelihood function of the samples under consideration is given by:

L(µ1, µ2, ..., µk;σ1, σ2, ..., σk) =
k∏

i=1

(
mi∏
j=1

1

σi

√
2π

e
− 1

2
(

xij−µi
σi

)2
ni∏

j=mi+1

P (xij < DLij)

)

=
k∏

i=1

(
mi∏
j=1

1

σi

1√
2π

e
− 1

k
(

xij−µi
σi

)2
ni∏

j=mi+1

P (
xij − µi

σi

<
DLij − µi

σi

)

)

=
k∏

i=1

(
mi∏
j=1

1

σi

1√
2π

e
− 1

2
(

xij−µi
σi

)2
ni∏

j=mi+1

P (Z <
DLij − µi

σi

)

)
which can be written as

L(µ1, µ2, ..., µk; σ1, σ2, ..., σk) =
k∏

i=1

[
mi∏
j=1

1

σi

φ

(
xij − µi

σi

) ni∏
j=mi+1

Φ

(
DLij − µi

σi

)]

=
k∏

i=1

[
mi∏
j=1

1

σi

φ (zij)

ni∏
j=mi+1

Φ (ξij)

]
(2.1)



where

zij =
xij − µi

σi

and ξij =
DLij − µi

σi

for i = 1, 2, ..., k and j = mi + 1, ..., ni.

Four hypotheses are possible:

H0N : µ1 = µ2 = ... = µk = µ and σ1 = σ2 = ... = σk = σ ; (overall homogeneity).

HA1N : µi 6= µj and σi 6= σj for all i 6= j ; (overall heterogeneity),

HA2N : µi 6= µj and σ1 = σ2 = ... = σk = σ for all i 6= j ; (mean heterogeneity,

variance homogeneity),

HA3N : µ1 = µ2 = ... = µk = µ and σi 6= σj for all i 6= j ; (mean homogeneity,

variance heterogeneity)

The k log-normal population means are confirmed equal whenever no evidence was
available to reject the null hypothesis H0LN : µy1 = µy2 = ... = µyk

in favor of the
alternative hypothesis HALN : µy1 6= µy2 6= ... 6= µyk

. Equivalently the k log-normal
population means are confirmed equal whenever the null hypothesis H0N is accepted
in favor of one of the hypotheses HA1N , HA2N or HA3N .

Two tests are considered in this article. Test 1: H0N versus HA1N , overall homogene-
ity versus overall heterogeneity, and Test 2: H0N versus HA2N , overall homogeneity
versus mean heterogeneity and variance homogeneity. The other tests HA2N versus
HA1N and HA3N versus HA1N can be similarly derived and computed.

3 Maximum Likelihood Estimates of Population Parameters

In this section the maximum likelihood estimates of population parameters µi and
σi, for i = 1 and 2, are derived under each of the hypotheses H0N , HA1N and HA2N .
The derivations of these estimates are now described.

3.1 Maximum Likelihood Estimates under H0N

Under the hypothesis H0N , xij, for i = 1, 2, ..., k and j = 1, 2, ..., ni, are assumed to
be normally distributed with mean µ and standard deviation σ. That is, it is assumed
that there exists a random sample of n = n1 + n2 + ... + nk data values taken from a
normal population with mean µ and standard deviation σ. For convenience, for each
sample i let us assume that the first mi observations xi1, xi2, ..., ximi

are non-censored



(fully measured) and the remaining mci
= ni −mi observations are left-censored for

i = 1, 2, ..., k. For left censored observations, it is assumed that for each sample i it is
only known that xij < DLij for j = mi+1, ..., ni (or j = 1, 2, ...,mci

) and i = 1, 2, ..., k.

The likelihood function LH0N
(µ, σ) under H0N is given by:

LH0N
(µ, σ) =

k∏
i=1

(
σ−mi(

1√
2π

)mi e−
1
2

Pmi
j=1(

xij−µ

σ
)

ni∏
j=mi+1

Φ

(
DLij − µ

σ

))
(3.1)

Hence, the corresponding log-likelihood function `H0N
(µ, σ) = log(LH0N

(µ, σ)) of (3.1)
is given by:

`H0N
(µ, σ) =

k∑
i=1

(
−mi log σ + mi log(

1√
2π

)− 1

2

mi∑
j=1

(
xij − µ

σ
)

)

+
k∑

i=1

ni∑
j=mi+1

log

(
Φ

(
DLij − µ

σ

)) (3.2)

For convenience, define h = mc

n
, hi =

mci

n
, and

mci

m
= hi

1−h
, for i = 1, 2, ..., k. For the

pooled sample let

x̄m =
1

m

k∑
i=1

m∑
j=1

xij , and s2
m =

1

m

k∑
i=1

mi∑
j=1

(xij − x̄m)2

be the sample mean and sample variance of the m =
∑k

i=1 mi non-censored observa-
tions, respectively.

The maximum likelihood estimates µ̂ and σ̂ of µ and σ are the solutions to equations
(3.3) and (3.4), the partial derivatives for the log-likelihood equation with respect to
µ and σ:

∂`
H0N

(µ, σ)

∂µ
=

k∑
i=1

mi∑
j=1

(
xij − µ

σ
)−

k∑
i=1

ni∑
j=mi+1

W (ξij) = 0 (3.3)

∂`
H0N

(µ, σ)

∂σ
= −m +

k∑
i=1

mi∑
j=1

(
xij − µ

σ
)2 −

k∑
i=1

ni∑
j=mi+1

W (ξij) ξij = 0 (3.4)

where m =
∑k

i=1 mi , W (ξij) =
φ(ξij)

Φ(ξij)
and ξij =

DLij−µ

σ
.

The expectation maximization (EM) algorithm will be used iteratively to obtain the
solutions µ̂ and σ̂ to the maximum likelihood equations (3.3) and (3.4). The EM
algorithm was proposed by Dempster et. al. (1977) for calculating the maximum



likelihood estimated from censored samples. The procedure consists of alternately
estimating the censored observations from the current parameter estimates and es-
timating the parameters from the actual and estimated observations. The EM al-
gorithm can be used to calculate the maximum likelihood estimates for the mean µ
and standard deviation σ of a normal distribution from both singly- and multiply-
censored samples. A brief description for the EM algorithm is given here.

At step 0 of the EM algorithm all non-censored observations are used to calculate the
initial estimates of µ and σ as follows:

µ̂0 = x̄m =
1

m

k∑
i=1

m∑
j=1

xij , and σ̂2
0 = s2

m =
1

m

k∑
i=1

mi∑
j=1

(xij − x̄m)2

Let µ̂s and σ̂s be the maximum likelihood estimates of µ and σ at step s of this
procedure. At step s + 1, each censored observation xij (where i = 1, 2, ..., k; j =

mi + 1, 2, ..., ni) is replaced by an estimate of µ̂s − σ̂sW (
DLij−µ̂s

σ̂s
).

Let the values uij be calculated at step s + 1 as follows:

uij =


xij , for i = 1, 2, ..., k and j = 1, ...,mi

µ̂s − σ̂sW (
DLij−µ̂s

σ̂s
) for i = 1, 2, ..., k and j = mi + 1, ..., ni

So the updated estimates µ̂s+1 and σ̂s+1 of µ and σ are given by

µ̂s+1 =

∑k
i=1

∑mi

j=1 uij +
∑k

i=1

∑ni

j=mi+1 uij

n

and

σ̂2
s+1 =

∑k
i=1

∑mi

j=1(uij − µ̂s+1)
2 +

∑k
i=1

∑ni

j=mi+1(uij − µ̂s+1)
2∑k

i=1 mi +
∑k

i=1

∑ni

j=mi+1 γ(
uij−µ̂s

σ̂s
)

where the function γ(t) is defined as:

γ(t) = W (t)(W (t) + t) and W (t) =
φ(t)

Φ(t)

More details about the EM algorithm procedure can be found in Wolynetz (1979).
Convergence is achieved if both |µ̂s − µ̂s+1| < 0.00001 and |σ̂s − σ̂s+1| < 0.00001
occur. When these convergence criteria are met, the maximum likelihood estimates
for µ and σ are then given by µ̂ = µ̂s and σ̂ = σ̂s, respectively.



3.2 Maximum Likelihood Estimates under HA1N

Under the hypothesis HA1N xij are assumed to be normally distributed with mean
µi and standard deviation σi, for i = 1, 2, ..., k and j = 1, 2, ..., ni. Thus the likelihood
function under HA1N is given by:

LHA1N
(µ1, µ2, ..., µk; σ1, σ2, ..., σk) =

k∏
i=1

(
(

1√
2π

)mi(σi)
−mi e

− 1
2

Pmi
j=1(

xij−µi
σi

)2
)

.

k∏
i=1

(
ni∏

j=mi+1

Φ

(
DLij − µi

σi

)) (3.5)

Hence, the corresponding log-likelihood function `HA1N
(µ1, µ2, ..., µk; σ1, σ2, ..., σk) of

(3.5) which is defined as log(LHA1N
(µ1, µ2, ..., µk; σ1, σ2, ..., σk)) is given by:

`
HA1N

(µ1, µ2, ..., µk;σ1, σ2, ..., σk) =
k∑

i=1

−mi

2
log(2π) +

k∑
i=1

−mi log σi

− 1

2

k∑
i=1

mi∑
j=1

(
xij − µi

σi

)2

+
k∑

i=1

ni∑
j=mi+1

log Φ

(
DLij − µi

σi

) (3.6)

The maximum likelihood estimates µ̂i and σ̂i of µi and σi are the solutions to equations
(3.7) and (3.8) for i = 1, 2, ..., k.

∂`
HA1N

(µi, σi)

∂µi

=

mi∑
j=1

(
xij − µi

σi

)
−

ni∑
j=mi+1

W (ξij) = 0 (3.7)

∂`
HA1N

(µi, σi)

∂σi

=

mi∑
j=1

(
xij − µi

σi

)2

−mi −
ni∑

j=mi+1

W (ξij) ξij = 0 (3.8)

where W (ξij) =
φ(DLij)

Φ(DLiij)
and ξij =

DLij−µi

σi
for i = 1, 2, ..., k.

The single sample EM algorithm estimation method can be used to obtain the max-
imum likelihood estimates µ̂i and σ̂i of µi and σi for i = 1, 2, ..., k as follows. At step
0 of the EM algorithm all non-censored observations are used to calculate the initial
estimates of µi and σi for i = 1, 2, ..., k as follows:

µ̂i0 = x̄mi
=

1

mi

mi∑
j=1

xij , and σ̂2
i0 = s2

mi
=

1

mi

mi∑
j=1

(xij − x̄mi
)2

For i = 1, 2, ..., k let µ̂is and σ̂is be the maximum likelihood estimates of µi and σi

at step s of this procedure. At step s + 1, each censored observation xij (where i =



1, 2, ..., k; and j = mi + 1, ..., ni) is replaced by an estimate of µ̂is − σ̂isW (
DLij−µ̂is

σ̂is
).

Let the values tij be calculated at step s + 1 as follows:

tij =


xij , for i = 1, 2, ...., k and j = 1, ...,mi

µ̂is − σ̂isW (
DLij−µ̂is

σ̂is
) for i = 1, 2, ..., k and j = mi + 1, ..., ni

So for i = 1, 2, ..., k the updated estimates µ̂is+1 and σ̂is+1 of µi and σi are given by

µ̂is+1 =

∑mi

j=1 tij +
∑ni

j=mi+1 tij

ni

and

σ̂2
is+1 =

∑mi

j=1(tij − µ̂is+1)
2 +

∑ni

j=mi+1(tij − µ̂is+1)
2

mi +
∑ni

j=mi+1 γ(
tij−µ̂is

σ̂is
)

where the function γ(v) is defined as:

γ(v) = W (v)(W (v) + v) and W (v) =
φ(v)

Φ(v)

For i = 1, 2, ..., k, convergence is achieved if |µ̂is− µ̂is+1| < 0.00001, and |σ̂is− σ̂is+1| <
0.00001 occur. When these convergence criteria are met, the maximum likelihood es-
timates for µi and σi are then given by µ̂i = µ̂is and σ̂i = σ̂is, respectively.

3.3 Maximum Likelihood Estimates under HA2N

Under the hypothesis HA2N xij are assumed to be normally distributed with mean
µi and standard deviation σ, for i = 1, 2, ..., k and j = 1, 2, ..., ni. Thus the likelihood
function under HA2N is given by:

LHA2N
(µ1, µ2, ..., µk; σ) =

k∏
i=1

(
(

1√
2π

)mi(σ)−mi e−
1
2

Pmi
j=1(

xij−µi
σ

)2
)

k∏
i=1

(
ni∏

j=mi+1

Φ

(
DLij − µi

σ

)) (3.9)



Hence, the corresponding log-likelihood function `HA2N
(µ1, µ2, ..., µk; σ) of (3.9) which

is defined as log(LHA2N
(µ1, µ2, ..., µk; σ)) is given by:

`
HA2N

(µ1, µ2, ...,µk; σ) =
k∑

i=1

−mi

2
log(2π) +

k∑
i=1

−mi log σ

− 1

2

k∑
i=1

mi∑
j=1

(
xij − µi

σ

)2

+
k∑

i=1

ni∑
j=mi+1

log Φ

(
DLij − µi

σ

) (3.10)

For i = 1, 2, ..., k the maximum likelihood estimates µ̂i and σ̂ of µi and σ are the
solutions to equations (3.11)-(3.12).

∂`
HA2N

(µ1, µ2, ..., µk; σ)

∂µi

=

mi∑
j=1

(
xij − µi

σ

)
−

ni∑
j=m1+1

W (ξij) = 0 (3.11)

∂`
HA2N

(µ1, µ2, ..., µk; σ)

∂σ
=

k∑
1=1

mi∑
j=1

(
xij − µi

σ

)2

−m−
k∑

1=1

ni∑
j=mi+1

W (ξij) ξij = 0

(3.12)

where m = m1 + m2 + ... + mk, W (ξij) =
φ(DLij)

Φ(DLij)
and ξij =

DLij−µi

σ
for i = 1, 2, ..., k

and j = mi + 1, 2, ..., ni.

The expectation maximization (EM) algorithm will be used iteratively to obtain
the solutions µ̂i, and σ̂ to the maximum likelihood equations (3.11) and (3.12), for
i = 1, 2, ..., k. At step 0 of the EM algorithm all non-censored observations are used
to calculate the initial estimates of µi and σ as follows:

µ̂i0 = x̄mi
=

1

mi

mi∑
j=1

xij fori = 1, 2, ..., k,

and

σ̂2
0 = s2

m =
1

m

k∑
i=1

mi∑
j=1

(xij − µ̂0)
2

where

µ̂0 =
m1µ̂10 + m2µ̂20 + ... + mkµ̂k0

m1 + m2 + ... + mk

Let µ̂is and σ̂s be the maximum likelihood estimates of µi and σ at step s of this
procedure for i = 1, 2, ..., k. At step s + 1, each censored observation xij (where

i = 1, 2, ..., k; j = mi + 1, 2, ..., ni) is replaced by an estimate of µ̂is − σ̂sW (
DLij−µ̂is

σ̂s
).



Let the values vij be calculated at step s + 1 as follows:

vij =


xij , for i = 1, 2, ..., k and j = 1, ...,mi

µ̂is − σ̂sW (
DLij−µ̂is

σ̂s
) for i = 1, 2, ..., k and j = mi + 1, ..., ni

So the updated estimates µ̂is+1 and σ̂s+1 of µi and σ are given by

µ̂is+1 =

∑mi

j=1 vij

mi

fori = 1, 2, ..., k,

and

σ̂2
s+1 =

∑k
i=1

∑mi

j=1(vij − µ̂is+1)
2∑k

i=1 mi +
∑k

i=1

∑ni

j=mi+1 γ(
vij−µ̂is

σ̂s
)

where the function γ(t) is defined as:

γ(t) = W (t)(W (t) + t) and W (t) =
φ(t)

Φ(t)

For i = 1, 2, ..., k convergence is achieved if |µ̂is − µ̂is+1| < 0.00001 and |σ̂s − σ̂s+1| <
0.00001 occur. When these convergence criteria are met, the maximum likelihood
estimates for µi and σ are then given by µ̂i = µ̂is and σ̂ = σ̂s, respectively.

4 Asymptotic Chi-Square Test

The estimated log-likelihood functions ˆ̀
H0N

, ˆ̀
HA1N

and ˆ̀
HA2N

under the hypothe-
ses H0N (overall homogeneity), HA1N (overall heterogeneity) and HA2N (mean het-
erogeneity, variance homogeneity), respectively; are obtained by replacing population
parameters by their maximum likelihood estimates. Therefore from (3.2), (3.6) and
(3.10) we get:

ˆ̀
H0N

(µ̂, σ̂) =
k∑

i=1

(
−mi log σ̂ + mi log(

1√
2π

)− 1

2

mi∑
j=1

(
xij − µ̂

σ̂
)

)

+
k∑

i=1

ni∑
j=mi+1

log

(
Φ

(
DLij − µ̂

σ̂

))
,

(4.1)



ˆ̀
HA1N

(µ̂1, µ̂2, ..., µ̂k; σ̂1, σ̂2, ..., σ̂k) =
k∑

i=1

−mi

2
log(2π) +

k∑
i=1

−mi log σ̂i

− 1

2

k∑
i=1

mi∑
j=1

(
xij − µ̂i

σ̂i

)2

+
k∑

i=1

ni∑
j=mi+1

log Φ

(
DLij − µ̂i

σ̂i

)
,

(4.2)
and

ˆ̀
HA2N

(µ̂1, µ̂2, ..., µ̂k; σ̂) =
k∑

i=1

−mi

2
log(2π) +

k∑
i=1

−mi log σ̂

− 1

2

k∑
i=1

mi∑
j=1

(
xij − µ̂i

σ̂

)2

+
k∑

i=1

ni∑
j=mi+1

log Φ

(
DLij − µ̂i

σ̂

)
,

(4.3)

In general, the asymptotic α−level chi-square test used to test the null hypothesis
H0 : θ = 0 versus the alternative hypothesis Ha : θ 6= 0 is defined by

χ2
0 = −2(ˆ̀

H0
(θ̂0)− ˆ̀

HA1N
(θ̂a)) > χ2

(α,df) ,

where χ2
0 has a chi-square distribution with degrees of freedom df , which is defined by

the number of free parameters under the alternative hypothesis Ha minus the number
of free parameters under the null hypothesis H0, and χ2

(α,df) is the upper α-point value
obtained from the chi-square table with degrees of freedom df .

The asymptotic α−level chi-square tests used in both Test 1: H0N versus HA1N , over-
all homogeneity versus overall heterogeneity, and Test 2: H0N versus HA2N , overall
homogeneity versus mean heterogeneity and variance homogeneity are now described.

Test 1: Overall Homogeneity versus Overall Heterogeneity

H0N : µ1 = µ2 = ... = µk = µ and σ1 = σ2 = ... = σk = σ

versus

HA1N : µ1 6= µ2 6= ... 6= µk and σ1 6= σ2 6= ... 6= σk

The asymptotic α−level chi-square test to test the null hypothesis H0N versus the
alternative hypotheses HA1N is defined by:

χ2
0A1 = −2(ˆ̀

H0N
− ˆ̀

HA1N
) > χ2

[α,2(k−1)] (4.4)

where χ2
(α,2) is the upper α−point for a chi-square random variable with 2 degrees of



freedom. The p-value of this test statistic is defined by:

p− value = P (χ2
[2(k−)] > χ2

0A1). (4.5)

Thus in this case the null hypothesis will be rejected if χ2
0A1 > χ2

[α,2(k−1)] or equiva-
lently if p− value < α.

Test 2: Overall Homogeneity versus Mean Heterogeneity and Variance Homogeneity

H0N : µ1 = µ2 = ... = µk = µ and σ1 = σ2 = ... = σk = σ

versus

HA2N : µ1 6= µ2 6= ... 6= µk and σ1 = σ2 = ... = σk = σ

The asymptotic α−level chi-square test to test the null hypothesis H0N versus the
alternative hypotheses HA12N is defined by:

χ2
0A2 = −2(ˆ̀

H0N
− ˆ̀

HA2N
) > χ2

[α,k−1] (4.6)

where χ2
[α,k−1] is the upper α−point for a chi-square random variable with k−1 degrees

of freedom. The p-value of this test statistic is defined by:

p− value = P (χ2
[k−1] > χ2

0A2). (4.7)

Thus in this case the null hypothesis will be rejected if χ2
0A2 > χ2

[α,k−1] or equivalently
if p− value < α.

Computer Programs: To facilitate the application of the test procedure and
parameter estimation method described in this article, a computer program called
”K.Lognormal.Estimation” is written in the R language to automate parameters
estimation from multiply left-censored data sets that are normally or log-normally
distributed and to obtain the estimated values of the log-likelihood functions under
the null and the alternative hypotheses . In addition, this computer program will
be used to obtain the asymptotic α−level chi-square test statistic and its p-value. A
Copy of the source code is given in the Appendix section and is available upon request.

For the sake of simplicity, in the remaining part of this article Test 1 (H0N versus
HA1N) will be considered. Test 2 can be easily programmed and computed.

5 Example:

The following data sets are simulated from a lognormal distribution with mean
µ = 3 and standard deviation σ = 1. Data are given in Table 1. Each data set is



Table 1: Three Simulated Data Sets of size n = 50 from a Lognormal Distribution
with Mean µ = 3 and standard deviation σ = 1

19 6 1 24 17 76 16 22 19 73 43 30 14 3 34 82 13

Data 1 10 13 11 1 36 3 73 3 69 26 29 13 42 16 31 46 19
23 4 57 6 36 21 18 15 9 15 88 72 5 102 13 15
115 27 8 56 133 65 28 45 30 4 7 3 46 3 21 12 77

Data 2 18 15 10 5 57 10 7 56 114 21 24 9 25 36 140 12 7
16 19 36 6 45 97 124 32 21 30 64 5 14 19 17 47
23 23 18 33 21 94 80 7 77 5 4 40 102 114 43 8 4

Data 3 14 25 42 11 9 59 10 122 25 24 58 8 7 59 20 6 8
46 33 37 45 18 56 33 30 15 2 12 12 37 44 112 87

artificially censored at the 10th, 20th and 30th quantiles. Table 2 contains the cen-
sored data sets and censored indicators (0 = noncensored, 1 = censored). The first
data set contains three distinct detection limits 4, 10 and 13, and has censoring level
of 24%. The second data set contains three distinct detection limits 6, 9 and 13, and
has censoring level of 30%. The third data set contains three distinct detection limits
7, 9 and 13, and has censoring level of 30%. Accordingly, the pooled data contains
six distinct detection limits 4, 6, 7, 9, 10 and 13, and has censoring level of 28%.

Table 3 contains estimates of the normal and log-normal population parameters.
The p-value results associated with the application of the recommended asymptotic
chi-square test to the simulated censored data presented are also included in Table
3. The p-value of testing the null hypothesis H0N : µ1 = µ2 = µ3 and σ1 = σ2 = σ3

versus the alternative hypothesis HA1N : µ1 6= µ2 6= µ3 and σ1 6= σ2 6= σ3 is 0.8834.
Therefore the hypothesis of equal normal (lognormal) parameters is accepted at sig-
nificance level of α = 0.05.

6 Simulation Study

In this simulation study, type I error rates and power of the test procedure in-
troduced in this article are investigated. A computer program was written in the R
language for this purpose. For each combination of the population parameters µ1 ,
µ2, µ3, σ1, σ2 and σ3 described below, two sample size cases were considered: in case
one, n1 = n2 = n3 = 25 and in the second case, n1 = n2 = n3 = 75. The first case will
be referred to as the small sample size case and the second as the large sample size
case. Censoring at three different detection limits was used in each simulated sample.
The simulation study was performed with 10,000 repetitions (N = 10, 000) of sample
normal distributions for each combinations of n, µ1 , µ2, µ3, σ1, σ2, σ3, and censoring
levels. Simulated data were artificially censored twice at the 10th, 20th, 30th,and at
30th, 40th, and 50th percentiles as shown in Tables 4 and 5. In order to check the
Type I error, the population parameters were specified as µ1 = µ2 = µ3 = 0, and



Table 2: The Three Simulated Data Sets Artificially Censored at 10th, 20th and 30th
quantiles

Data Set 1 Data Set 2 Data Set 3
y1 cenc1 y1 cenc1 y2 cenc2 y2 cenc2 y3 cenc3 y3 cenc3
19 0 10 1 115 0 27 0 23 0 23 0
4 1 24 0 9 1 56 0 18 0 33 0
17 0 76 0 133 0 65 0 21 0 94 0
16 0 22 0 28 0 45 0 80 0 9 1
19 0 73 0 30 0 6 1 77 0 7 1
43 0 30 0 9 1 6 10 7 1 40 0
14 0 4 1 46 0 6 1 102 0 114 0
34 0 82 0 21 0 13 1 43 0 9 1
13 0 13 1 77 0 18 0 7 1 14 0
13 0 13 1 15 0 13 1 25 0 42 0
4 1 36 0 6 1 57 0 13 1 13 1
4 1 73 0 13 1 9 1 59 0 13 1
4 1 69 0 56 0 114 0 122 0 25 0
26 0 29 0 21 0 24 0 24 0 58 01
13 0 42 0 13 1 25 0 9 1 9 1
16 0 31 0 36 0 140 0 59 0 20 0
46 0 19 0 13 1 9 1 7 1 9 1
23 0 10 1 16 0 19 0 46 0 33 0
57 0 10 1 36 0 9 1 37 0 45 0
36 0 21 0 45 0 97 0 18 0 56 0
18 0 15 0 124 0 32 0 33 0 30 0
10 1 15 0 21 0 30 0 15 0 7 1
88 0 72 0 64 0 6 1 13 1 13 1
10 1 102 0 14 0 19 0 37 0 44 0
13 0 15 0 17 0 47 0 112 0 87 0

σ1 = σ2 = σ3 = 1 as shown in Table 4. In order to check the power, the population
parameters were specified as µ1 = −1.0(0.1)− 0.1, µ2 = 0, µ3 = 0.1(0.1)1.0, σ1 = 1 ,
σ2 = 1.1(0.1)2.0, and σ3 = 1.2(0.2)3.0 as shown in Table 5.

The following observations and conclusions are made from an examination of the sim-
ulation results reported in Tables 4 and 5.

From Table 4, one can see that the estimated simulated Type I error rates are slightly
higher than 0.05 (0.0534, 0.0516) for the small sample size case, and slightly less than
0.05 (0.0482, 0.0469) for the large sample size case. The censoring levels do not seem
to affect the value of Type I error rate, α.

From Table 5, one can see that the estimated simulated power is higher for large
sample size case than the small sample size case, and slightly higher for the lower



Table 3: Estimates of normal and log-normal parameter values from the simulated data
given in Table 2

H0N HA1N

Pooled Data Data 1 Data 2 Data 3

Estimations of Normal Parameters

µ̂0 = 2.9805

σ̂0 = 1.1516

µ̂1 = 2.8857

σ̂1 = 1.0733

µ̂2 = 2.9981

σ̂2 = 1.2131

µ̂3 = 3.0585

σ̂3 = 1.1559

Estimations of Lognormal Parameters

µ̂y1 = 31.8707

M̂y1 = 17.9161

σ̂y1 = 46.8881

Ŝy1 = 7.5979

µ̂y2 = 41.8422

M̂y2 = 20.0474

σ̂y2 = 76.6552

Ŝy2 = 11.6447

µ̂y3 = 41.5357

M̂y3 = 21.2956

σ̂y3 = 69.5545

Ŝy3 = 9.7196

µ̂y0 = 38.2289

M̂y0 = 19.6977

σ̂y0 = 63.5869

Ŝy0 = 9.5918

The Asymptotic Chi-square Test: χ2
0 (P-value)

1.1678 (0.8834)

level of censoring. Specifically, in the small sample size case with h1 = 10%, h2 =
20%andh3 = 30%; and (h1 = 30%, h2 = 40%andh3 = 50%) censoring levels we reach
a power of 0.9998 (0.9981) for the values of µ1 = −1.0, µ2 = 0.0 and µ3 = 1.0, and
the values of σ1 = 1, σ2 = 2 and σ3 = 3.0. Alternatively, in the large sample size
case with censoring levels h1 = 10%, h2 = 20%andh3 = 30% we reach a power above
0.99 for the values of µ1 = −0.4, µ2 = 0.0 and µ3 = 0.4, and the values of σ1 = 1.0,
σ2 = 1.4 and σ3 = 1.8 and a power of 1.0 for the values of µ1 = −0.6, µ2 = 0.0 and
µ3 = 0.6, and the values of σ1 = 1.0, σ2 = 1.6 and σ3 = 2.2; while with censoring
levels h1 = 30%, h2 = 40%andh3 = 50% we reach a power above 0.99 for the values of
µ1 = −0.5, µ2 = 0.0 and µ3 = 0.5, and the values of σ1 = 1.0, σ2 = 1.5 and σ3 = 2.0
and a power of 1.0 for the values of µ1 = −0.7, µ2 = 0.0 and µ3 = 0.7, and the values
of σ1 = 1.0, σ2 = 1.7 and σ3 = 2.4.

In summary, the test procedure introduced in this article maintains its stated sig-
nificance level and has much power with larger sample size and a bit less power with
greater censoring levels. In addition, the power decreases when the censoring levels
moves from 0.10, 0.20, and0.30 to 0.30, 0.40and0.50. Also, the power increases greatly
when the sample size moves from the order of 25 to the order of 75.



Table 4: The Estimated Simulated Type I Error Rates: µ1 = µ2 = µ3 = 0 and σ1 = σ2 =
σ3 = 1

Sample Size Censoring Level Estimated α

Small (n = 25) 10% , 20% , 30% 0.0534

Small (n = 25) 30% , 40% , 50% 0.0516

Large (n = 75) 10% , 20% , 30% 0.0482

Large (n = 75) 30% , 40% , 50% 0.0469

7 Conclusions and Remarks

The k-sample lognormal model provides an alternative to the nonparameteric
models for testing the equality of the parameters of k(k ≥ 3) independent log-normal
populations in environmental settings. The lognormal model provide additional in-
formation as to the overall homogeneity (σ1 = σ2 = ... = σk) or heterogeneity
(σ1 6= σ2 6= ... 6= σk) of the k lognormal populations, which is important in the
interpretation of the differences among medians. It is well known that the log-normal
distribution is widely used in modelling environmental and biomedical censored data.
This article has dealt with the problem of comparing the parameters of k(k ≥ 3)
independent log-normal populations in the presence of left-censored data. The EM
Algorithm is employed to obtain the maximum likelihood estimates of population
parameters under different hypotheses. A parametric test procedure for testing the
equality of k(k ≥ 3) independent log-normal parameters in the presence of censored
data is presented and evaluated. The performance of the test procedure presented in
this article is evaluated by means of simulation studies. We find analytically that the
considered test procedure is doing well through comparing the size and power statistic
test. To facilitate the application of the new test procedure a computer program is
written in the R languages. I hope that my paper would be useful to the researchers
who are considering log-normal distribution in their analysis of the left censored data.



Table 5: The Estimated Simulated Power Rates

Small Sample Size (n = 25) Large Sample Size (n = 75)

(µ1, µ2, µ3; σ1, σ2, σ3) Censoring Levels

(10% , 20% , 30%)

Censoring Levels

(30% , 40% , 50%)

Censoring Levels

(10% , 20% , 30%)

Censoring Levels

(30% , 40% , 50%)

(-0.1, 0, 0.1 ; 1, 1.1, 1.2) 0.0165 0.0247 0.1213 0.0647

(-0.2, 0, 0.2 ; 1, 1.2, 1.4) 0.1183 0.0935 0.6074 0.4395

(-0.3, 0, 0.3 ; 1, 1.3, 1.6) 0.3168 0.2665 0.9448 0.8634

(-0.4, 0, 0.4 ; 1, 1.4, 1.8) 0.5437 0.4367 0.9975 0.9897

(-0.5, 0, 0.5 ; 1, 1.5, 2.0) 0.7731 0.6528 0.9995 0.9986

(-0.6, 0, 0.6 ; 1, 1.6, 2.2) 0.8926 0.7846 1.0000 0.9993

(-0.7, 0, 0.7 ; 1, 1.7, 2.4) 0.9573 0.9085 1.0000 1.0000

(-0.8, 0, 0.8 ; 1, 1.8, 2.6) 0.9804 0.9541 1.0000 1.0000

(-0.9, 0, 0.9 ; 1, 1.9, 2.8) 0.9989 0.9872 1.0000 1.0000

(-1.0, 0, 1.0 ; 1, 2.0, 3.0) 0.9998 0.9981 1.0000 1.0000
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Appendix

Computer Programs

The following computer program, ”K.Lognormal.Estimation”, is written in the R
language to automate parameters estimation from left-censored data sets that are
normally or log-normally distributed and to obtain the estimated values of the log-
likelihood functions under the hypotheses H0N and HA1N . In addition, this computer
program will be used to obtain the asymptotic α−level chi-square test statistic and
its p-value.

footnotesize

K.Lognormal.Estimation<-function(data1, data2, data3, kk, NumI,
LogN1, LogN2, LogN3) {

#
# NumI is the number of iterations suggested by users.
# data1 and data2 are matrices containing of two columns each
# the first column is the data set and the second column
# is indicator 0 for uncensored and 1 for censored observations.
# LogN = T if the data are log-normally distributed
# kk is the number of lognormal populations.

n1<-length(data1[,1])



n2<-length(data2[,1])
n3<-length(data3[,1])
table1 <- table(data1[data1[, 2]==1, 1])
DLV1<-as.numeric(dimnames(table1)[[1]])
mcV1<-as.vector(table1)
table2 <- table(data2[data2[, 2]==1, 1])
DLV2<-as.numeric(dimnames(table2)[[1]])
mcV2<-as.vector(table2)
table3 <- table(data3[data3[, 2]==1, 1])
DLV3<-as.numeric(dimnames(table3)[[1]])
mcV3<-as.vector(table3)

if(LogN1==T) data1[,1]<-log(data1[,1]) else data1[,1]<-data1[,1]
if(LogN2==T) data2[,1]<-log(data2[,1]) else data2[,1]<-data2[,1]
if(LogN3==T) data3[,1]<-log(data3[,1]) else data3[,1]<-data3[,1]

datacomb<-rbind(data1,data2,data3)
n<-length(datacomb[,1])
table <- table(datacomb[datacomb[, 2]==1, 1])
DLV<-as.numeric(dimnames(table)[[1]])
mcV<-as.vector(table)
k<-length(mcV)

################### EM Algorithm ###################

EMAmultvect<-function(data, NumI) {
#
# N is the number of iterations suggested by users.
# data is a matrix containing of two columns
# the first column is the data set and the second column
# is indicator 0 for uncensored and 1 for censored obs.
#

n<-length(data[,1])
table <- table(data[data[, 2]==1, 1])
DLV<-as.numeric(dimnames(table)[[1]])

mcV<-as.vector(table)

Xmbar<-tapply(data[,1],list(data[,2]),mean)["0"]
Smsquare<-tapply(data[,1],list(data[,2]),var)["0"]
g<-Smsquare/(Xmbar-(sum(DLV)/2))^2
n<-length(data[,1])
m<-sum(data[,2]==0)
# print(m)

k<-length(DLV)
mc<-numeric(k) # vector of number of censored obs. at each DL.
mc<-numeric(k)
u<-numeric(n)

for(r in 1:k) {
for(i in 1:n) {
if(data[i,1]==DLV[r] && data[i,2]==1)
u[i]<-1
else
u[i]<-0
}



mc[r]<-sum(u)
}
#
# End of this part
#

mu0.hat<-Xmbar
sig0.hat<-Smsquare

muhat<-numeric(NumI)
sighat<-numeric(NumI)
#

w<-matrix(0,n,2)
ww<-matrix(0,n,2)
w[,2]<-data[,2]
ww[,2]<-data[,2]
#

for(i in 1:n) { #b11
if(data[i,2]==1) { #a22
z0<-(data[i,1]-mu0.hat)/sqrt(sig0.hat)
d0<-dnorm(z0)
p0<-pnorm(z0)

wdp0<-d0/p0
w[i,1]<-mu0.hat-(sqrt((sig0.hat))*wdp0)
ww[i,1]<-(wdp0)*(wdp0+z0)

} #a22
else { #e1

w[i,1]<-data[i,1]
ww[i,1]<-data[i,1]
} #e1
muhat[1]<-mean(w[,1])
num0<-sum((w[,1]-muhat[1])^2)
dnum1<-tapply(ww[,1],list(ww[,2]),sum)["1"]
dnum0<-m+dnum1
sighat[1]<-num0/dnum0
} #b11

for(j in 2:NumI) { #a
for(i in 1:n) { #b1
if(data[i,2]==1) { #a2
ze<-(data[i,1]-muhat[j-1])/sqrt(sighat[j-1])
de<-dnorm(ze)
pe<-pnorm(ze)

wdpe<-de/pe
w[i,1]<-muhat[j-1]-(sqrt((sighat[j-1]))*wdpe)
ww[i,1]<-(wdpe)*(wdpe+ze)

} #a2
else { #e2
w[i,1]<-data[i,1]
ww[i,1]<-data[i,1]

} #e2
muhat[j]<-mean(w[,1])
nume<-sum((w[,1]-muhat[j])^2)
dnum2<-tapply(ww[,1],list(ww[,2]),sum)["1"]
dnume<-m+dnum2



sighat[j]<-nume/dnume

} #b1

if(abs(muhat[j]-muhat[(j-1)])<1e-007 && abs(sighat[j]-sighat[(j-1)])
<1e-007) break
muhatf<-muhat[j]

sigsqhatf<-sighat[j]
sighatf<-sqrt(sighat[j])

} #a
musighat<-c(muhatf,sighatf)
musighat
}

MLE.EstimatesPooled<-EMAmultvect(datacomb,20) #### MLEs under
H0N from combined sample (data)

MLE.Estimates1<-EMAmultvect(data1,20) #### MLEs under HA1N
from sample1 (data1)

MLE.Estimates2<-EMAmultvect(data2,20) #### MLEs under HA1N
from sample2 (data2)

MLE.Estimates3<-EMAmultvect(data3,20) #### MLEs under HA1N
from sample2 (data3)

MLE.Estimates<-rbind(MLE.EstimatesPooled,MLE.Estimates1,MLE.Estimates2,
MLE.Estimates3)

datacombest<-numeric(n)

for(i in 1:n){
if(datacomb[i,2]==1) datacombest[i]<-log(pnorm((datacomb[i,1]-
MLE.EstimatesPooled[1])/MLE.EstimatesPooled[2]))

else datacombest[i]<-log((1/MLE.EstimatesPooled[2])*
dnorm((datacomb[i,1]-MLE.EstimatesPooled[1])/
MLE.EstimatesPooled[2]))

}

Loglikelihood.H0<-sum(datacombest)

data1est1<-numeric(n1)

for(i in 1:n1){
if(data1[i,2]==1) data1est1[i]<-log(pnorm((data1[i,1]-
MLE.Estimates1[1])/MLE.Estimates1[2]))

else data1est1[i]<-log((1/MLE.Estimates1[2])*dnorm((data1[i,1]-
MLE.Estimates1[1])/MLE.Estimates1[2]))

}

Loglikelihood.HAdata1<-sum(data1est1)



data1est2<-numeric(n2)

for(i in 1:n2){
if(data2[i,2]==1) data1est2[i]<-log(pnorm((data2[i,1]-
MLE.Estimates2[1])/MLE.Estimates2[2]))

else data1est2[i]<-log((1/MLE.Estimates2[2])*dnorm((data2[i,1]-
MLE.Estimates2[1])/MLE.Estimates2[2]))

}

Loglikelihood.HAdata2<-sum(data1est2)

data1est3<-numeric(n3)
for(i in 1:n3){
if(data3[i,2]==1) data1est3[i]<-log(pnorm((data3[i,1]-
MLE.Estimates3[1])/MLE.Estimates3[2]))

else data1est3[i]<-log((1/MLE.Estimates3[2])*dnorm((data3[i,1]-
MLE.Estimates3[1])/MLE.Estimates3[2]))

}
Loglikelihood.HAdata3<-sum(data1est3)

Loglikelihood.HA<-Loglikelihood.HAdata1 + Loglikelihood.HAdata2 +
Loglikelihood.HAdata3

dfs<-2*(kk-1)
chisquare0<- -2*(Loglikelihood.H0 - Loglikelihood.HA)
p.value<- 1 - pchisq(chisquare0 , dfs)

Test.Result <- c(chisquare0,p.value)

Test.Output<- rbind(MLE.EstimatesPooled,MLE.Estimates1,
MLE.Estimates2,MLE.Estimates3,Test.Result)
Test.Output

As<-matrix(0,5,6)
As[1,1]<-"------"
As[1,2]<-"----------"
As[1,3]<-"----------------"
As[1,4]<-"----------------"
As[1,5]<-"----------"
As[1,6]<-"-------"
As[2,1]<-round(MLE.EstimatesPooled[1], 4)
As[2,2]<-round(MLE.EstimatesPooled[2], 4)
As[2,3]<-round(Loglikelihood.H0, 4)
As[2,4]<-round(Loglikelihood.HA ,4)
As[2,5]<-round(chisquare0, 4)
As[2,6]<-round(p.value, 4)
As[3,1]<-round(MLE.Estimates1[1], 4)
As[3,2]<-round(MLE.Estimates1[2], 4)
As[3,3]<-" "
As[3,4]<-" "
As[3,5]<-" "
As[3,6]<-" "
As[4,1]<-round(MLE.Estimates2[1], 4)
As[4,2]<-round(MLE.Estimates2[2], 4)
As[4,3]<-" "
As[4,4]<-" "



As[4,5]<-" "
As[4,6]<-" "
As[5,1]<-round(MLE.Estimates3[1], 4)
As[5,2]<-round(MLE.Estimates3[2], 4)
As[5,3]<-" "
As[5,4]<-" "
As[5,5]<-" "
As[5,6]<-" "

dimnames(As)<-list(c( " ", " Poold.Data: ", " Data 1:
", " Data 2: ", " Data 3: "), c("mu.hat","sigma.hate",
"loglikelihood.H0","loglikelihood.HA", "Chisquare0", "P Value"))
print(As,quote=F)

invisible()

}

### DATA: ### =====

data1<-matrix(c(19,10,4,24,17,76,16,22,19,73,43,30,14,4,34,82,13,13,13,
13,4,36,4,73,4,69,26,29,13,42,16,31,46,19,23,10,57,10,36,21,18,15,10,
15,88,72,10,102,13,15,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,
1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0),50,2)

data2<-matrix(c(115,27,9,56,133,65,28,45,30,6,9,6,46,6,21,13,77,18,15,
13,6,57,13,9,56,114,21,24,13,25,36,140,13,9,16,19,36,9,45,97,124,32,21,
30,64,6,14,19,17,47,0,0,1,0,0,0,0,0,0,1,1,1,0,1,0,1,0,0,0,1,1,0,1,1,0,0,
0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0),50,2)

data3<-matrix(c(23,23,18,33,21,94,80,9,77,7,7,40,102,114,43,9,7,14,25,
42,13,13,59,13,122,25,24,58,9,9,59,20,7,9,46,33,37,45,18,56,33,30,15,7,
13,13,37,44,112,87,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,0,1,0,0,
0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0),50,2)

> K.Lognormal.Estimation(data1, data2, data3, 3, 20, T, T, T)

mu.hat sigma.hate loglikelihood.H0 loglikelihood.HA Chisquare0 P Value
------ ---------- ---------------- ---------------- ---------- -------

Poold.Data: 2.9805 1.1516 -209.4725 -208.8886 1.1678 0.8834
Data 1: 2.8857 1.0733
Data 2: 2.9981 1.2131
Data 3: 3.0585 1.1559




