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ABSTRACT   

Evolutionary algorithms are a possible way to automatically design the behavior of autonomous robots. 

In this paper we compare different evolutionary algorithms (EA), namely simple EA, two dimensional 

cellular EA, and random search, according to their performance in a simple simulation, where a 

phototaxis robot with two sensors of limited range has to find a light source in a closed area. In our 

experiments we studied the effects on performance of EA parameters, such as population size and 

number of generation. The results explain how the choice of the neural network (three-layered or fully-

connected) may influence the quality of a final solution. 

Our findings indicate that acceptable results can be achieved using all EAs but not with random search. 

The utilization of a fully-connected neural network allows achieving better results for all EAs as 

compared to a three-layered neural network. Two dimensional cellular EA and simple EA evolve the best 

strategies for a robot’s behavior which allow the robot to reach the light source in almost all cases. 

Keywords: Evolutionary algorithm; neural network; robot simulation. 

1 Introduction  

One way to create a control system for an autonomous robot is to apply an evolutionary approach for 

evolving a neural controller. EAs can be used to solve different problems especially in machine learning 

and function optimization domains [13], [17], [20]. A lot of performed experiments with evolving of 

adaptive behavior confirm that evolutionary algorithms can generate a number of successful system 

controllers [17], [9], [10]. In this work we compare three metaheuristic algorithms (simple EA, two 

dimensional cellular EA, and random search) in their ability to discover the most apt neural controller for 

a phototaxis robot. 

The idea of using natural selection for evolving of control systems for robots was proposed by Turing in 

1950s. In the next decades a set of metaheuristic algorithms have been developed [12], [15], but the 

actual usage of these algorithms started after 1990 by the continuous improvement of computer 

technology and the advent of evolutionary robotics [5]. A large number of EAs causes a need for a 

generally accepted methodology that allows comparing different EAs and exploring which parameters 

significantly affect performance [6]. Comparison of EAs on theoretical level was carried out by He and 

Yao applying Markov chains [14]. Empirical studies in this field were done by De Jong [7] and by Schaffer, 

et al. [19]. Their works are mostly applied to genetic programming. In our study we compare 
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metaheuristic algorithms for evolving a neural controller. Czarn mentioned that the results of theoretical 

work may not comply with practical outcomes [6]. Therefore, here we focus on practical experiments 

and analysis of these results. 

Programming a controller for a robot can become a challenging task because of algorithm complexity, 

processing of results from sensors, and actuator modeling [9]. A possible way to overcome this issue is 

to use an evolutionary algorithm to design a neural controller. Applying this approach raises the issue of 

selecting an appropriate metaheuristic algorithm and its settings since it can have a significant impact on 

the quality of the evolved behavior. 

The purpose of this paper is to compare metaheuristic algorithms applicable to designing the behavior 

for an autonomous robot. Robot simulation provides a convenient test bed to compare the performance 

of differently evolved control algorithms. We used a computer simulation as application of 

metaheuristic algorithms. We defined a simple computer simulation of an autonomous robot, its neural 

controller and the environment. The simulation of the robot is based on the former experiment we used 

in [18] for comparing the evolvability of ANNs and Finite State Machines. The main objective is to 

compare different metaheuristic algorithms and determine dependencies (e.g., population size, number 

of generations) which may have an impact on performance. This knowledge can be helpful in selection 

of an appropriate evolutionary approach in future research. Section 2 of this paper provides background 

about evolutionary algorithms and briefly describes simple EA, two dimensional EA, and random search. 

Section 3 defines the problem definition and specifies configurations of the conducted experiments. In 

Section 4 we examine the results of EAs evaluations. Section 5 concludes the paper. 

2 Evolutionary Algorithms 

In the past decades a large number of evolutionary algorithms were presented, but in general they are 

united by the same idea: a population with limited resources competing for resources, therefore 

activating natural selection. Algorithm 1 shows a generalized functioning scheme of evolutionary 

algorithms. They work with a pool of candidates, each described by a candidate’s genotype. The initial 

population is filled either with randomly generated representations or with candidates which are 

specifically adapted for this problem. A parameter N denotes the population size in the evolutionary 

algorithms. 

 

Algorithm 1:  General algorithm of EA. 

Operators of variation (recombination, mutation) and selection are the two forces that drive evolution 

forward. The main role of variation operators is the generation of new candidates for the next 

evolutionary steps. Selection is used to choose individual genomes from the population for later 

breeding. The fitness function is a result of the candidates’ evaluation in one or multiple simulation runs 
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and allows to measure a quality of a genotype [8]. The quality of a final solution for an evolutionary 

algorithm strongly depends on matching of representations, variation operators, and fitness function 

[11].  

2.1 Simple EA 

A simple EA is the reflection of the generalized scheme of evolutionary algorithms. Appropriate 

solutions are achieved through application of variation operators (crossover, mutation) and selection of 

the most fitted individuals. To use this algorithm, the parameters ρe, ρr, ρm, ρc, respectively representing 

the rate of elite candidates, the rate of randomly selected individuals, the rate of representations for 

mutation, and the rate of candidates as results of crossover, should be defined. Based on these 

parameters and known size of the population N, we calculate the number of elite candidates, the 

number of randomly selected representations, the number of individuals for mutation, the number of 

candidates for breeding, which are stored in the parameters ne, nr, nm, and nc, respectively. 

 

Algorithm 2:  The above pseudo-code outlines the algorithm of simple EA. 
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Typically, the elite candidates in a population having the highest fitness value are selected for the next 

generation. Accordingly, their offspring, as results of crossover and mutation, take the places of the less 

fit representations. However, a small percentage of individuals not belonging to the elite can also be 

selected to the next generation, because of their property or characteristic in their structure might be 

useful in the next generation. Moreover, non-elite candidates allow increase diversity of the population 

and thus increment a number of different unique solutions. Algorithm 2 is describing the 

implementation of simple EA. 

2.2 Cellular EA 

A cellular EA (cEA) [23] is a kind of evolutionary algorithms, in which the population is placed in a 

toroidal two dimensional space. Candidates can only communicate with their neighbors, what 

corresponds to the behavior of individuals in nature. There are many models of neighborhoods for cEA, 

such as Von Neumann (linear) neighborhood, Moore (compact) neighborhood, diamond neighborhood 

and others [16]. Usage of different models can lead to completely different strategies. In our 

experiments we use only Moore neighborhood with radius one, which means that only the closest 

neighbors are taken into consideration. The neighborhood R also includes the central candidate for 

which we calculate the neighborhood. In this evolutionary algorithm the parameters ρe, ρm, ρc, which 

respectively denote the rate of elite individuals, the probability of mutation, and the probability of 

crossover, are applied for the neighborhoods. The number of elite candidates ne is calculated from ρe 

and the neighborhood size. Algorithm 3 shows the pseudo-code for a cellular EA. 

 

Algorithm 3: The above pseudo-code outlines the algorithm of cellular EA 
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2.3 Random search 

Random search finds a solution using an undirected search (see Algorithm 4). In each generation, all 

candidates of the population are replaced with randomly generated candidates, which are subsequently 

evaluated. A single candidate that has the highest fitness value is kept for the next generation. If the 

search space is small and the number of evaluations, i.e. generations times population size, is 

comparably high, then this algorithm has a chance to pick an acceptable solution. In case of large search 

space this chance goes down. Compared to other algorithms, random search does not try to improve 

candidates via mutation or crossover, therefore it can be treated as an undirected search. The random 

search approach gives a reference for the size of the search space. 

 

Algorithm 4: The above pseudo-code outlines the algorithm of random search. 

3 Experiment Setup 

3.1 Physical setup 

Figure 1 sketches the simulation setup of our phototaxis robot searching for a light source. The testbed 

for our robot is a closed quadratic room. The start position is in the center of this room. The position of 

the light source is outside a restriction circle with the central point in the center of the room. The 

restriction circle prevents a finding of the light on the first steps. All environment settings are shown in 

Table 1. 

For our experiments we used a differential wheeled robot with configuration described in Table 2. It has 

2 sensors to detect whether the distance to the light source is within their sensing range. 

Table 1:  Configuration of the environment. 

Parameter name Parameter value 

Width of the field 200 cm 

Diameter of the light source 10 cm 

Radius of the restricting circle 80 cm 

Table 2:  Robot configuration parameters. 

Parameter name Parameter value 

Diameter of the robot 10 cm 

Diameter of the wheels 5 cm 

Range of the sensors 70 cm 

Angle of the sensor vision 45˚ 

Maximum speed 12 cm/s 
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Figure 1:  An autonomous robot is looking for the light source in the closed area. 

3.2 Fitness function 

The main task of the robot is to reach its target in a minimal amount of movements – on this basis we 

implemented the fitness function as in Equation 1. 

                                                      

Pt is the reward for a successful strategy allowing to reach the target (see Equation 2). The value Ps 

shows how close the robot is to the target at the end of simulation (see Equation 3). This value is 

especially important in the beginning of an evolution to teach the robot to come closer to the light and 

finally reach it. The maximum range of the robot’s sensors is represented as parameter r. The distance is 

encoded in parameter d in case the robot senses the light. Finally, Equation 4 represents how fast the 

robot can reach the target. The value m represents the maximum amount of time steps in the 

simulation. The number of time steps that is required to reach the target for the selected strategy is 

defined as l. Coefficients kt, ks and kl describe the influence of Pt, Ps, and Pl on the fitness value. In our 

work they have been set to the following values: 

kt = 0:3; ks = 0:3; kl = 0:4 

The fitness function is designed in a way that all possible fitness values should lay in the range [0;1]. The 

maximum number of time steps for our experiments is 300. 

3.3 Evolvable control system 

The robot was controlled by an ANN. In our simulations we used two different representations: a fully-

connected ANN and a three-layered ANN. 

The three-layered neural network is a time-discrete ANN which has a feed-forward structure. It means 

that each neuron of the input layer is connected to each neuron of the hidden layer which at the same 
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time is connected to each neuron of the output layer. The fully-connected neural network is a discrete-

time and recurrent ANN. Instead of feed-forward structure of three-layered neural network, each 

neuron of the fully-connected neural network is connected to every other neuron and itself, thus 

making it a recurrent artificial neural network [24]. A recurrent network can retain information about 

the past, but in general is hard to train [25]. In our case, the training of the two network types follows 

the same approach of mutating and recombining a genome consisting of weights and biases of the ANN.  

A fully-connected neural network has a larger search-space whereas it employs more connections 

between neurons. At the same time this feature and presence of recurrent connections might help to 

achieve more sophisticated behavior. 

The number of inputs and the number of outputs are the same for both candidates. Two inputs which 

represent distances measured by sensors are connected to the input neurons. From two output neurons 

we receive information about the speed of robot’s wheels. With regard to the number of neurons in the 

hidden layer, there is no straightforward way to determine the optimal number of hidden neurons 

analytically. The optimal number depends on the complexity of the function to be approximated, and, 

therefore, indirectly on the number of input and output nodes. Besides a trial and error approach, there 

are some empirically derived rules-of-thumb, of these, the most commonly relied on is the optimal size 

of the hidden layer is usually between the size of the input and size of the output layers [2]. Swingler 

[22] and Berry [1] propose a maximum of two times the number of input nodes for the hidden nodes. 

Boger and Guterman [3] suggest that the number of hidden nodes should be 70%-90% of the number of 

input nodes. Caudill and Butler [4] recommend that the number of hidden nodes should be two third of 

the sum of input and output nodes. Since determining the optimal number of hidden nodes for a 

problem is outside the scope of this paper, we have chosen two hidden nodes in accordance with most 

of the rules of thumb given above. 

In our experiments we apply metaheuristic algorithms to train these networks. The main idea of this 

training is to optimize the weights wji, where j represents the neurons which have incoming connection 

to i, and the bias bi of each neuron i in the ANNs. We calculate the output of the neuron for step k by 

applying an activation function F: 

                                                                            

where the sigmoid function is employed as activation function F: 

                                                              

3.4 Experiment parameters 

All experiments are developed using the FREVO tool [21] which has a workflow for the selection of 

building blocks (problems, representations, evolutionary algorithms and ranking systems) and provides 

an easy setup for all necessary settings. 

Settings of evolutionary algorithms have a huge impact on results of experiments. Information about 

used configurations is specified in tables 3 and 4.  
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We conducted a set of experiments with 2000, 5000, 10000, and 100000 evaluations. For each of these 

values we run experiments 100 times with different initial seeds in order to get sufficient statistical data. 

The results obtained from these experiments allow to watch an evolutionary process in detail. To check 

how the number of candidates in the population influences the results of evolutionary algorithms, we 

used the following population sizes: 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, which are the 

squares of natural numbers. This is the requirement of cellular EA that builds a toroidal two dimensional 

space. The number of evaluations equals the population size multiplied by the number of generations. 

Table 3:  Settings of simple EA. 

Name Value 

Elite rate 0.1 

Mutation rate 0.6 

Crossover rate 0.1 

Renew rate 0.1 

Random selection rate 0.1 

Mutation severity 0.3 

Mutation probability 0.3 

Table 4:  Settings of cellular EA. 

    Name Value 

Elite rate 0.1 

Probability of elite mutation 0.6 

Probability of elite crossover 0.1 

Renew probability 0.2 

Mutation severity 0.3 

Mutation probability 0.3 

4 Experiment Setup 

We have conducted a set of experiments on evolving the autonomous robot controller using different 

evolutionary algorithms. Since the runtime of the simulation accounts for the majority of time spent for 

evaluating solutions, we specified a given number of evaluations for each experiment. Figure 2 depicts 

the results after 2000 evaluations, which corresponds to a rather short time of evolution. Thus, this 

figure indicates which algorithm and parameter setting is preferable if there is no possibility for 

extensive simulation, e.g., there is a limit on run time. The fitness values (ranging from 0 to 1, according 

to the definition in Section III) show a large dispersion of results. The values for random search mark an 

inefficient algorithm, while cellular EA and simple EA show comparable good results for short time of 

evolution. 
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Figure 2:  Box-and-whisker diagrams of the fitness values after 2000 evaluations for (a) three-layered ANN and 
(b) fully-connected ANN. 

Figure 3 shows the results after 5000 evaluations which yield better fitness values than after 2000 

evaluations. The relative effectiveness of the algorithms stayed the same. 

Figures 4 and 5 extend the number of evaluations towards 10000 and 100000, respectively. The latter 

corresponds to a case where sufficient simulation time is available and the question shifts from which 

algorithm provides good results the fastest? to which algorithm provides the best results if we wait long 

enough?. The fitness values are more gathered after 100000 evaluations, but the performance of 

evolved controllers is good enough. The difference in terms of efficiency of neural networks after 10000 

and 100000 evaluations is negligible compared to waiting time. 
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Figure 3:  Box-and-whisker diagrams of the fitness values after 5000 evaluations for (a) three-layered ANN and 
(b) fully-connected ANN. 

We can see that fully-connected ANN performs better than three-layered ANN employing all 

evolutionary algorithms, but with increasing number of evaluations this difference becomes 

insignificant. 
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Figure 4:  Box-and-whisker diagrams of the fitness values after 10000 evaluations for (a) three-layered ANN and 
(b) fully-connected ANN. 

4.1 Evaluation of Significance 

Considering that the results from the simulations are affected by random factors it is not so easy to 

affirmatively define which algorithm and settings work better and which show similar performance. To 

answer this question we model the fitness values for the two algorithms as two independent events – X 

for cEA and Y for simple EA: 

),(~ 2

XXNX  , 

),(~ 2

YYNY  , 

where X , Y  are means and 
2

X , 
2

Y  are estimated variances of results measured using multiple 

simulation runs with different random seeds. 
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Figure 5: Box-and-whisker diagrams of the fitness values after 100000 evaluations for (a) three-layered ANN and 
(b) fully-connected ANN. 

In the next step, we calculate the difference between two events: 

),(~),(),(~~),(~ 22222

XYXYXXYYZZ NNNYXNZ                   (7) 

In order to compare cEA and simple EA, we calculate a chance, that probability of Z is less than 0: 

)
2

(
2

1
)0(

Z

ZerfcZP



                                     (8) 

The probability )0( ZP  corresponds to the probability that cEA is better than simple EA. The 

probability that simple EA is better than cEA can be obtained using Equation 9. 

)0(1)0(  ZPZP           (9) 

Figure 6 shows the difference between calculated probabilities )0( ZP  and )0( ZP , which at the 

same time allows observing how cellular EA is better than simple EA. The trends for different neural 

networks vary. Cellular EA employing three-layered ANN works better than simple EA for larger number 

of evaluations. For fully-connected ANN simple EA works better for small number of evaluations and 

with increasing number of evaluations this difference becomes insignificant. Figure 6 points that for 
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fully-connected ANN cellular EA provides better results than simple EA. If we employ three-layered 

ANNs, the cellular EA also dominates over simple EA with a few exceptions. 

 

(a)                                                                                      (b)  

Figure 6:  Prevalence of cellular EA compared to simple EA for different neural networks: a) three-layered ANN; 
b) fully-connected ANN. 

5 Conclusion 

Two dimensional cellular EA and simple EA show acceptable results in evolving behavioral designs of an 

autonomous robot. Examination of outcome robot strategies using these algorithms shows that the light 

source can be found in the vast majority of experiments. Achieved performance results using different 

evolutionary algorithms demonstrate efficiency of metaheuristic approach for evolving of an 

autonomous robot. 

The results of the experiments help to determine, that cEA and simple EA are the most applicable for 

evolving a neural controller. A fully-connected ANN outperforms three-layered ANN in all conducted 

experiments. Based on our findings, we recommend to use cEA and fully-connected ANN for problems 

that require short evaluation phase. For a large number of generations and population size the 

efficiency of both algorithms are approximately the same. In the experiments we measured an influence 

of population size and number of generations on performance of metaheuristic algorithms. The 

dependencies on these parameters are negligible. This information is important for the conduction of 

experiments. To accelerate a simulation, the population size should be the same as the number of cores 

on the server, where these experiments will be performed. 

In future work we are planning to validate our results for different application scenarios and to extend 

our analysis to further parameters, for instance, mutation and crossover rate. 
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