

DOI: 10.14738/tmlai.74.6782
Publication Date: 03th August, 2019
URL: http://dx.doi.org/10.14738/tmlai.74.6782

 Volume 7 No 4

The Theory Graph Modeling and Programming Paradigms of
Systems from Modules to the Application Areas

E. M. Lavrischeva
Doctor of phys.-мat. Sci., Professor of MIPT, General Sci. Specialist ISPRAS

Lavryscheva@gmail.com, lavr@ispras.ru

ANNOTATION

 The mathematical basics of graph modeling and paradigm programming of applied systems (AS) are
presented. The vertices of graph are been the functional elements of the systems and the arcs define the
connections between them. The graph is represented by an adjacency and reach ability matrix. A number
of graph of program structures and their representation by mathematical operations (unions,
connections, differences, etc.) are shown. Given the characteristics of graph structures, complexes, units,
and systems created from the modules of the graph. The method of modelling the system on the graph
of modules, which describe in the programming languages (LP) and the advanced operations of
association (link, assembling, make, building, config etc.). The standard of configuration (2012) Assembly
of heterogeneous software elements in AS of different fields of knowledge is made. A brief description of
modern and future programming paradigms for formal theoretical creation of systems from intelligent
and service-components of the Internet is given. There are the new direction of modern paradigms
programming in the near future.

Keywords: graph theory; adjacency matrix, reach ability; mathematical operations; configuration
assembling; paradigm programming; future technologies.

1 Introduce. The Graph Theory and Paradigms of Programs
Programming theory is a mathematical science, the object of study of which is the mathematical
abstraction of the functions of programs with a certain logical and information structure, focused on
computer execution. With the advent of the LP began to develop new methods of analysis of algorithms
of AS problems, the graph theory for the representation the structure AS by separate programs elements,
displaying them in the vertices of the graph to create a complex structure of AS (programs, aggregate,
large program, system, etc.). Programs elements of missile defense were first called modules, programs,
then objects, components, services, etc. For the formal specification of these elements were formed the
corresponding programming paradigms, allowing from the point of view of the theory and graphs to
describe the problems of different AS (medicine, biology, chemistry, genetics, etc.).

2 Graph Theory of Programs from Modules
The basis for the creation of systems of modules was the method of assembling the graph (70-80 years of
the last century) heterogeneous modules in specialized software packages (Lipaev V. V.) and in the system
APROP of ES OS (IBM-360) [1, 2]. Formed Assembly programming [3-5], which "provided the building is

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 22

already existing individual pieces of software (such reuses) in the complex structure" [6]. The interface of
the modules was described initially in a special description language link, and then in equivalent
operations: make BSD, Java (1996); config SPAROL, building, assembling Grid (2002), etc. [7-12]. And after
90-x there were standard languages of the description of these operations of IDL, API, WSDL and the
standard statement of config of the IEEE 828-2012 standard (Configuration Management) for receiving a
configuration file of any application system from ready modules, objects, components, services and other
resources.

A module is a formally described program element that displays certain AS function that has the property
of completeness and connectivity with other elements according to the data specified in the interface
part of the description. From a mathematical point of view, a module is a mapping of a set of initial data
X to a set of output Y in the form M: X → Y.

A number of restrictions and conditions are imposed on X, Y and M to make the module an independent
program element among other types of program objects [1-3].

Types of connections between modules via input and output parameters are as follows:

1) linking of control: CP = K1 + K2, where K1 is the coefficient of the calling mechanism; K2 is the
coefficient of transition from the environment of the calling module to the environment of the
called;

2) Linking of data: CI= ∑
=

n

i
ixFiK

1
)(, where Ki - the weight coefficient iron of the parameter; F (xi) -

the element function for the parameter xii.
Coefficients Kid = 1 – for simple variables and Kid > 1 – for complex variables (array, record, etc.). F (х.I) = 1
if xi - a simple variable and F (xi) > 1 if complex.

The program, modular structure is given by the graph G = (X, E), where X - a finite set of vertices; E - a
finite subset of the direct product of X z on the set of relations on the arcs of the graph. The program
structure represents a pair S = (T, χ), where T - a model of a program, modular structure; χ - a characteristic
function given on the set of vertices X of the graph G.

The value of the characteristic function χ is defined as:

 Χ(x) = 1 if the module with vertex x ∈X is included in the modular system;

 Χ(x) = 0 if the module with vertex x ∈ X is not included in the modular system and is not accessed
from other modules.

 Definition 1. Two models of program structures Т1 = (Gl, Y1, F1) and Т2 = (G2, Y2, F2) are identical if G1 =
G2, Y1 = Y2, F1 = F2. The Т1 model is isomorphic to the Т2 model if G1 = G2 between sets Y1 and Y2 exists an
isomorphism φ, and for any х ∈ X F2(x)=φ(f1(x)).

Definition 2. Two program structure S1 = (Т1, χ1) and S2 = (Т2, χ2) are identical if Т1 = Т2, χ1 = χ2 and the
structures S1 and S2 are isomorphic, then Т1 is isomorphic to Т2 and χ1 = χ2.

The concept of isomorphism of program structures and their models is used in the specification of the
abstraction level at which operations on these structures are defined. For isomorphic graph objects,

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 23

operations will be interpreted in the same way without orientation to a specific composition of program
elements, provided that such operations are defined over pairs (G, χ). The software module is described
in the LP and has an interface section in which external and internal parameters are set for data exchange
between related modules through interface (Call/RMI) operations, etc.

The interface defines the connection of heterogeneous software modules according to the data and the
way they are displayed by programming systems with the LP. Its main functions are: data transfer between
program elements (modules), data conversion to the equivalent form and transition from the
environment and platform of the called module to the caller and back. Functions of conversion of
different, non-equivalent data types is carried out with the help of a previously developed library of 64
primitive functions for heterogeneous data types of LP in the APROP system [1-5] and included in the
common system environments of the OS (IBM, MS, Oberon, UNIX, etc.).

In practice, the assembly method of software modules is performed by operations (link, make, assembling,
config. weaver) special programs [1] OS libraries (OS ES, IBM, MS.Net, etc.), a builder of complex
applications in OS RV for SM computers, complication modules for ERM "Elbrus" are used. In these
operations and interface modules and data type conversion library [1, 2].

Next, we consider the mathematical theory of graphs of software modular structures and mathematical
operations (union, projection, difference, etc.) implementation of ways of linking the graph modules and
the semantics of the data transformation by the vertices of the graph. Software modules are described in
modern LP and with help of the new paradigms programming.

2.1 Definition of a modular structure graph
To represent modular structures, we use the mathematical apparatus of graph theory, in which the graph
G is treated as a pair of objects G = (X, E), where X - a finite set of vertices, and E is a finite subset of the
direct product of X × X × Z - arcs of the graph, corresponding to a finite vertex (Fig. 1).

x1

x5

x2 x3 x4

x7 x8

x6

1 1
1

1 1 1

21
1

 Fig.1. Graph of program from modules

The set of arcs of the graph have the form: E = {(x1, х2, 1), (xl, х3, 1), (х5, x8, 1), (х5, х8, 2)} [1-7]. Based on this
definition, we can say that the graph G is a multi-graph, since its two vertices can be connected by several
arcs. To distinguish these arcs introduced their numbering positive integers – 1, 2. (Fig.1) and vertices of
the graph x1, х2, ..., х8 form a set of X. From the module corresponding to the vertex х5, there are two calling
operators to the modules, with vertices х7 , х8.

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 24

Definition 3. A program aggregate is a pair S = (T, χ), where T - a model of the program modular structure
of the aggregate; χ - a characteristic function defined on the set of vertices X of the graph of the modular
structure G. The value of the χ function is defined as follows:

 χ(x) = 1 if the module corresponding to the vertex х ∈ X, - included in the unit;

 χ(x) = 0 if the module corresponding to the vertex х ∈ X, - not included in the software unit, but it is
accessed from other modules previously included.

Definition 4. The model of the program structure of the program unit is an object described by the triple
T = (G, Y, F), where G = (X, E) - a directed graph of a modular structure;

Y is a set of modules included in the program aggregate;

F is a correspondence function that puts an element of the set y at each vertex X of the graph.

Function F maps X to Y, F : X → Y . (1)

In General, an element from Y can correspond to several vertices from the set X (which is typical for the
dynamic structure of the aggregate) [5, 15, and 20].

The graph of software aggregates has the following properties:

1) graph G has one or more connectivity elements, each of which represents an acyclic graph, i.e.
does not contain oriented cycles;

2) in each graph G is allocated a single vertex, which is called the root and is characterized by the fact
that there are no arcs included in it and the corresponding module of the software unit is
performed first;

3) cycles are allowed only for the case when some vertex has a recursive reference to itself. Typically,
this feature is implemented by the compiler with the corresponding LP and this type of
communication is not considered by the intermodule interface. Therefore, such arcs are not
included in the graph. The exception to the consideration of other types of cycles is due to the fact
that some modules will have to remember the history of their calls in order to return control
correctly, which contradicts the properties of the modules;

4) an empty graph G0 corresponds to an empty program structure.

Next, the graph G will be used to illustrate mathematical operations on modular structures. For Fig.2.
three types of subgraphs are shown and their description is given.

x3x1 x5

x3x2 x5

1 11
1 1 2

x6x4 x7 x8

1 1

 Fig. 2. The graphs of modules structures

A sub graph - a fragment of a software aggregate Gs = (Xs, Es) for whose functions one of two conditions is
satisfied:

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 25

 C (S) = 1, if χ(x) = 1 for any x of X;

 C (S) = 0, if there is x such that χ(x) = 0;

 R (Ss) = 0, if the modular structure is part of a higher-level structure and R(S) =1 if the software
assembly is ready to run.

Given these combinations C and R, the subgraph can be: open (C =0, R = 0); closed at the top (C = 0, R= 1);
closed at the bottom (C = 1, R = 0).

The graph of the module (m) is represented as: Gm = (Хт, Eт). It contains a single vertex х ∈ Хт for which
χ(xj)=1. This vertex is the root. An arc of the form (хj, хе, k) means calling the module to the corresponding
vertex хj , i.e. to the module with the vertex xl. The dark circle on the+ graph corresponds to the vertex for
which χ(x) = 1; light – χ(x)=0.

Program graph Gp = (Хр, Ep) which is performed С (Sp) = 1; R (Sp) = 1. An example of a graph of such a
program modular structure is shown in Fig. 1.

The graph of the complex Gc= (Xc, Ec) consists of n connectivity components (n > 1), each of which is a

graph and includes: G c = G p
1  G p

2  , … ,  G p
n ,

where Xc = X p
1
 X p

2
 ,…, X p

n и Ec = Ep E1
p

  E1
p E2

p  ,…, En
p.

These definitions of the graph of the program module, program and complex are used for the process of
assembling the modules. These concepts may differ from similar ones, which are considered in other
contexts of the work.

2.2 Matrix representation of graphs from program elements of module type
To determine the main operations on software structures, we use the mathematical apparatus of the
matrix representation of graphs in the form of an adjacency and reachability matrix. That is, the graph is
represented by the matrix M= m (i, j) of adjacency and is proved by the reach ability matrix [5, 11-13]. The
element of the matrix тij determines the number of call operators with index i, to the module with index
j.

In addition to the adjacency matrix (calls), the characteristic vector Vi = χ (xi) for i-elements is used. For a
modular structure graph (Fig. 1) characteristic vector and adjacency matrix have the form:

V =

































1
1
1
1
1
1
1
1

 M =

































00000000
00000000
00000000
21000000
00100000
00110000
00000000
00001110

 (2)

We analyze adjacency matrices and characteristic vectors for subgraphs and graphs of modular structures
corresponding to different types – program, complex, aggregate, etc. For subgraphs (Fig.2) vectors and
matrices have the form:

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 26
















=

0
0
1

3V s ,















=

000
000
110

3M s ;



















=

0
0
1
1

1V s
,



















=

0000
0000
0000
1110

1M s ;















=

1
1
1

5V s ,















=

000
000
210

5M s , (3)

For the program graph (Fig. 1) the characteristic vector and the matrix of calls coincide with V and M,
respectively, and determine the form (2), in which all elements of V are equal to one. In the case of the
complex, the characteristic vector and the call matrix have the following form:

 Vc =





















…
p

n

p

p

V

V
V

2

1

, Mc=





















…
…………

…
…

p
n

p

p

M

M
M

00

00
00

2

1

 (4)

Here V p
i and M p

i (i = n 1,) denote the characteristic vector and the adjacency matrix for the graph of

the i-th program included in the graph of the complex. In the future, the matrix representation is used
when performing mathematical operations on software structures.

 The relation of the reach ability graph of program structures

Let G = (X, E) - a graph of a program of modular structure; хi, xj - vertices belonging to X. If there is an
oriented chain from хi to xj in the graph G, then the vertex xj is reachable from the vertex хi. The following
statement is true: if the vertex xj is reachable from xl – из хj , хl – from xj , then хl is reachable from хl. The
proof of this fact is obvious.

Consider a binary relation on the set X that determines the reach ability of one vertex of a graph
to another. We introduce the notation хi →хj - reach ability of the vertex xj from xi. The relation is
transitive. Denote by D(хi)) the set of vertices of graph G reachable from xi..

 { } () i i ix х D x=  (5)

 Then the equality of determines the transitive closure of хi in relation to the achievability of
tops. We prove the following theorems.

Theorem 1. For the selected element of connectivity of the graph of the program structure, any vertex is
reachable from the root corresponding to the given vertex of the graph, i.e. the equality (х1 – root vertex)

 { } ()11 1 .х D xx X= = (6)

Evidence. Suppose the vertex хi (хi ∈ Х) is unattainable from x1. Then хi∉ 1x and the set X' = X \ 1x - not

empty. Since the selected component of the graph is connected, there is a vertex хj∈ 1x and a chain Н

(хi, xj), leading from хi to xj. Based on the acyclicity of the graph G, in X'' there should be a simple chain

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 27

Н(хi,. xj), where the vertex хl does not include arcs (this chain can be empty if X' consists only of xi). Consider
the chain Н(xl, xj) = Н (xl, xi) U Н (xi, xj). This means that the module xi is reachable from vertices х1 and хi
and both vertices contain no incoming arcs. This contradicts the definition of a graph of a modular
structure with a single root vertex.

The theorem is proved.

The results of this theorem are important to substantiate the requirement of the absence of
oriented cycles in the graph of the program structure with respect to the notion of reachability.
Consider the graph shown in Fig. 3. From this figure it is clear that the graph contains a directed
cycle and modules corresponding to vertices х4, х5, х6 will never be executed.

1

1

1

1

x5

x4

x3

x2

x1

x6

Fig. 3. A graph that contains directed cycle

Thus, the results of theorem1 reinforce the requirement that there are no oriented cycles in the graph of
the program structure.

We analyze the matrix representation of the reach ability relation for the graph of the program
structure Fig.1 with the reach ability matrix A, which has the form (7). Coefficient aij = 1 if the
module corresponding to the index l is reachable from the module corresponding to the index i
the Following results are based on the following theorem from graph theory.

 А=



































00000000
00000000
00000000
11000000
00100000
11110000
00000000
11111110

87654321 xxxxxxxx

 (7)

Theorem 2. The coefficient mij of the l-th degree of the adjacency matrix Мl determines the number of
different routes containing l arcs and connecting vertex xi to the vertex of the xj –oriented graph. The
proof of this theorem is given in [20]. Consider the following three consequences of this theorem.

Corollary 1.1. Matrix M = ∑
=

n

l 1
М i , where M is the adjacency matrix of a directed graph with n vertices

coincides up to the numerical values of the coefficients with the reachability matrix A.

 Evidence. In a directed graph containing n vertices, the maximum path length without repeating arcs
cannot exceed n. Therefore, the sequence of degrees of the adjacency matrix Mi, where i = 1,2, ..., n

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 28

determines the number of all possible paths in the graph with the number of arcs ≤ p. Let the coefficient

ijm of the matrix M be different from zero. This means that there is a degree of matrix М i in which the

corresponding coefficient ijm is also nonzero. Therefore, there is a path from vertex xi to xj, i.e. vertex xj

is reachable from xi. This consequence determines the connection of the matrix of calls of the graph of
the modular structure M, coinciding with the reachability matrix A, and determines the algorithm for
constructing the latter.

 Corollary 1.2. Let there be a coefficient mii > 0 for some i in the sequence of degrees of the adjacency
matrix Mi. Then there is a cycle in the original graph.

 Evidence. Let mii > 0 for some l. Therefore xl reachable from xi, i.e. there is a cycle. According to the
theorem, this cycle has l arcs (generally repeated).

 Corollary 1.3. Let the n-th degree of the adjacency matrix of the Мп of the acyclic graph coincide with the
zero matrix (all coefficients are zero).

 Evidence. If the graph is acyclic, then the simplest path cannot have more than п – 1 arcs.

If Мп has a coefficient other than zero, then there must be a path consisting of n arcs. And this way can
only be oriented cycle. Therefore, all coefficients of Мп for an acyclic graph are zero. This consequence
provides a necessary and sufficient condition for the absence of cycles in the graph of a modular structure.

For acyclic graphs, the reachability ratio is equivalent to a partially strict order. The transitivity of the
reachability ratio was considered above. Anti-symmetry follows from the absence of oriented cycles: if
the vertex xj is reachable from xj, then the opposite is not true.

We introduce the notation xi>xj if vertex xj is reachable from vertex xi.

 Let G = (X, E) be an acyclic graph corresponding to some program structure.

Consider the decreasing chain of elements of a partially ordered set X: xi1 >xi2 >…> xin . …,

where " > ” denotes the reachability ratio.

Since X is finite, the chain breaks. The verte xin has no outgoing arcs, i.e. the element xin is minimal (it
corresponds to a module that does not contain access to other modules). The maximum element in the
set X is the root vertex.

2.3 Mathematical operations on the graph elements

Mathematical operations (U, ∩, /, +, - , P, C, R) on graphs are performed at the level of abstractions of
elements of program structures that lead to changes in graph elements and characteristic functions of
systems: S = (G, χ) [20].

Let S1 = (G1, χ1) and S2 = (G2, χ2) be two graphs of program structures G1 = (Х1 , E1) and G2 = (X2, E2)
respectively.

 We introduce the following notations:

 D (х) – the set of vertices reachable from the vertex x;

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 29

 D*(x) – the set of vertices from which vertex x is reachable.

The same symbols are used for the same vertices included in the graphs G1 and G2. The main operations
on the program structures are discussed below

is intended to form a graph of the structure of the complex and is formally defined as follows S1 and S2 –
any program structures that satisfy the definitions of claim 1:

 Merge (join) operation S =S1 U S2 (9)

 G = G1 ⊕ G2, Х = Х1 ⊕ Х2, E1 ⊕ E2 , (10)

where the symbol denotes a direct sum provided:

χ (х) = χ1(х), if χ ∈ X1,

 χ (х) = χ2(x), if χ ∈ Х2.

The same vertices included in G1 and G2 are represented by different objects in the operations of
combining program structures. The characteristic vector and adjacency matrix of the program structure S
are defined as follows:

 V1,2 = 








2

1

V
V

, M1,2 = 








2

1

0
0

M
M

, (11)

where V1,2 and M1,2 are characteristic vectors and adjacency matrices of modular structures S1 and S2
respectively. This operation is associative, but not commutative – the order of the operands determines
the order of the components of the complex.

It should be noted that if the operands S1 and S2 satisfy the conditions for defining program structures,
the result S will also satisfy the same requirements. The join operation increases the number of connected
graph elements. In addition, the column structures may themselves have multiple items of
connectedness. For the rest of the operation counts of the operands and result are the only element of
connection.

The connection operation. We denote by xi and xj the root vertices of graphs G1 and G2 of program
structures S1 and S2, respectively. This operation

 S = S1 + S2, (12)

which is execute if these structures meet the following conditions:

 set X' = X2 ∩ X2 not empty;

 vertex xj ∈ X' and χ (хj) = 0;

 D* (х) ∩ D (x) = 0 for every х∈Х', where D* (х) ∈X1 и D (х) ∈ X2;

 G = G1 U G2, X = X 1 U X2 , E = E1 U E2, (13)

The characteristic function χ is satisfied under the condition:

 χ(х) = χ1(х), if х ∈Х1 \ X';

 Х (х) = mах (χ1(х), χ2 (x))> if х ∈ X',

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 30

 χ(х) = χ2(х), if х ∈Х2 \ X' .

First condition means that there are common vertices in graphs G1 and G2. According to the second
condition, the root vertex G2 belongs to the common part and for S1 the object corresponding to xj is not
included in the program structure yet.

The third condition prohibits the existence of cycles in the result graph. Indeed, if there is хп ∈D*(x) ∩ D(x)
,then хп> х and x > хn, and x > хn, then this means the existence of a cycle.

If S1 and S2 satisfy the above conditions, the connection operation is partial.

 Let us determine whether the result of the connection operation belongs to the class of program
structures. Since X'' is not empty, the graph G has one connected component. The root vertex of the graph
G is xi. The graph G itself has no oriented cycles, i.e. is acyclic.

 Thus, S belongs to the class of program structures under consideration.

This connection operation is not commutative and is generally not associative. To show that this operation
is not associative, consider the result S = (S1 + S2) + S3, where the root vertices of graphs G2 and G3 are part
of the vertices of graph G1 and Х2 ∩ Х3 ≠ 0.

Then the result of the S2 + S3 join operation is undefined.

The operation of projection. Let S1 = (G1, χ1) be a program structure and хi∈Х1. The operation of projection
of this structure to the top of the graph S1 is denoted as S = Рrxi(S1) and is defined as

G(X, E), Х = x i , E = {(xi, xj, K)| xi, xj ∈X}, (14)

for the characteristic function is χ(х) = χ1(х), if х ∈Х. The projection operation defines the program
structure S1 in the structure S. let's check the belonging of the structure S to the class of the considered
program structures. If the graph of the structure S1 is connected acyclically, then the same properties will
be possessed by the graph G. There is a single root vertex xi in the graph G. Thus, the program structure S
belongs to the class under consideration.

The difference operation for program structures is defined as follows. Let S1 = (G1, χ1) be a program
structure and xi ∈ Х1. The difference operation is performed on this structure and its projection to the
vertex xi of the corresponding graph (хi is not the cortical vertex of the graph G1). Formally, the difference
operation of the program structure has the form:

 S = S1 - P xir (S1), (15)

and defined as follows

G = {X, E), X = (X1 \ ix)  X' (16)

Г = {(xi , xj , K) | xi , xj ∈ X } ,

where the set X' consists of such elements for which

 X' = {x'j | (xl ∈X1 \ xi) & (x'j ∈ ix) & (xl , x'j ,K)∈ E } (17)

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 31

Here, the characteristic function χ is defined as:

χ(х) = χ1(х), если х ∈Х1 \ ix ;

χ(х) = 0), если х ∈ X' .

The set X includes vertices that are not included in the set ix , and those vertices ix that include arcs

from vertex X1 \ ix (sets X'). The characteristic function for elements х' ∈ X' is zero. The difference

operation is the inverse of the join operation, i.e. the equality is performed:

 S - P xir (S) + P xir (S) = S. (18)

Let us check that S, defined in (15), belongs to the class of program structures. If the graph is G, connected
and acyclic, then the graph G1 will have the same properties. The root vertex G is the same as the root
vertex G1. Thus, S satisfies the conditions for determining the program structure given in paragraph 1.

Let S* be the set of program structures given by the direct product G* X χ*, where G* and χ* are the set
of graphs and the set of characteristic functions. Denote by Ω = {U, ∩, /, +, -} - set of mathematical
operations on program structures and P, C and R - predicates of:

 Ω = {U, ∩, /, +, - , P, C, R}. (19)

Thus, an algebraic system Σ = (S, Ω) over a set of program structures and operations on them (union,
connection, differences and projections) is defined.

2.4 Characteristics of simple and complex graph structures
Among the variety of program structures there are three main ones – a simple, complex structure with a
call of modules from the external environment and a dynamic structure. The main purpose of various
structures is the most optimal use of the main memory during the execution of the unit [15-20].

Simple structure. An aggregate with a simple structure is created in the process of building modules based
on the operations of link calls. The amount of main memory occupied by an aggregate with a simple

structure is constant and equal to the sum of the volumes of individual modules: Vs = ∑
=

n

i
iv

1
, where vi is

the amount of memory occupied by the i-th module. The corresponding graph of a modular structure is
always connected.

Complex structure. Assembly of complex structures with dynamic invocation of modules in the shared
memory is created in the Assembly process of the modules. In such an aggregate, the connections
between the modules are not so rigid and their sequence is determined by the modules included in the
chain. The modules are loaded into the main memory at the time of processing. When finished, the
memory is freed and used to load another module. As in the case of a simple structure, the graph of a
complex program structure is also connected (Fig.4) and is reflected in the adjacency matrix (2).

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 32

x5
x6

x2
x3

x4

x7
x8 x12

x10 x11

x1

1

1

1
1

1

1 1

1

1 1

1

1

1 2

x0

x9

Fig.4. Modification graph of program structure

The amount of main memory required depends on the number and composition of modules and the
maximum amount of memory is equal to the sum of individual modules:

vmax
0 =Vs=∑

=

n

i
iv

1
.

The minimum amount of memory required when performing the aggregate is calculated by Floyd's
algorithm, which determines the shortest path in the graph, in which each arc corresponds to a weight
coefficient, called the arc length. The following transformations are performed to apply the Floyd
algorithm.

1). Let's add new vertices and arcs to the graph. The vertices are х0, хп+1,… , хп+m,,

where m is the number of end vertices. New arcs include (х0, х1, 1), (xr1,xn+1,1), ..., (xrn, xn+rn,1). In them x1
corresponds to the main module and all xi – to the end vertices. After performing operations, the graph
of the modular structure (Fig. 1) is given to the graph on Fig. 5 with vertices х0, x9, х10, х11, х12. It vertices
correspond to the weight coefficients:

v0 = v9 = v10 = v11 = v12 = 0

2). Each arc of the form (xi , xj, k) is assigned a coefficient vij =
2

vv ji + .

Consider all routes leading from х0 to one of the other additional vertices. The length of the shortest route
path is calculated as follows:

l0,n+p=v01+ … +vrp,n+p =
2

10 vv + +…+
2

2 vv pnp ++ =
2

0v +v1 +…+vrp+
2

v pn+ = v1+ … + vrp.

This length l0, n+p will be equal to the sum of the memory modules for path х1, . . . , хrр.

Thus, applying Floyd's algorithm to the graph in Fig. 2, we solve the problem of calculating the amount of
memory for the maximum chain.

3). We replace the adjacency matrix with the path matrix. For each mij>0, the corresponding location will
be vij. The values тij = Ø are replaced by – ∞. The program implementing Floyd's algorithm has the

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 33

following form (it is assumed that the path matrix is described as a two-dimensional matrix (п×n): this
length l0, n+p will be equal to the sum of the memory modules for path х1, . . . , хrр.

for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
if M[i, j] < M [i , k] + M[k, j] then
M [i, j]: = M [i , k] + M[k, j].

As a result of this algorithm, a matrix of maximum paths will be constructed. The maximum of l0,п+p will
determine the minimum amount оf l0,п+p memory for the memory-overlapping aggregate.

The most complex structure for the values V0
min ≤ V0 ≤ V0

max can be constructed by following the algorithms
proposed in [2-6]. The qualitative dependence of V0 on the number of dynamic sites is shown in Fig.5.
Here п is the number of modules in the unit. Despite the different kind of curves, they have a common
pattern – any V0 is enclosed between the values of v0

max и v0
min.

Dynamic structure. The mechanism of dynamic links between modules is different from the call
mechanism. Dynamic objects are loaded into the main memory when they are accessed. By analogy, we
call the volume loaded with a single treatment of a dynamic element, has its own program structure, for
which the adjacency matrix is composed. If the same modules are found in different dynamic structures,
they are different objects.

The original graph is used for illustration (Fig.1). Let the module corresponding to the vertex х1, be
dynamically called from the module corresponding to the vertex х3. The resulting modified graph is shown
in Fig. 6. A dashed arrow indicates a dynamic call. The module corresponding to the vertex x6, occurs twice.

We construct an adjacency matrix for this aggregate. Each dynamic element will have its own CALL . To
distinguish a dynamic call, the corresponding matrix elements will contain negative numbers whose
absolute values specify the number of dynamic calls between the data of the module pair [20].

The adjacency matrix will look like:

We investigate the qualitative dependence of the amount of the number of dynamic segments (Fig.5. and
6). With one component in the software unit of a simple structure we have V1

d = Vs. If each dynamic
component consists of one module, then the modified Floyd algorithm finds the maximum path and Vd

n
=V0

min.

М=






































−

000000000
000000000
000000000
210000000
001100000
000000000
000001000
000000000
000010110
876536421 xxxxxxxxx

 (20)

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 34

n

V0

V0
max

1

V0
min

Fig. 5. Graph of qualitative dependence Va
from the number of sub graphs

x5

x2

x3

x4

x7
x8

x6'

x1

1 1
1

1 1
1

21 1

x6

Fig. 6. Graph programs structure with
dynamic Calls

For intermediate values, the dependence is more complex. On fig.7 presents two curves (1, 2), and n is
the number of modules in the program unit.

Curve 1 defines a relationship in which different segments do not have the same modules. Curve 2
describes the dependence for the case when different segments have the same modules. For them, the
required memory increases due to the duplication of such modules. However, dependence 2 is typical for
the case when there are no identical modules in dynamic structures and they are written in high-level LP.
These modules are handled by utility tools – memory management, I/O, emergency handling, etc.

n1

Vd
n

Vd
1

2

1

Fig. 7. Grafic dependence Va from the number of dynamic elements

Due to the duplication of modules there is an increase in the main memory of the OS. Thus, curve 1 is
characteristic of software aggregates of graphs in the form of a tree, which ensures that there are no
identical modules in the graph. Despite the lack of dynamic structure in terms of memory savings, there
is a significant advantage – independence from editing links. Each dynamic object can be modified, and
editing relationships in the OS is not required.

3 Operations of Assembling Elements of Graph G
Let the graph G be represented by the set of modules Х= {х1, х2, ..., хт}, as described in LP, and located at
the vertices of the graph. The modules are assembled into a software unit. In this case, each pair of
modules хi, хj (i, j – languages from the set of LP are connected by the relation of call on the basis of which

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 35

the module of communication х'ij is formed. In General, for simple program structures, the aggregate
contains link communication (call) operators and forward and reverse transformations of data types
passed from the calling module (in i-language) to the calling module (in j-language) and back [23].

LP allows you to describe the information part - passport modules with a description of the transmitted
data [8-14] and operations call modules. Taking into account the passports of the modules, the software
structure of the unit is built (program - Prog, complex - Comp, package - Pac). The passport describes the
special language WSDL containing: - a subset of the operations associate link elements of the graph in the
language L' that contains a description of the parameters from the list of actual and formal parameters of
the invocation; - mathematical operations on the graph and operations of binding modules in a complex
structure (Prog, Comp, Agr, Pac and so on).

 The operator modules link (make, config, assembling, etc. since 1994) takes the form:

 Link <aggregate type> <aggregate name> (<main module name>, <additional list of module names>)
<execution mode>,

 when constructing specific program structures, the vertices of the graph – modules can be marked with
special symbols ρ, denoting:

 ρ = ¤ – formation of a fragment with the name of the module;

 ρ = * – the beginning of the dynamic fragment with the vertex marked by this symbol;

 ρ = + the module in the graph G is marked as the main program of the complex;

 ρ = / – means enabling debugging or testing of the unit.

 Using these designations, the graph G will take the form shown in figure 8 and has a representation: E
= {(х5 ,х 7 ,1), (х 5,x 8 ,1), (x5 ,х 8,2)} .

The aggregate is given a unique name corresponding to the generated root module. For the graph Г = {(х4,
х6, 1)} a fragment of operators providing a dynamic call will be formed in the communication module x'46.
For a pair of modules specified in Fig.8 vertices x4, x6, the structure of the corresponding part of the unit,
including the communication module, is shown in Fig. 9. Similarly links of heterogeneous modules and
other types of calls are implemented.

¤x5

+x2

x3

*x4

x7 x8

x6

x1

1 1
1

1 1

1

21 1

 Fig. 8. Graph of software unit with
control marks on the graph

 x4
 S0

 Link P x6

S1
Т

S1

x6

S2

S0
1

Call P x4

X’46

 Fig. 9. Graph of modular structure with dynamic call [1]

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 36

Thus, for a pair of modules xi, xj, a module of connection xij of the form:

х'ij = S0 * (S1 × S1
T) * (S2 × S2

T) * S0
1,

where S0 is a fragment of the aggregate that defines the environment of xj module functioning;

 S1 – a fragment of the aggregate, including a sequence of calls to functions from the set {P, C, S}, each
of which performs the necessary conversion of the actual parameters when referring to the xj -module;

 S2 – a system with a fragment of operators for the inverse transformation of data types transmitted
from xj to хi after its execution;

 S0
1

 – a piece of software structures with operators epilogue for the vertex xi, for the restoration of
the environment.

For the described program structures, set the link operations to build the individual programs in Fig.8:

 Link Prog P1 (x1, x2);

 Link Prog P2 (x1, x3) (x3, x6);

 Link Comp P3 ((x1, x3) (x3, x5/ х'58)+ (x5, x7); (20)

 Link Prog P4 (x1, x4), (x4, x6);

 Link Comp (P1 U P2 U P3 U P4).

Programs of the complex (aggregate) are given unique names (P1, P2, P3, P4) corresponding to the root
names of the modules in the chains of the graph.

 Thus, the process of constructing the program structure on the graph includes:

1. Enter the module description in the LP (L') and perform syntax checking.
2. Select the required modules and interfaces from the repositories and place them in the graph.
3. Translation of the unit modules in the LP.
4. Generation of communication modules for each interconnected pair of graph modules.
5. Assembly of the elements of the graph in the finished structure, linking modules in the operating

system (IBM, MS, Oberon, Unix и др.) [1-5].

6. Test the system on data sets and assess the reliability of the unit.
After the modules are built, the name of the software Assembly is entered into the boot library. If you
create a fragment that is later included in another aggregate, its name must match the name of the main
module. In connection with the transition to the Internet environment to work with various software and
system services in the configuration assembly of such tools provides security, data protection and quality
assessment of ready-made modules, service resources and web systems in Internet.

Ready-made software elements configurate to the system

Under the configuration of the system is understood the structure of some of its version, including
software elements, combined with each other by link operations with parameters that specify the options
for the functioning of the system [1, 2, 16-22]. Version or variant of system configuration according to the
IEEE Standard 828-2012 (Configuration) includes:

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 37

 – configuration basis – BC (Configuration Baseline);

 – configuration items (Configuration Item);

 – program elements (modules, components, services, etc.) included in the graph;

Configuration Management is to monitor the modification of configuration parameters and components
of the system, as well as to conduct system monitoring, accounting and auditing of the system,
maintaining the integrity and its performance. According to the standard, the configuration includes the
following tasks:

 1. Configuration identification (Configuration Identification).

 2. Configuration Control (configuration Control).

 3. Configuration Status Accounting (Configuration Status Accounting).

 4. Configuration audit (Configuration Audit).

 5. Trace configuration changes during system maintenance and operation;

 6. Verification of the configuration components and testing of the system.

A configuration build uses a system model and a set of out-of-the-box components that accumulate in the
operating environment repositories or libraries, and selects their operating environment Configurator (for
example, in http://7dragons.ru/ru). The Configurator assembles the components according to their
interfaces and generates a system configuration file.

The Configurator assembly of components and reuses with operation config, which is equivalent to the
operations link (20) for figure 8, taking into account their interfaces. The config statement generates a
program variant or system configuration file of Comp.

4 The Modern and Future Technologies Programming
The theory of system programming is represented by numerous paradigms - mathematical, object-
component, ontological, technical, service, aspect, etc. They replace on the LP and realized by different
paradigms [15-17, 23-25], some of this paradigms are presented below.

4.1 Mathematical programming paradigms
Theory of graphs for design software modular structures with mathematical operations (union, projection,
difference, etc.) implementation of linking the graph modules (objects) and the semantics of the
transformation of data transmitted by the vertices of the graph G.

 Object-component methods - OCM

OCM are the mathematical design of systems from ready-made resources (objects, components, services,
etc.) to OM (Object Model). It is the formal method which transform the elements OM to a component
model or a service model [15, 26].

 Graph objects is designed on four levels:

 Generalizing for determining SD base notions without considering of their essences and properties;

 Structuring for ordering objects in the OM taking into account relationships between them;

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 38

 Characterization for forming concepts of objects on the base of them properties and descriptions;

Behavioral level for descriptions of conduct depending on events (such as time).

That is, vertices of the graph G are objects of two types: O= (О0, O1, O2. On) with the object relations hold
)()0(0OOii i ∈⇒>∀ and interface objects I (Fig.10).

O1

O2 O3 O4

O25

O5 O6 O7 O8

O26 O47 O48

objects functions

interface objects

 objects from repositoty

Figure 10. Object-interface graph G

At the vertices of a graph G contains the functional objects О1, О2, О3, О4, О5, О6, О7, О8 and interface
objects —0’25, O’26, O’47, O’48, which are placed in the repository of system, and arcs correspond to
relationships between all kinds of objects. The parameters of the external characteristics of the interface
objects are passed between objects through specified interfaces and are designated in language IDL in
(input interface), out (output) and inout (intermediate). Based on the graph G we can construct a program
P0 — P5 using mathematical operation ∪ Assembly link:

1) P0 = (P1 ∪P2 ∪P3 ∪P4∪ P5).
2) P1 = О2 ∪ О5 , link P1 =In O’5 (О2 ∪ О5);
3) P2 = О2 ∪ О6, link P2 =In O’6 (О2 ∪ О8);
4) P3;
5) P4 = О4 ∪ О7, link P4 =In O’7 (О4 ∪ О7);
6) P5 = О4 ∪ О8, link P4 =In O’8 (О4∪ О8);

The set of objects and interfaces of the graph is reflected by general or individual properties and
descriptions of the object model. Verification of properties of objects is provided by the specific
operations (classification, specialization, aggregation, etc.) [15, 20, 29].

Component paradigm. The basis of this paradigm - OCM graph in which vertexes are the components of
the CRP (reuses), interfaces and arcs specify the subject classification and the relationship between the
vertices. Components are described by the formalisms of the triangle of Frege [15]:

- sign – identifier of the real function entity;

- denotation – the designation of this entity;

- concept – a set of properties defined by logical connections and must be true.

Operations of OCM and component algebra represented on the website http://7dragons/ru/ru (in the VS
environment.MS IBMSphere, Java, Linux, Intel etc.) [20].

Service-component paradigm. System and service-components - web resources implement intellectual
knowledge of specialists about applied fields in the Internet environment [22 - 26]. Each implements some

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 39

function and communicates with the technological interface to interact with other services through
protocols and provide Assembly and solution of applications of different nature. The means of describing
the application systems include:

XML for description and construction of SSA components;

WSDL to describe web services and their interfaces;

SOAP to determine the formats of requests to the web services;

UDDI for integration of services and their storage in libraries;

building configuration (config) of the service resources in some high-quality and secure
systems.

The theory of graphs develop in the school of A.P. Ershov (V.I. Kasyanov, V.E. Itkin, A. A. Evstigneev et al.)
for programming Systems [13]. The graph theory has been actively developing in the Russian Academy of
Sciences (I.B.Burdonov, A.S. Kosachev, V. V. Kulyamin [19]. The theory of conformity for systems with
blocking and destruction for the schematic organization of memory in Linux.

Methods of production of factories (Product Line/Product Family) programs and Appfab and certificate
them of the quality are discussed [23].

Application of the ontology language OWL (www.semantic_web.com), resource language (RDF) and
intelligent agents of ISO 15926 standard for networking.

Ontology of Life Cycle and Computational geometry is a part of computer graphics and algebra. Used in
the practice of computing and control machines, numerical control etc. is also used in robotics (motion
planning and pattern recognition tasks), geographic information systems (geometric search, route
planning), design chips, etc.[25-30].

Cloud technologies (PaaS, SaaS) are related to the Internet and are used to create adaptive applications
that interact through agents of web pages.

Device configuring Big Data Processing Devices (Big Data) in Smart Data Internet 4.0.

4.2 Intellectualization of systems
The intelligent system implements creative tasks, the knowledge of which is stored in its memory. It
includes — knowledge base, output mechanism and intelligent interface. The main tasks of artificial
intelligence: symbolic modeling of thought processes, work with natural languages, presentation and use
of knowledge, - machine learning, biological modeling of artificial intelligence, robotics [30].

4.3 Application technical programming
Event management paradigm based on the processing of external events (event-driven programming) in
the Window environment. Features of the event paradigm are the use of testing methods based on
operational (scenario) profiles of programs [20, 25, and 28].

Coordinated and parallel programming provides a division of the computational process into several
subtasks (processes) for TRAN’s computers and supercomputers, the results of which are sent via
communication channels. Languages for parallel programming - PVM, LAM. CHMP and MPI (Message
Passing Interface) interface descriptions and OpenMP. The POSIX standard provides messaging between
programs in YAP C, C+ and Fortran.

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 40

Programming on classes and on a prototype in OOP. The principles of the ООР are:

inheritance – the mechanism of establishing relations "descendant-ancestor" (the ability to generate one
class from another with the preservation of all the properties and methods of the class-ancestor);
encapsulation (the hiding of class implementation); abstraction (description of interaction only in terms
of messages/events in the subject area); polymorphism (the possibility of replacing the interaction of
objects of one object with another object with a similar structure). Many modern languages are specially
created for programming on classes, for example, Smalltalk, C++, Java, Python, PHP, Object Pascal
(Delphi), VB.NET, Xbase++, etc.

Рrogramming by prototype. Creating a new object is done by one of two methods: cloning an existing
object, or by creating an object from scratch. Reuse (inheritance) is made by cloning an existing instance
of the object —a prototype Clone, a sample. An example of a prototype language is the Self language and
it is the basis of such programming languages as JavaScript, Squeak, Cecil, Newton Script, Io, MOO,
REBOL, Keno and etc.

The Agile methodology is focused on the close collaboration of a team of developers and users. It is based
on a waterfall model lifecycle incremental and rapid response to changing demands on PP. The team
works according to the schedule and financing of the project.

eXtreme Programming (XP) implements the principle of "collective code ownership". It any member of
the group can change not only your code but also code another programmer. Each module is supplied
with the Autonomous test (unit test) for regression testing of modules. Tests written by the programmers
and they have the right to write tests for any module. Thus, most of the errors are corrected at the stage
of encoding, or when you view the code, or by dynamic testing.

SCRUM is agile methodology project management firm Advanced Development Methods, Inc., used in
organizations (Fuji-Xerox, Canon, Honda, NEC, Epson, Brother, 3M, Xerox and Hewlett - Packard etc.) are
based on an iterative lifecycle model with well-defined development process, including requirements
analysis, design, programming, testing (http://agile.csc.ncsu.edu).

DSDM (Dynamic Systems Development Method) for rapid development of RAD (Rapid Application.

4.4 Perspective directions for the development of the Internet
 Promising areas of development for the Internet1 include [28]:

The information objects (IO) that specifies the digital projection of real or abstract objects that use
Semantic Web Ontology interoperability interfaces. IO through Web services began more than 10 years
ago. Interaction semantics IO is based on RDF and OWL language of ISO 15926 Internet 3.0.

The next step of the development of the Internet is Web 4.0, which allows network participants to
communicate, using intelligent agents. A new stage in the development of enterprise solutions-cloud
(PaaS, SaaS) who spliced with Internet space and used to create Adaptive applications. Cloud services
interact through the Web page by using agents.

http://dx.doi.org/10.14738/tmlai.74.6782
http://ru.wikipedia.org/wiki/JavaScript
http://ru.wikipedia.org/w/index.php?title=Squeak&action=edit
http://ru.wikipedia.org/w/index.php?title=Cecil&action=edit
http://ru.wikipedia.org/w/index.php?title=NewtonScript&action=edit
http://ru.wikipedia.org/wiki/Io
http://ru.wikipedia.org/w/index.php?title=MOO&action=edit
http://ru.wikipedia.org/wiki/REBOL
http://ru.wikipedia.org/w/index.php?title=Kevo&action=edit
http://agile.csc.ncsu.edu/

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 41

Internet of Things Smart IoT to support competitive APPS using: distributed microservices; Hypercat
Mobile; GSM-R traffic control. Industrial Internet develops concepts - “smart energy”, “smart
transportation”, “smart appliances”, “smart industry”, “smart homes and cities”, etc.

Internet stuff (Internet of Things, Smart IoT) indicates the Smart support competing APPS using distributed
micro services such as Hyper cat (mobile communications); industrial Internet (Industrial), covering the
new automation concepts-smart energy, transportation, appliances, industry», and another.

4.5 Computer nanotechnology
Today computer nanotechnology is actually already working with the smallest elements, "atoms" similar
to the thickness of the thread (transistors, chips, crystals, etc.). For example, a video card from 3.5 million
particles on single crystal, multi-touch maps for retinal embedded in the eyeglasses, etc.

In the future, ready-made software elements will be developed in the direction of nanotechnology by
"reducing" to look even smaller particles with predetermined functionality. Automation of
communication, synthesis of such particles will give a new small element, which will be used like a chip
in a small device for use in medicine, genetics, physics, etc.[28].

5 Conclusion
In the early stages of the emergence of the method of assembling large programs and complexes of spent
modules in the LP used the theoretical apparatus of graphs to create modular program structures. Graph
theory allows us to establish the shortest path of program elements and prove the correctness of binding
graph modules using adjacency matrices, reach ability and mathematical operations (association,
connection, difference, etc.) in complex program structures (complex, aggregate, system, etc.). Initially,
the method of Assembly on the basis of graph theory was widely implemented in the Ruza systems,
Prometheus Complex under the leadership of Lipaev V.V. [1-5], and was supported by A. P. Ershov in the
IPI SO Academy of Sciences SSSR and his researcher and scientist, who formulated the theoretical aspects
of the application of graph theory in programming [6-14]. Since 2013, graph theory has been used in the
modeling of complex systems of objects, components, services, etc. (OCM) [15] and has been used in the
world practice in the transition to the Internet environment [22, 23]. The paper describes the features of
modeling systems using graph theory and mathematical operations on elements of software structures.
The new structures Assembly operations – config of the IEEE Standard 828-2012 (Configuration) are
implemented in different environments of Internet. Elements of the graph set transition labels to obtain
reactions at the time of exposure to test sets and proof of completeness of testing systems of AS.

The graph theory, programming paradigms and ontology of mathematical modeling of applied problems
for vital areas of society (medicine, biology, physics, mathematics, economics, etc.) will become the main
tools of smart machines and AS of the 21st century [15, 24-31].

REFERENCE

[1] Lavrischeva E. M. , Grishchenko V. N. The connection of multi-language modules in the OS of the ES.- Moscow, 1982.-

127p.

[2] Glushkov V. M., Stogniy A. A., Lavrischeva E. M. and others. System of automation of production of programs (The
APROP).-Kiev, 1976.-134p.

E. M. Lavrischeva; The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the
Application Areas. Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 4 August (2019); pp:
21-43

URL:http://dx.doi.org/10.14738/tmlai.74.6782 42

[3] Lavrischeva E. M., Grishchenko V. N. Assembly programming. –K.: Of Sciences. Dumka.1991.-136p.

[4] Lipaev V. V., Posin B. A. ,Shtrik A. A. the Technology of Assembly programming.-M.: 1992.-284 p.

[5] Lavrishcheva E. M. , Grishchenko V. N. Assembly programming Basics of software industry products'. K.: Of
Sciences.Dumka.-2009.-371p.

[6] Rimsky G. V. Structure and functioning of the modular automation system programming.- Artificial intelligence:
application in chemistry.-1987.-№5.-p. 36-44.

[7] Halstead M. H. The beginnings of a science about the programs.- Perevod. with ang. –M.: Finance and statistics.-
1981.-201p.

[8] Horn, E., Winkler, F., Design of modular structures.– Computer technology of the socialist countries.- 1987.- Issue
.21.-p. 64-72.

[9] Koval G. I., Korotun T. M., Lavrishcheva E. M. On one approach to solving the problem of intermodule and
technological interface// All. the collection of the Academy of Sciences and Min.University of the USSR.-1987.-p.52-
68.

[10] Agafonov V. N. Program specification: conceptual tools and their organization.- Novosibirsk.- Science, 1987.-380p.

[11] Kotov V. E., Introduction to the theory of program schemes, Novosibirsk, 1978.

[12] Nepeyvoda N. N. Program logic.- Programming, 1979, № 1, p. 15-25.

[13] Evstigneev A. N. Graph theory in programming, Moscow, Nauka.- 1985. -351p.

[14] Ershov A. P., Introduction to the theory of programming.-Moscow.-1977. - 287p.

[15] Lavrishcheva E. M. The theory of object-component modeling of software systems. Preprint the Russian Academy of
Sciences, No. 29, 2016 - M: 48 p. ISBN 078-5-91474-025-9.13.

[16] Lavrischeva E. M. Ryzhov A. G. Application the theory of General data types of ISO/IEC 11404 GDT standard in relation
to Big Data.- The conference “Actual problems in science and ways their development”, 27 December 2016,
http://euroasia-science.ru.- p. 99-110.

[17] Lavrischeva E. M., Mytulyn V. S., Kozin S. V., Ryzhov A. G. creation of the application and information Systems from
ready-made Internet resources. The proceedings of ISP RAS.-M.: Volume 30. Issue.1 .p.27- 40.

[18] Lavrischeva E. M. , A. G. Ryzhov. Approach to modeling systems and sites from ready-made resources.- .XX All-
Russian conference , September 17-22, 2018. Novorossiysk.-IPM im. M. V. Keldysh.- Report presentation. Publication
in the collection.-p. 321-345.

[19] Burdonov I. B., Kosachev A. S., Kulyamin V. V. Theory for systems with locks and destructions.-Moscow,
2008.- 411p.

[20] Lavrischeva E. M. Software Engineering of computer systems. Paradigms, technologies, CASE- means – Science
Dumka.- 2014.-284p.

[21] Bruno Courcelle, Joost Engelfriet Graph structure and monadic second-order logic. A language-theoretical approach (
hal id: hal-oo646514) and Theory graph (wikipedia.ru, Foxford.ru).

http://dx.doi.org/10.14738/tmlai.74.6782

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 4, Aug 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 43

[22] Lavrischeva E. M., Pakulin N.V., Ryjov A.G., Zelenov S. V. Analysis of methods of assessment reliability of equipment
and systems. Practice of application of methods of reliability.-Scientific- practical conference - OS DAY, Moscow, 17-
18th 2018. The proceedings of ISP RAS, том5 DOI: 10.15514/ISPRAS-2018-30(3), 2018.- .(http://0x1.tv/20180517F).

[23] Ekaterina M.Lavrischeva. Assemblling Paradigms of Programming in Software Engineering.- 2016, 9,p.296-317,
http://www.scrip.org/journal/jsea, http://dx.do.org/10.4236/jsea.96021

[24] Lavrischeva E. M. The Scientific basis of software engineering.- International Journal of Applied And Natural Sciences
(IJANS). ISSN(P): 2319-4014; ISSN(E): 2319-4022 Vol. 7, Issue 5, Aug Sep. 2018; p. 15-32.

[25] Gorodnyaya L. V. Programming Paradigms. Analysis of the state and prospects.-SORA9N, 2018.-282р.

[26] Ekaterina Lavrischeva, Andrey Stenyashin, Andrii Kolesnyk. Object-Component Development of Application and
Systems. Theory and Practice. Journal of Software Engineering and Applications, 2014,
http://www.scirp.org/journal/jsea.

[27] Lavrischeva Ekaterina. Ontological Approach to the Formal Specification of the Standard Life Cycle, “Science and
Information Conference-2015", Jule 28-30, London, UK, www.conference.thesai.org.- p.965-972.

[28] Lavrishcheva E.M. Petrov I.B. Ways of Development of Computer Technologies to Perspective Nano.- Future
Technologies Conference (FTC), 29-30 November 2017| Vancouver, Canada-p.540-549.

[29] Lavrischeva E.M. Development of the theory programs and systems in the USSR. History and modern Theory. -
Sorucom-2017, IEEE Springer-2017.-p. 31-47.

[30] Lavrischeva Е.М.. Scientific Basis of System Programming.- Journal of Software Engineering and Applications (JSEA),
Vol. 11 No. 8 of August issue, 2018.-N 11.-p.408-434, ISSN online 1945-3124, ISSN Print 1945-3116.
http://www.scirp.org/journal/jsea

[31] E.M. Lavrischeva, A.K..Petrenko. Informatics -70. Computerization aspects of programming software and informatic
systems technologies.- ISP RAN/Proc. ISPRAS, 2018.- P.7-23.

http://www.scrip.org/journal/jsea
http://dx.do.org/10.4236/jsea.96021
http://www.scirp.org/journal/jsea
http://www.conference.thesai.org.-/
http://www.scirp.org/journal/jsea

	The Theory Graph Modeling and Programming Paradigms of Systems from Modules to the Application Areas
	Annotation
	1 Introduce. The Graph Theory and Paradigms of Programs
	2 Graph Theory of Programs from Modules
	2.1 Definition of a modular structure graph
	2.2 Matrix representation of graphs from program elements of module type
	2.3 Mathematical operations on the graph elements
	2.4 Characteristics of simple and complex graph structures

	3 Operations of Assembling Elements of Graph G
	4 The Modern and Future Technologies Programming
	4.1 Mathematical programming paradigms
	4.2 Intellectualization of systems
	4.3 Application technical programming
	4.4 Perspective directions for the development of the Internet
	4.5 Computer nanotechnology

	5 Conclusion
	REFERENCE

