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ABSTRACT   

Complex problems are frequently overwhelmed by inconsistent performance requirements and 
incompatible specifications that can be difficult to identify at the time of problem formulation. 
Consequently, it is often beneficial to construct a set of different options that provide distinct approaches 
to the problem. These alternatives need to be close-to-optimal with respect to the specified objective(s), 
but be maximally different from each other in the solution domain. The approach for creating maximally 
different solution sets is referred to as modelling-to-generate-alternatives (MGA). This paper introduces 
a computationally efficient, population-based multicriteria MGA algorithm for generating sets of 
maximally different alternatives. 

Keywords: Multicriteria Objectives, Population-based algorithms, Modelling-to-generate-alternatives. 

1 Introduction  
Complex problems frequently contain inconsistent and incompatible design specifications that can be 
difficult to incorporate into supporting mathematical formulations [1]-[5]. While “optimal” solutions can 
be calculated for the mathematical models, they may not provide a truly best solution to the “real” 
problem as there are usually unmodeled components not apparent when the initial mathematical models 
are formulated [1][2][6]. Generally, it is better to construct a small number of dissimilar alternatives that 
provide distinct viewpoints for the particular problem [3][7]. These distinct solutions should be close-to-
optimal with respect to the specified objective(s), but be maximally different from each other within the 
solution domain. Numerous approaches collectively referred to as modelling-to-generate-alternatives 
(MGA) have been proposed to satisfy this multi-solution requirement [6]-[8]. The principal motivation 
behind MGA is to construct a set of options that are “good” with respect to all specified objective(s), but 
are fundamentally different from each other in the decision space. Decision-makers have to conduct a 
subsequent assessment of this set of alternatives to determine which specific alternative(s) most closely 
achieve their specific requirements. Consequently, MGA approaches are considered as decision support 
methods rather than as solution determination processes as assumed in explicit optimization. 

The initial MGA algorithms used straightforward, iterative methods for constructing alternatives by 
incrementally re-solving their procedures whenever a new solution needed to be generated [6]-[10]. 
These iterative approaches imitated the seminal MGA method of Brill et al. [8] where, after the initial 
mathematical model had been optimized, all supplementary alternatives were produced one-at-a-time. 
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Consequently, these incremental approaches all required n+1 iterations of their respective algorithms – 
initially to optimize the original problem, then to produce each of the subsequent n alternatives [7][11]-
[18]. 

Subsequently, it was demonstrated how a set of maximally different alternatives could be generated using 
any population-based algorithm by permitting the generation of the overall optimal solution together 
with n distinct alternatives in a single computational run irrespective of the value of n [19]-[23]. In [24] a 
new data structure was created that permits alternatives to be simultaneously constructed by population-
based solution methods and this was incorporated into a dual-criterion procedure in [25]. 

In this paper, a multicriteria, objective is introduced that combines the data structure into a simultaneous 
solution approach to create a new stochastic MGA algorithm. The max-sum components of the objective 
produce a maximum distance between alternatives by ensuring that the total deviation between all of the 
variables in all of the alternatives is collectively large. This does not, however, preclude the occurrence of 
relatively small (or zero) deviations between certain individual variables within certain solutions. In 
contrast, max-min objectives force a maximum distance between every variable over all solutions. By 
considering the multiple objectives simultaneously, the alternatives created can be forced as far apart as 
possible for all variables in general and the closest distance in the worst case between any solutions will 
never be less than the value obtained for the max-min objective. This stochastic MGA algorithmic 
approach proves to be extremely computationally efficient. 

2 Modelling to Generate Alternatives 
Mathematical optimization focuses almost exclusively on producing single optimal solutions to single-
objective problems or, equivalently, constructing sets of noninferior solutions to multi-objective 
formulations [2][5][8]. While these conventions create solutions to the mathematical formulations as 
derived, whether the outputs provide “best” solutions to the original “real” problems remains less 
convincing [1][2][6][8]. Most “real world” decision situations possess numerous system conditions that 
can never be completely accounted for in mathematical constructions [1], [5]. In addition, it may not be 
possible to account for all of the subjective requirements as there are frequently numerous adversarial 
stakeholders and incompatible components to incorporate. Most subjective aspects remain unquantified 
and unmodelled in the mathematical formulations. This frequently happens when conclusions must be 
based not only on modelled objectives, but also upon more incongruent stakeholder predilections and 
socio-political-economic aspects [7]. Several “real life” instances of these idiosyncratic modelling features 
are described in [6][8]-[10]. 

When potentially unaccounted objectives and unmodelled components exist, non-traditional techniques 
are needed to scour the decision region for not only noninferior sets of alternatives, but also for solutions 
that are clearly sub-optimal to the modelled problem. Specifically, any search for alternatives to problems 
known or suspected to contain unmodelled components must concentrate not only on non-inferior sets 
of solutions, but also necessarily on explicit explorations of the problem’s inferior solution domain. 

To illustrate the consequences of unmodelled objectives on a decision search, assume that the optimal 
solution for a maximization problem is X* with objective value Z1* [24]. Suppose a second, unquantified, 
maximization objective Z2 exists that represents some “politically acceptable” factor. Assume that the 
solution, Xa, belonging to the 2-objective noninferior set, exists that corresponds to a best compromise 
solution if both objectives could have been simultaneously considered. Although Xa would be considered 
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as the best solution to the real problem, in the actual mathematical model it would appear inferior to 
solution X*, since Z1a ≤  Z1*. Therefore, when unquantified components are included in the decision-
making process, inferior decisions to the mathematically modelled problem could be optimal to the 
underlying “real” problem. Thus, when unquantified issues and unmodelled objectives could exist, 
alternative solution procedures are required to not only explore the solution domain for noninferior 
solutions to the modelled problem, but also to concurrently search the solution domain for inferior 
solutions. Population-based algorithms prove to be proficient solution methods for concurrent searches 
throughout a decision space. 

The prime directive for MGA is the construction of a practicable set of options that are quantifiably good 
when evaluated with respect to the modelled objectives, yet remain as different as possible from each 
other within the decision space. By achieving this task, the resultant set of alternatives can supply quite 
different perspectives with respect to the modelled objective(s) yet very differently with respect to the 
potentially unmodelled aspects. By creating these good-but-different options, the decision-makers can 
then identify specific desirable qualities within the alternatives that might satisfy the unmodelled 
objectives to varying degrees of stakeholder tolerability. 

To motivate the MGA process, it is necessary to more formally characterize the mathematical definition 
of its goals [6][7]. Assume that the optimal solution to the original mathematical formulation is X* 
producing a corresponding objective value of Z* = F(X*). The resulting model can then be solved to 
produce an alternative solution, X, that is maximally different from X*: 

 Maximize  ∆ (X, X*) = 
i∑ ( Xi - Xi* )2      (1) 

  Subject to:  X ∈  D        (2) 

    | F(X) - Z* | ≤  T             (3) 

where ∆  represents an appropriate difference function (shown in (1) as an absolute difference) and T is 
a tolerance target relative to the original optimal objective value Z*. T is a user-specified limit that 
determines what proportion of the inferior region needs to be explored for acceptable alternatives. This 
difference function concept can be extended into a difference measure between any set of alternatives 
by replacing X* in the objective of the maximal difference model and calculating the overall minimum 
absolute difference (or some other function) of the pairwise comparisons between corresponding 
variables in each pair of alternatives – subject to the condition that each alternative is feasible and falls 
within the specified tolerance constraint. 

The population-based multicriteria MGA procedure to be introduced is designed to generate a pre-
determined small number of close-to-optimal, but maximally different alternatives, by adjusting the value 
of T and solving the corresponding maximal difference problem instance by exploiting the population 
structure of the algorithm. The survival of solutions depends upon how well the solutions perform with 
respect to the problem’s originally modelled objective(s) and simultaneously by how far away they are 
from all of the other alternatives generated in the decision space. 

3 Population-based, Multicriteria MGA Algorithm 
In this section, a data structure is employed that enables a multicriteria MGA solution approach via any 
population-based algorithm [24]. Suppose that it is desired to produce P alternatives that each possess n 
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decision variables and that the population algorithm is to possess K solutions in total. That is, each solution 
contains one set of P maximally different alternatives. Let Yk, k = 1,…, K, represent the kth solution in the 
population which is comprised of one complete set of P different alternatives. Namely, if Xkp is the pth 
alternative, p = 1,…, P, of solution k, k = 1,…, K, then Yk can be represented as 

Yk = [Xk1, Xk2,…, XkP] .         (4) 

If Xkjq, q = 1,…, n, is the qth variable in the jth alternative of solution k, then 

Xkj = (Xkj1, Xkj2,…, Xkjn) .           (5) 

Consequently, the entire population, Y, consisting of K different sets of P alternatives can be expressed in 
vectorized form as, 

Y’ = [Y1, Y2,…, YK] .         (6) 

The following population-based MGA method produces a pre-determined number of close-to-optimal, 
but maximally different alternatives, by modifying the value of the bound T in the maximal difference 
model and using any population-based method to solve the corresponding, maximal difference problem. 
The multicriteria MGA algorithm that follows constructs a pre-determined number of maximally different, 
close-to-optimal alternatives, by modifying the bound value T in the maximal difference model and using 
any population-based technique to solve the corresponding maximal difference problem. Each solution in 
the population comprises one set of p different alternatives. By exploiting the co-evolutionary aspects of 
the algorithm, the algorithm evolves each solution toward sets of dissimilar local optima within the 
solution domain. In this processing, each solution alternative mutually experiences the search steps of the 
algorithm. Solution survival depends upon both how well the solutions perform with respect to the 
modelled objective(s) and by how far apart they are from every other alternative in the decision space. 

A straightforward process for generating alternatives solves the maximum difference model iteratively by 
incrementally updating the target T whenever a new alternative needs to be produced and then re-solving 
the resulting model [24]. This iterative approach parallels the original Hop, Skip, and Jump (HSJ) MGA 
algorithm of Brill et al. [8] in which the alternatives are created one-by-one through an incremental 
adjustment of the target constraint. While this approach is straightforward, it entails a repetitive 
execution of the optimization algorithm [7][12][13]. To improve upon the stepwise HSJ approach, a 
concurrent MGA technique was subsequently designed based upon co-evolution [13][15][17]. In a co-
evolutionary approach, pre-specified stratified subpopulation ranges within an algorithm’s overall 
population are established that collectively evolve the search toward the specified number of maximally 
different alternatives. Each desired solution alternative is represented by each respective subpopulation 
and each subpopulation undergoes the common processing operations of the procedure. The survival of 
solutions in each subpopulation depends simultaneously upon how well the solutions perform with 
respect to the modelled objective(s) and by how far away they are from all of the other alternatives. 
Consequently, the evolution of solutions in each subpopulation toward local optima is directly influenced 
by those solutions contained in all of the other subpopulations, which forces the concurrent co-evolution 
of each subpopulation towards good but maximally distant regions within the decision space according to 
the maximal difference model [7]. Co-evolution is also much more efficient than a sequential HSJ-style 
approach in that it exploits the inherent population-based searches to concurrently generate the entire 
set of maximally different solutions using only a single population [12][17]. 

http://dx.doi.org/10.14738/tmlai.74.6733


Transact ions on  Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume  7 ,  Issue 4,  Aug  2015 
 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 5 
 

While concurrent approaches can exploit population-based algorithms, co-evolution can only occur within 
each of the stratified subpopulations. Consequently, the maximal differences between solutions in 
different subpopulations can only be based upon aggregate subpopulation measures. Conversely, in the 
following simultaneous MGA algorithm, each solution in the population contains exactly one entire set of 
alternatives and the maximal difference is calculated only for that particular solution (i.e. the specific 
alternative set contained within that solution in the population). Hence, by the evolutionary nature of the 
population-based search procedure, in the subsequent approach, the maximal difference is 
simultaneously calculated for the specific set of alternatives considered within each specific solution – 
and the need for concurrent subpopulation aggregation measures is avoided. 

Using the data structure terminology, the steps for the multicriteria MGA algorithm are as follows 
[14][19]-[24]. It should be readily apparent that the stratification approach employed by this method can 
be easily modified for any population-based algorithm. 

Initialization Step. Solve the original optimization problem to find its optimal solution, X*. Based upon the 
objective value F(X*), establish P target values. P represents the desired number of maximally different 
alternatives to be generated within prescribed target deviations from the X*. Note: The value for P has to 
have been set a priori by the decision-maker. 

Without loss of generality, it is possible to forego this step and to use the algorithm to find X* as part of 
its solution processing in the subsequent steps. However, this significantly increases the number of 
iterations of the computational procedure and the initial stages of the processing become devoted to 
finding X* while the other elements of each population solution are retained as essentially “computational 
overhead”. 

Step 1. Create an initial population of size K where each solution contains P equally-sized partitions. The 
partition size corresponds to the number of decision variables in the original optimization problem. Xkp 
represents the pth alternative, p = 1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each Xkp, p = 1,…,P, with respect to the modelled objective. 
Alternatives meeting their target constraint and all other problem constraints are designated as feasible, 
while all other alternatives are designated as infeasible.  

Note: A solution can be designated as feasible only if all of the alternatives contained within it are feasible. 

Step 3. Apply an appropriate elitism operator to each solution to rank order the best individuals in the 
population. The best solution is the feasible solution containing the most distant set of alternatives in the 
decision space (the distance measures are defined in Step 5). 

Note: Because the best-solution-to-date is always retained in the population throughout each iteration, 
at least one solution will always be feasible. Furthermore, a feasible solution based on the initialization 
step can be constructed using P repetitions of X*. 

Step 4. Stop the algorithm if the termination criteria (such as maximum number of iterations or some 
measure of solution convergence) are met. Otherwise, proceed to Step 5. 

Step 5. For each solution Yk, k = 1,…, K, calculate R Max-Min and/or Max-Sum distance measures, Dr
k, r = 

1,…, R, between all of the alternatives contained within the solution. 

As an illustrative example for calculating the multicriteria distance measures, compute: 
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 D1
k = 1∆ ( Xka, Xkb) = 

, ,
Min
a b q

 | Xkaq – Xkbq | , a = 1,…,P, b = 1,…,P, q = 1,…,n,  (7) 

 D2
k  = 2∆ ( Xka, Xkb)  = 

1a toP=∑ 1b toP=∑ 1...q n=∑ | Xkaq – Xkbq |   (8) 

and 

 D3
k  = 3∆ ( Xka, Xkb)  = 

1a toP=∑ 1b toP=∑ 1...q n=∑ ( Xkaq – Xkbq )2.    (9) 

D1
k denotes the minimum absolute distance, D2

k represents the overall absolute deviation, and D3
k 

determines the overall quadratic deviation between all of the alternatives contained within solution k. 

Alternatively, the distance functions could be calculated using some other appropriately defined 
measures. 

Step 6. Let Dk = G(D1
k, D2

k, D3
k,…, DR

k) represent the multicriteria objective for solution k. Rank the solutions 
according to the distance measure Dk objective – appropriately adjusted to incorporate any constraint 
violation penalties for infeasible solutions. The goal of maximal difference is to force alternatives to be as 
far apart as possible in the decision space from the alternatives of each of the partitions within each 
solution This step orders the specific solutions by those solutions which contain the set of alternatives 
which are most distant from each other. 

Step 7. Apply applicable algorithmic “change operations” to each solution within the population and 
return to Step 2. 

4 Conclusion 
Complex problem solving inherently involves incongruent features and indeterminate performance 
specifications. These situations commonly possess inconsistent structural components that are difficult 
to incorporate into supporting decision systems. There are always unmodelled features, not apparent 
during model formulation, that can significantly impact the adequacy of its solutions. These components 
force decision-makers to combine uncertainties into their solution process prior to any problem 
resolution. When faced with these inconsistencies, the likelihood that any single solution can concurrently 
satisfy all of the ambiguous system requirements to “optimum” is quite low. Therefore, any decision 
support approach must somehow address these complicating aspects in some way, while simultaneously 
being flexible enough to include the intrinsic planning uncertainties. 

This paper has provided a new multicriteria approach and an updated MGA procedure. This new 
computationally efficient MGA method establishes how population-based algorithms can simultaneously 
construct entire sets of close-to-optimal, maximally different alternatives by exploiting the evolutionary 
characteristics of any population-based solution approach. In this MGA role, the multicriteria objective 
can efficiently generate the requisite set of dissimilar alternatives, with each generated solution providing 
an entirely different outlook to the problem. The max-sum criteria ensures that the distances between 
the alternatives created by this algorithm are good in general, while the max-min criteria ensures that the 
distances between the alternatives are good in the worst case. The value of an absolute-type function 
delivers a physical interpretation to its measure of distance. Since population-based procedures can be 
applied to a wide spectrum of problem types, the practicality of the multicriteria algorithm can be 
extended to many “real world” applications. These extensions will be considered in future studies. 
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