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ABSTRACT   

A novel hearing assistance system is proposed which classifies sounds and selectively tunes them 

according to the needs of the hearing impaired.  This differs from the usual hearing aids available today 

in that it uses computational intelligence to filter and tune sounds based on real life categorical 

classifications.  The system can significantly improve audibility for the hearing impaired, including 

bringing completely inaudible tones into audibility.  For classification a self-organizing feature map is 

used with a vector of sound features from the joint time-frequency domain.  The map is trained with 

input sounds until a map of neurons is clustered according to these. The resulting map is used to classify 

new sounds.  Based on this classification, a sound can be tuned to improve audibility for the hearing 

impaired.  Techniques proposed for audio output include gamma tone frequency filtering, Fourier 

compression, low pass filtering, spectral subtraction, and an original algorithm to choose how to best 

boost the amplitude of deaf frequencies. 

Keywords: self-organizing feature maps; Artificial Intelligence; machine learning; neural networks; 

pattern classification. 

1 Introduction 

Most common hearing aids today do not include computational intelligence mechanisms such as those 

which can classify the type of sound.  Typically at best, one can find distinction between voice and noise.  

A deaf person could therefore not be able to separate the hearing aid processing of different categories 

of sound.  For example, one may wish to amplify the sound of a baby while blocking out the sound of 

background nature sounds. 

This research aims to define the development of a system which has the promise of achieving exactly 

this sort of intelligent classification for hearing aids.  By using a self-organizing feature map as 

unsupervised learning to train a neural network to classify sound categories, the output can be adjusted 

based on such a classification. 

Given a sound classification, this research further studies methods to adjust the output sound to 

improve hearing ability for a deaf user.  Gamma tone filters and amplification can together separate a 

sound into its frequency components and boost a desired range.  Fourier domain compression can 

recreate a sound with its Fourier signature shape intact while compressing the range of frequencies so 
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that a high-frequency deafness or low-frequency deafness can be compensated.  Additional algorithms 

can determine how to boost particular frequencies most efficiently without losing other audible tones.  

Noise reduction can be accomplished by low pass filter blurring, or by spectral subtraction of a target 

noise source Fourier signal. 

Combining the intelligent sound classification with these methods of output tuning produces a robust 

system which can significantly improve hearing ability.  This paper analyzes the amount of hearing 

improvement possible, which can range from a likely significant amount to occasionally great gains 

under specific circumstances. 

A flow-graph of the proposed system is shown in (Figure 1).   

 

Figure 1:  Flow-graph of the proposed system for intelligent sound classifying hearing assistance system. 

The system starts with an input sounds, from which features are extracted to uniquely describe the 

sound.  These features are fed into a self-organizing feature map which trains itself to classify sounds.  

Based on the map’s classification, the sounds are fed to an output processing program, which tunes the 

output sound for the hearing impaired. 

2 Modeling the System 

Based on the diagram in (Figure 1), a model is created to demonstrate the flow of the system. 

The input sound is a time series of amplitude values which can also be represented in frequency domain 

form.  A number of these frequencies may likely have amplitudes below the threshold of hearing for a 

deaf person. Also the total range of frequencies present may extend beyond the capabilities of the 

hearing impaired.  The output processing techniques described for this system perform amplification, 

frequency selective tuning, frequency compression, and computed algorithm-based sound adjustment. 

The system model can be viewed as a sound input that goes through processing stages until a final 

output emerges according to the needs of a hearing impaired person. The input is the original sound to 

be processed. This can be obtained from a microphone and stored in a memory buffer while processing 

occurs.  In a hardware oriented system processing can be much faster as it can be done in hardware. 

Parallel to the input is the training of a self-organizing feature map neural network.  Given a set of 

sounds from different categories, a neural map is trained which clusters the sound inputs and enables 

classification. The inputs to this system are mathematical feature vectors describing several training 

sounds. 

After the input enters the system, it will need to use the trained map to classify the sound into one of a 

selected number of defined categories.  When the category is determined, the input is given such a tag, 

and it proceeds to the output processing stage. 
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In the output processing stage, frequencies are tuned and compressed, algorithms search for optimal 

hearing improvement techniques, and amplification occurs.  Based on the category from the previous 

step, these settings can be controlled to filter certain types of noises while tuning others to be heard.  

For example, music may be processed for output while nature sounds may be muted.  This would give 

an output of music sounds while tuning out sounds classified as nature sounds. 

The output then emerges from a speaker so the hearing impaired person can receive the entire 

processed sound from all the stages of the model. In (Figure 2) is a class diagram of the system.   

 

Figure 2: Class diagram model of the proposed system. 

It shows that the main system contains subsystems of the self-organizing feature map and the output 

system.  The self-organizing map contains an array of nodes.  The map object trains and classifies 

sounds.  The output object tunes these sounds for the hearing impaired.  The main system object 

connects these two parts. 

3 Spectrograms 

Like the Fourier series a spectrogram divides a signal into its frequency components.  However, a 

difference is that the components of a spectrogram have differing lengths in time duration along with a 

frequency.  Therefore spectrograms can be used to visualize a signal’s duration as well as frequency 

content. 

The theory of using spectrograms for this application comes from the human hearing and brain system 

role as a spectral analyzer [1] [2].  The ear and brain search for dominant components in a spectrum.  

From this fact it is likely that sounds with similar spectrums should be similar and separable from other 

sounds. 

Because of the logarithmic separation of frequency sensors in the inner ear, low frequencies have high 

frequency resolution while high frequencies exhibit high time resolution.  This makes the dual time and 

frequency representation of spectrograms useful for such an application.  The descriptive features of 

sounds in our classification system are therefore based on spectrograms, explained here. 
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A spectrogram is similar to the Fourier transform but differs in important ways.  A spectrogram is a plot 

of a function in the domain of time and frequency.  It can be plotted as time vs. frequency with an 

amplitude and drawn using color intensity.  Examples are shown in (Figure 3).   

 

 
(a) Spectrogram of baby sounds (b) Spectrogram of farm animal sounds. 

Figure 3 

A form of a spectrogram can be created with the short time Fourier transform, defined as [3]: 

X(τ,ω)= ∫ x(t)w(t-τ)e-jωtdt
∞

-∞
                   (1) 

Its discrete form is [9]: 

X(m,ω)= ∑ x(n)w(n-m)e-jωn∞
n=-∞

                        (2) 

In these two equations w is the window function, a particularly shaped sampling of the data outside the 

bounds of which the value is 0.  The variables τ and m are used for sample shifts. 

The spectrogram value used for feature description in our system is the magnitude of this transform 

squared. 

4 Intelligent Unsupervised Learning using Self-Organizing Feature Maps 

To classify a sound, we propose an unsupervised application of self-organized feature maps.  To classify 

the sounds, a self-organizing feature map was trained, as explained in this section.  The trained map can 

then classify new sounds into a particular category to control output adjustment accordingly.  For 

example, a deaf person may choose to tune music sounds and block out animal sounds.  This system 

proposes a method to reach this goal.  

The method starts with a feature vector describing a sound sample.  By dividing the sound’s 

spectrogram values into four quadrants, then dividing the most densely valued quadrant into four more 

quadrants, a total of seven quadrants is obtained.  The mean and range values of each of these 

quadrants were used to produce a feature vector of size 14.  This choice of features captures the bio 

inspired qualities of a spectrogram, focusing on the most significant regions of this graph as the brain 

recognizes dominant patterns in the audio spectrum.  Patterns which are similar to each other are 

recognized which can be used to separate different categories of sounds. 
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Once the feature vectors for a training set are calculated, they are fed into a self-organizing feature map 

network. This is a two-dimensional matrix of neurons, each with a weight of dimension equal to that of 

the feature vector. The matrix starts with randomized weight values which are to be adjusted so as to 

cluster the map into training categories.  As a feature vector is fed to the system, the closest weight 

node and its immediate neighbors are adjusted in weight to be slightly more similar to the feature 

vector.  Through repeated iterations, similar feature qualities will congregate together and separate 

themselves from differing ones, producing a clustering of the map based on patterns in the feature data. 

The equation for the training of a self-organizing feature map is [4]: 

       Wv(t+1)= Wv(t)+ α(t)*β(t)*[dist(t)-Wv(t)]                             (3) 

For this weight adjustment, increase t, which is a positive constant and repeat from 2 while t< λ. The 

parameters are t, the current iteration; λ, the limit on time iteration; Wv, the current weight vector of 

node v; dist(t), the target input data vector; α(t), the learning restraint due to time; and β(t), the 

restraint due to distance from the best matching node, usually called the neighborhood function. 

Once a map is trained, it can be used to classify new data.  As the self-organizing feature map’s signature 

difference from a typical neural network is its visual interpretation, one can examine the trained maps 

to see how well the sounds are clustered.  The map can be plotted based on vector magnitude, as in 

(Figure 4a), or color coded based on classifications such as those based on Euclidean distance from a 

training average, as in (Figure 4b). 

  
(a) Clustered SOFM map shaded based on 

vector magnitude intensity. 
(b) Color coded classifications of the same 
SOFM map.  Sound classifications are: dark 
blue–voice; light blue–household sounds; 

yellow – nature sounds; brown– music. 

Figure 4 

5 Output Processing 

To produce the goal of amplifying deaf frequencies for hearing improvement, a number of techniques 

can be used.  Our implementation includes a gamma tone filter deconstruction of a sound to be 

processed.  A gamma tone filter can be defined in the time domain as: 

g(t)= t
n-1

e-2πbtcos  (2πf0t+ φ)                               (4) 
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In this equation, the order of the filter is n which relates to the sharpness of the transition from stop 

band to pass band and to the gain of each filter.  An order 4 filter was used in the system described, 

which is considered ideal for auditory processing and modeling the human hearing system [5].  The 

variable b, in Hertz, controls the duration of the impulse response.  The variable f0 is the center 

frequency. Phi is a phase shift, which represents relative position of the cosine term. 

After this filter is applied, a sound will be broken up into a number of samples centered at different 

frequencies.  For quality reconstruction, we used 40 channels, or center frequencies.  These were 

divided logarithmically, in accordance with the logarithmic frequency sensing of the human hearing 

system. 

Once the filter has divided the sounds by their center frequencies, particular deaf frequencies can be 

boosted as needed, while others are correspondingly lowered.  We designed an algorithm to find how to 

best boost a deaf frequency without sacrificing audible sounds.  Given a deaf frequency threshold from 

0 to 1 and a hearing frequency threshold from 0 to 1, these define what level of amplitude is required to 

hear this tone.  Next is to define what frequency is deaf. 

The algorithm attempts to boost this frequency from below the threshold to above the threshold as 

required, and measures the loss of the other frequency weights to determine whether they have been 

lowered beyond audible range.  A range of thresholds above and below the input thresholds are tried so 

the algorithm is adaptive to future changes in hearing ability.  The best hearing improvement is used for 

the output. 

Another technique for hearing improvement we used was Fourier compression. After transforming a 

sound signal into the Fourier domain, we simply compress it by interpolation.  This keeps the nature of 

the frequency signal intact while reducing the range in which it is output.  This is useful when a deaf 

person cannot hear very high or very low frequencies. 

Fourier compression in our system is applied using interpolation.  In this method, a Fourier spectrum 

plot is recreated using different frequency axis separations ordered as natural numbers to produce a 

new plot that is compressed in the x axis direction.  For example, a plot 1000 values wide can be 

compressed to 800 values wide by sampling the plot at intervals of 1000/800, and numbering them from 

100 to 900 for a compressed plot. 

Noise reduction was applied in two ways.  First, a low pass blurring filter was used in anticipation of high 

frequency noise.  However, the noise may not always originate from such a source.  The source may be a 

fan, vacuum cleaner, traffic, or other such disturbances.  For this we take a sample of such a sound and 

transform it into the Fourier domain.  To the output signal we subtract the Fourier mean in the 

frequency domain.  This assumes that the sound was the desired sound with an additional frequency 

signal from the disturbance.  After subtracting this disturbance, the sound can be more faithfully 

produced for output. 

6 Results and Discussion 

6.1 Intelligent classification 

Based on visual observation and statistical training data, map parameters may need to be adjusted to 

produce well clustered results.  To try to produce an optimal situation for map training, we tested 
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different parameter values for classification success while holding the others constant.  We used a 

training sample of voice sounds, household sounds, nature sounds, and music sounds. 

Learning rate was varied from 0.775 to 1.00 in increments of 0.025.  Learning rate decay was varied 

from 0.775 to 1.00 in increments of 0.025.  Neighborhood radius was varied from 0.8 to 8.0 in 

increments of 0.8.  Radius decay was varied from 0.775 to 1.00 in increments of 0.025.  Therefore there 

were ten different values of each of four parameters, for 10 000 combinations for each sample sound 

set. 

The results are shown in (Table 1).  These results show the best classifications for each sound set and 

the parameters in which this classification was made.  It is therefore desirable to use these parameters 

to test the SOFM maps for classification accuracy, described next. 

Table 1:  Calculated parameters to optimize self-organizing feature map training classification of sounds from 
voice, household, nature, and music categories. 

Test # Learn 
Rate 

Learn Rate 
Decay 

Radius Radius 
Decay 

Average 
Classification 

Rate 

1 0.93 0.98 5.60 0.90 0.85 

2 0.80 0.98 8.00 0.88 0.89 

3 0.80 0.90 6.40 0.83 0.78 

4 0.78 0.90 4.00 0.90 0.63 

5 0.90 0.90 8.00 0.78 0.64 

Based on the optimal parameters for each set of sounds, 100 tests each were done of the same sound 

samples in which a SOFM map was generated and input sounds were classified as described.  Significant 

results of classification rates are shown in (Table 2). 

Table 2:  Significant classification results of 24 total voice, household, nature, and music sounds. 

Result # Voice Household Nature Music 

1 1.00  0.82 0.78 

2 1.00 0.74 0.93 0.87 

3 0.998  0.80  

4 0.98   0.82 

5 1.00   0.93 

Further tests were made to classify different categories of sounds, as shown in (Table 3). 

Table 3:  Significant classification results of three sets of 24 total sounds each set of different categories. 

Sound Selection Classification 
category 1 

Classification 
category 2 

Classification 
category 3 

Classification 
category 4 

Average 
Classification 

Babies, Emergency, 
Fireworks, Livestock 

0.67  0.67 0.67 0.60 

Bells, Crowds, 
Emergency, Vehicles 

0.83 0.83 0.67  0.64 

Babies, Trains, Crowds, 
Livestock 

0.67  0.67   

Our results show that intelligent classification is definitely possible. A practical implementation can 

successfully distinguish certain sounds from each other and process the output accordingly. The 

weaknesses are that sweeping generalizations cannot easily be made, and perfect results cannot be 
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expected for what are clearly human defined categories.  In the worst cases careful engineering is 

required to choose training sounds.  In any case, some sound samples cluster better than others, and 

the human intelligence aspect of the system is a subject for further study. 

6.2 Output Processing 

Our adaptive output algorithm is demonstrated in (Figure 5).   

 

 
 

Figure 5: (a) – (c) Example cases of our adaptive output algorithm optimization maps for deaf thresholds and 
hearing thresholds at optimized improvement ratios..  For a person who needs the two particular threshold 
levels to hear, and who cannot hear a target frequency, the algorithm calculates hearing improvement for 

surrounding thresholds based on trying to boost the deaf frequency and considering the loss of audible 
frequencies in the processing. 

In this figure, the thresholds are defined along the axes, and the hearing improvement possible is 

shaded in the grid.  The best improvement is the lightest shades, and the corresponding thresholds are 

what were used in the calculation. 

Results from Fourier compression techniques are shown in (Figure 6). 

  

(a) 
Original sound Fourier transform 

(b) 
Results from compression of the same sound’s high and 
low frequencies a total of 10%. The Fourier transform is 

shown 
Figure 6 
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Spectrogram output results are shown in (Figure 7).  The figure shows the original spectrogram and the 

spectrogram from a 10% high and low compression, then a 10% reduction in amplitude of the highest 

30% of frequencies. 

   

(a)  
Spectrogram of a music sound 

(b) 
Spectrogram after 10% high and  
low total Fourier compression 

applied 

(c) 
 Spectrogram after highest 30% of 

frequencies are reduced 10% 

Figure 7 

6.3 Hearing metrics 

A goal is to describe a metric to measure hearing improvement for the system’s adjustable frequencies.  

Each volume bar in the program controls a range of frequencies flow to fhigh.  In a specific case of the 

sliding bars, a particular frequency is raised from level xi to xf, while the other bars are lowered from yi to 

yf for each bar. 

The total proportion weight of the initial state for a target frequency, is: 

     wi=
xi

∑ yiy +xi
                                        (5) 

The proportion weight of the final state for the target frequency is: 

     𝑤𝑓=
𝑥𝑓

∑ 𝑦𝑓+𝑥𝑓𝑦
                                       (6) 

For a deaf person who cannot hear the target frequency normally, the total improvement in proportion 

of the target frequency weight from initial to final can be obtained by dividing equation (6) by equation 

(5): 

     wimp=
wf

wi
                                             (7) 

The proportional amount of frequency range adjusted by changing a particular sliding bar is: 

     fadj=

∫ f
fhigh

flow

∫ f
fmax

0

                                        (8) 

Using the preceding definitions, the amount of hearing gain proportion obtained by adjusting a 

particular deaf person’s target frequency range, is: 

  Hearing improvement=wimpfadj                                         (9) 
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This means that for fadj percent of the overall frequency content improved by wimp, the resulting overall 

hearing improvement can be calculated.  This calculation must consider that the y frequencies are not 

lowered below an audible amplitude when adjusting f. 

To describe a metric for the compression in the output program, consider the following.  The amount of 

frequency of the initial sound can be called f.  The adjusted frequency is c*f, where c is the compression 

proportion factor. 

The total frequency range of the sound sample is: 

                       ftotal= ∫ fsample
fmax

0
                                     (10) 

A target frequency range, based on the deaf person’s needs, can be defined from its low to high 

frequency as: 

     ftarget= ∫ fsample
fhigh

flow
                         (11) 

For compression, consider when the target frequency of the sound is brought into audible range.  The 

amount brought into audible range is the hearing improvement proportion (multiply by 100 for 

percent): 

           hearing improvement=
ftarget

ftotal
                         (12) 

In this case, an example is bringing frequencies 3600 – 4000 in a maximum 4000 frequency sample into 

the audible range by high compression.  The improvement would be 400/4000, or 10%, meaning that 

10% of the sample has now been changed and brought into the audible range. 

The adaptive output algorithm will generally improve hearing ability a minimum of 10%.  This is in the 

case that a deaf frequency can be boosted into hearing range without sacrificing audible frequency 

ranges.  For ten different frequency ranges, if 1 of 10 is deaf, boosting it will improve audibility 10%.  In 

the case where less than 10 of the bands are represented in the output, the hearing improvement will 

be even greater. 

Fourier compression of x percent can bring x percent of the sound into audible range.  Therefore, a 10% 

compression can improve hearing ability 10%, while a 30% compression can improve 30%.  However, 

care must be taken because large amounts of compression can tend to distort the quality of the signal, 

and even create a ringing effect. 

While the hearing improvements may seem somewhat modest, it is very significant that the system 

allows entirely unheard frequencies to be brought audible.  This is an immeasurable improvement 

because it performs like a miracle to allow a deaf person to hear a brand new part of a sound sample. 

7 Conclusions 

The project we designed contributes a unique implementation that is not currently readily available in 

hearing aids.  It incorporates intelligent computing to expand the domain of hearing aid technology.  Its 

results are successful to a significant extent, although not perfect.  The concept is novel and practical at 

the same time. 
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The output processing system we described can produce significant and sometimes drastic 

improvements in hearing ability. These methods are shown to be practical and effective in the goal of 

hearing improvement. 

The techniques we used were successfully chosen to produce positive results.  The feature vector 

uncovered patterns in sounds to classify them into categories.  The self-organizing feature map was a 

useful tool to cluster and classify sounds.  The output techniques each contribute in their own way to an 

improvement in hearing ability for the hearing impaired. 

Further study and tuning of these types of systems can provide more robust and finely engineered 

solutions capable of practical use in real world applications. 
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