SOCIETY FOR SCIENCE AND EDUCATION 4/
UNITED KINGDOM 9

T M LA I TRANSACTIONS ON Volume 7 No 2
MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE ISSN 2054-7390

Demonstration of Machine Learning Capabilities on Internet of
Things Devices

Abhinandan H. Patil
14 Inc, Belgaum, Karnatka, India
Abhinandan_patil_1414@yahoo.com

ABSTRACT

Since the problem definition mentioned in the title of this paper is very broad it was narrowed down to
temperature sensing using the loT device and demonstrating the machine learning capabilities using the
TensorFlow with the Python libraries. The data was started collecting starting 1:45 PM and collected till
6:00 PM. As the temperature in India starts cooling down from 2:00 till the evening, we should be getting
down-ward slope i.e temperature starts tapering down. It is clearly linear regression problem where the
slope is down-ward as we proceed further in time line. If we start collecting the data in the morning and
collect till after-noon we should again get the linear regression model however this time the temperature
increases as we proceed in the time line till 2:00 PM.

Keywords: Weka; Internet of Things; Machine Learning; Arduino; Python

1 Introduction

Following pre-requisites are needed for this experiment.

Table 1 Pre-requisities for the experiment

Pre-requisites Item name Comments

Operating System (Software) Kubuntu/Windows As per the performance
requirements

IDE(Software) Visual Studio 2019 and Arduino | On Kubuntu bare-metal vi editor
Uno along with command prompt
performs the job much faster

Python libraries (Software) Python3, TensorFlow, matplotlib | Problem was attempted on
and Tk Kubuntu with the Java Standard
Edition (JSE) and with the limited
success
Weka (Software) Weka3.9 Ease of using is much better.
loT device (Hardware) Arduino Uno Available online at Amazon India

and far easy to use and

DOI: 10.14738/tmlai.72.6447
Publication Date: 30" April, 2019
URL: http://dx.doi.org/10.14738/tmlai.72.6447

Abhinandan H. Patil; Demonstration of Machine Learning Capabilities on Internet of Things Devices. Transactions
on Machine Learning and Artificial Intelligence, Volume 7 No 2 April (2019); pp: 63-72

inexpensive compared with
raspberry pi

Temperature Sensor (Hardware) | LM35

Available online at Amazon India

2 Temperature Sensor using the LM 35 Arduino Uno

LM35 and Arduino - Interfacing

+WVs

LM 35 Wout

GMD

+5v from USE Port

www.circuitstoday.com

J+5u
1

Arduino UNO

Figure 2. Arduino Interfaced with PC

URL :http://dx.doi.org/10.14738/tmlai.72.6447

http://dx.doi.org/10.14738/tmlai.72.6447

Transactions on Machine Learning and Artificial Intelligence Volume 7, Issue 2, April 2019

Figure 3. Arduino Intefaced with PC

3 Experiment

A First interface the sensor to Arduino board using the circuit as show above. Install the Arduino IDE. Then

flex the following code to the microcontroller.

= = ==== Code Snippet ==== = = ===========

const int sensor=A1; // Assigning analog pin Al to variable 'sensor’
float tempc; //variable to store temperature in degree Celsius
float tempf; //variable to store temperature in Fahreinheit
float vout; //temporary variable to hold sensor reading

void setup()

{

pinMode(sensor,INPUT); // Configuring pin Al as input
Serial.begin(9600);

}

void loop()

{

vout=analogRead(sensor);

vout=(vout*500)/1023;

tempc=vout; // Storing value in Degree Celsius
tempf=(vout*1.8)+32; // Converting to Fahrenheit
Serial.print("in DegreeC=");

Serial.print("\t");

Copyright © Society for Science and Education United Kingdom

Abhinandan H. Patil; Demonstration of Machine Learning Capabilities on Internet of Things Devices. Transactions
on Machine Learning and Artificial Intelligence, Volume 7 No 2 April (2019); pp: 63-72

Serial.print(tempc);

Serial.printin();
Serial.print("in Fahrenheit=");
Serial.print("\t");
Serial.print(tempf);
Serial.printin();

delay(60000); //Delay of 60 seconds for ease of viewing
}

= = = End of Code snippet == = == = ==

Using the COMS3 port capture the reading (Arduino Uno IDE -> Tools -> Serial Monitor).

The raw data is transferred to the text file. The Extract transform operation is manual. The data is
extracted such that only two parameters are present viz.

1. Time of data capture
2. Temperature in degree Centigrade.

Then use the following code [2] to model the data in a linear regression model. Visual studio 2019 was
used as the Integrated Development environment.

= = Start of python ML Code snippet ==== ====== =

A linear regression learning algorithm example using TensorFlow library.

Author: Aymeric Damien

Project: https://github.com/aymericdamien/TensorFlow-Examples/
from __future__ import print_function

import tensorflow as tf

import numpy

import matplotlib.pyplot as plt

rng = numpy.random

Parameters

learning_rate = 0.01

training_epochs = 1000

URL:http://dx.doi.org/10.14738/tmlai.72.6447 | 66 |

http://dx.doi.org/10.14738/tmlai.72.6447

Transactions on Machine Learning and Artificial Intelligence Volume 7, Issue 2, April 2019

display_step =50
Training Data
Change the following data as per the requirement

train_X =
numpy.asarray([13.47,13.48,13.49,13.50,13.51,13.52,13.53,13.54,13.55,13.56,13.57,13.58,13.59,14.00,
14.01,14.02,14.03,14.04,14.05,14.06,14.07,14.08,14.09,14.10,14.11,14.12,14.13,14.14,14.15,14.16,14.1
7,14.18,14.19,14.20,14.21,14.22,14.23,14.24,14.25,14.26,14.27,14.28,14.29,14.30,14.31,14.32,14.33,14.
34,14.35,14.41,14.42,14.43,14.44,14.45,14.46,14.47,14.48,14.49,14.50,14.51,14.52,14.53,14.54,14.55,1
4.56,14.57,14.58,14.59,15.00,15.01,15.02,15.03,15.04,15.05,15.06,15.07,15.08,15.09,15.10,15.11,15.12,
15.13,15.14,15.15,15.16,15.17,15.18,15.19,15.20,15.21,15.22,15.23,15.24,15.25,15.26,15.27,15.28,15.2
9,15.30,15.31,15.32,15.33,15.34,15.35,15.41,15.42,15.43,15.44,15.45,15.46,15.47,15.48,15.49,15.50,15.
51,15.52,15.53,15.54,15.55,15.56,15.57,15.58,15.59,16.00,16.01,16.02,16.03,16.04,16.05,16.06,16.07,1
6.08,16.09,16.10,16.11,16.12,16.13,16.14,16.15,16.16,16.17,16.18,16.19,16.20,16.21,16.22,16.23,16.24,
16.25,16.26,16.27,16.28,16.29,16.30,16.31,16.32,16.33,16.34,16.35,16.41,16.42,16.43,16.44,16.45,16 .4
6,16.47,16.48,16.49,16.50,16.51,16.52,16.53,16.54,16.55,16.56,16.57,16.58,16.59,17.00,17.01,17.02,17.
03,17.04,17.05,17.06,17.07,17.08,17.09,17.10,17.11,17.12,17.13,17.14,17.15,17.16,17.17,17.18,17.19,1
7.20,17.21,17.22,17.23,17.24,17.25,17.26,17.27,17.28,17.29,17.30,17.31,17.32,17.33,17.34,17.35,17.41,
17.42,17.43,17.44,17.45])

train_Y =
numpy.asarray([73.35,76.87,70.71,68.95,68.95,68.07,72.47,69.83,69.83,66.31,75.11,75.11,62.79,64.55,
64.55,75.99,62.79,75.11,68.07,71.59,64.55,75.11,66.31,75.11,71.59,61.91,59.27,72.47,72.47,61.91,74.2
3,70.71,65.43,62.79,72.47,63.67,70.71,67.19,73.35,61.91,68.07,72.47,72.47,72.47,73.35,71.59,70.71,75.
99,60.15,72.47,68.95,76.87,71.59,75.99,68.95,69.83,68.95,73.35,60.15,73.35,73.35,75.11,67.19,62.79,7
0.71,68.07,63.67,68.95,76.87,75.11,75.11,72.47,68.95,69.83,76.87,70.71,75.99,75.11,63.67,72.47,59.27,
75.99,57.51,71.59,73.35,58.39,63.67,66.31,75.99,72.47,73.35,68.07,57.51,72.47,68.95,76.87,75.99,67.1
9,61.91,69.83,64.55,58.39,75.99,70.71,76.87,64.55,61.03,70.71,76.87,76.87,61.91,72.47,72.47,70.71,61.
03,73.35,61.03,69.83,68.07,76.87,68.07,60.15,61.91,64.55,67.19,64.55,65.43,61.91,61.03,70.71,61.03,6
8.07,76.87,75.99,65.43,75.11,74.23,68.95,76.87,70.71,59.27,60.15,75.99,72.47,72.47,67.19,69.83,68.07,
69.83,62.79,69.83,75.99,69.83,72.47,72.47,72.47,73.35,75.11,70.71,68.95,61.03,61.03,71.59,70.71,71.5
9,68.95,66.31,61.03,75.11,73.35,70.71,73.35,61.03,72.47,72.47,71.59,68.95,72.47,67.19,74.23,72 .47 ,69.
83,70.71,69.83,72.47,61.03,71.59,63.67,67.19,75.11,69.83,71.59,68.95,71.59,74.23,60.15,59.27,62.79,7
0.71,72.47,69.83,69.83,70.71,70.71,70.71,70.71,69.83,68.07,66.31,73.35,61.03,72.47,75.11,68.95,74.23,
69.83,69.83,68.07,70.71])

n_samples = train_X.shape[0]
tf Graph Input
X = tf.placeholder("float")

Y = tf.placeholder("float")

Set model weights

Copyright © Society for Science and Education United Kingdom

Abhinandan H. Patil; Demonstration of Machine Learning Capabilities on Internet of Things Devices. Transactions
on Machine Learning and Artificial Intelligence, Volume 7 No 2 April (2019); pp: 63-72

W = tf.Variable(rng.randn(), name="weight")

b = tf.Variable(rng.randn(), name="bias")

Construct a linear model

pred = tf.add(tf.multiply(X, W), b)

Mean squared error

cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

Gradient descent

Note, minimize() knows to modify W and b because Variable objects are trainable=True by default

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

Initialize the variables (i.e. assign their default value)

init = tf.global_variables_initializer()

Start training

with tf.Session() as sess:

Run the initializer

sess.run(init)

Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):

sess.run(optimizer, feed_dict={X: x, Y: y})

Display logs per epoch step

if (epoch+1) % display_step ==0:
¢ = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \

"W=", sess.run(W), "b=", sess.run(b))

URL:http://dx.doi.org/10.14738/tmlai.72.6447 | 65 |

http://dx.doi.org/10.14738/tmlai.72.6447

Transactions on Machine Learning and Artificial Intelligence Volume 7, Issue 2, April 2019

print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})

print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')

Graphic display

plt.plot(train_X, train_Y, 'ro', label='Original data')

plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()

plt.show()

Testing example, as requested (Issue #2) KINDLY IGNORE THIS FOR TIME BEING
test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91,5.7,8.7, 3.1, 2.1])

test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])

print("Testing... (Mean square loss Comparison)")
testing_cost = sess.run(
tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
feed_dict={X: test_X, Y: test_Y}) # same function as cost above
print("Testing cost=", testing_cost)
print("Absolute mean square loss difference:", abs(

training_cost - testing_cost))

plt.plot(test_X, test_VY, 'bo’, label='Testing data')

plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label="Fitted line')
plt.legend()

plt.show()

End of python ML code snippet

No changes were made to this code. Only data set was modified to suit the needs. However, python3,
TensorFlow, matplotlib and tk libraries were installed to make the code work. The same thing was tried
on Kbuntu 18.10 without IDE and performance was much superior. The mentioned job can be done with

Copyright © Society for Science and Education United Kingdom m

Abhinandan H. Patil; Demonstration of Machine Learning Capabilities on Internet of Things Devices. Transactions

on Machine Learning and Artificial Intelligence, Volume 7 No 2 April (2019); pp: 63-72

Weka as well [3]. The data was put in the comma separated value file. It was noticed that the Weka did

the same job but with lot of ease.

4 Results

4.1 TensorFlow Output
Y

- - (1] LI (1] ® Origmal data
. . e see — Fitted line:

#€d +Q= B

Figure 4. TensorFlow OutPut for Experiment

4.2 Weka Output

A 13:47 INomb _‘J i 73,35 (] .‘J
= L
| Cobour; T35 iNrm] ‘J | Sebext Intince *
t Clear Gen sie et

Plo: trimfahrenheit

-

Figure 5. Weka OutPut for given Experiment

URL :http://dx.doi.org/10.14738/tmlai.72.6447

http://dx.doi.org/10.14738/tmlai.72.6447

Transactions on Machine Learning and Artificial Intelligence Volume 7, Issue 2, April 2019

APPENDIX A

Disclaimer: The temperature data was collected at Belgaum, Karnataka, India at room-temperature with
ceiling fan on and may not be the exact readings. Further the data was collected using the USB port
interfaced with the Windows 10 and Arduino IDE on COM3 port. The error rate was noticed to be high.

APPENDIX FOR ETL

Sample output from Arduino COM3 port:
13:47:36.282 -> in DegreeC= 22.97
13:47:36.282 -> in Fahrenheit= 73.35
13:48:36.290 -> in DegreeC= 24.93
13:48:36.324 -> in Fahrenheit= 76.87
13:49:36.326 -> in DegreeC= 21.51
13:49:36.326 -> in Fahrenheit= 70.71
13:50:36.311 -> in DegreeC= 20.53
13:50:36.345 -> in Fahrenheit= 68.95
13:51:36.335 -> in DegreeC= 20.53
13:51:36.335 -> in Fahrenheit= 68.95
13:52:36.347 -> in DegreeC= 20.04
13:52:36.347 -> in Fahrenheit= 68.07
13:53:36.344 -> in DegreeC= 22.48
13:53:36.378 -> in Fahrenheit= 72.47
13:54:36.356 -> in DegreeC= 21.02
13:54:36.389 -> in Fahrenheit= 69.83
13:55:36.368 -> in DegreeC= 21.02
13:55:36.402 -> in Fahrenheit= 69.83
13:56:36.392 -> in DegreeC= 19.06
13:56:36.392 -> in Fahrenheit= 66.31
13:57:36.403 -> in DegreeC= 23.95

13:57:36.403 -> in Fahrenheit= 75.11
1) cat veryimpdump.txt | awk '/Fahrenheit/ {print}'| sed 's/-> in Fahrenheit=/,/g' > Fahrenheit.txt

2) cat veryimpdump.txt | awk '/DegreeC/ {print}'| sed 's/-> in DegreeC=/,/g' > DegreeC.txt
3) cat DegreeC.txt | sed's/.[0-9]\{3\}//g'

Copyright © Society for Science and Education United Kingdom

Abhinandan H. Patil; Demonstration of Machine Learning Capabilities on Internet of Things Devices. Transactions
on Machine Learning and Artificial Intelligence, Volume 7 No 2 April (2019); pp: 63-72

4) cat Fahrenheit.txt | sed 's/.[0-9]\{3\}//g'

5) Manual process to remove insignificant time lines

6) cat afterhours.txt | awk '/Fahrenheit/ {print}'| sed 's/-> in Fahrenheit=/,/g'| sed 's/.[0-9]\{3\}//g'

7) cat train.csv | awk '{print S1 $2}'| grep -v 'AS' | paste -s -d"," | sed 's/,,/,/g'

8) cat train.csv | awk '{print $3}' | sed -e :a -e 'N;s/\n/,/;ba'

(1]

(2]

3]

(4]

REFERENCES

CircuitsToday.2019. CircuitsToday. Retrieved from CircuitsToday:
http://www.circuitstoday.com/Im35-and-arduino-interfacing

Daimen, A. 2019. Americ. From Americ: https://github.com/aymericdamien/TensorFlow-
Examples

Edu, K. 2019. Kean Edu. From Kean Edu: https://www.kean.edu/~fosborne/bstat/09rc.html

Weka. 2019. University of Waikato. From University of Waikato:
https://www.cs.waikato.ac.nz/ml/weka/

URL:http://dx.doi.org/10.14738/tmlai.72.6447

http://dx.doi.org/10.14738/tmlai.72.6447
http://www.circuitstoday.com/lm35-and-arduino-interfacing

	Demonstration of Machine Learning Capabilities on Internet of Things Devices
	ABSTRACT
	1 Introduction
	2 Temperature Sensor using the LM 35 Arduino Uno
	3 Experiment
	4 Results
	4.1 TensorFlow Output
	4.2 Weka Output

	APPENDIX A
	References
	[4] Weka. 2019. University of Waikato. From University of Waikato: https://www.cs.waikato.ac.nz/ml/weka/

