

DOI: 10.14738/tmlai.72.6234
Publication Date: 17th Mar, 2019
URL: http://dx.doi.org/10.14738/tmlai.72.6234

 Volume 7 No 2

A New Indexing Method for Uncertain Databases

Guang-Ho Cha
Department of Computer Engineering, Seoul National University of Science and Technology,

Republic of Korea
ghcha@seoultech.ac.kr

ABSTRACT

This paper presents an indexing method called the uncertain data index (UD-index) for uncertain
databases. The design objectives of the UD-index are improving the range query performance of the
multidimensional indexing methods and providing a compromise between optimal index node clustering.
Although more than ten years of database research has resulted in a great variety of multidimensional
indexing methods, most efforts have focused on the data-level clustering and there has been no attempt
to cluster index nodes themselves in dynamic environments. As a result, most related index nodes are
widely scattered on the disk due to dynamic page allocation, and it requires many random disk accesses
during the range search. The UD-index avoids that by storing the related nodes contiguously in a segment
that contains a sequence of contiguous disk pages. The UD-index improves the range query performance
by offering high-performance sequential disk access within a segment. A new cost model is introduced to
estimate the range query performance. It takes into consideration the physical adjacency of pages read
as well as the number of pages accessed. The analytic performance analysis indicates that the UD-index
shows better performance than the traditional indexing methods in most cases.

Keywords: Uncertain database; Multidimensional index; Range query; Index clustering; Sequential disk
access.

1 Introduction
More than ten years of database research have resulted in a great variety of multidimensional indexing
methods to support range queries, for example, R*-tree [1], X-tree [3], M-tree [5], R-tree [11], LSD-tree
[12], TV-tree [15], grid file [18], K-D-B-tree [20], buddy-tree [21], and so on. A recent comprehensive
survey on the multidimensional indexing methods can be found in [9]. Several characteristics are common
to the existing multidimensional indexing methods:

o They have nodes whose size is a page,
o The size of a page is relatively small, e.g., 4 KB,
o They are dynamic,
o They do not exploit the clustering of index nodes,
o They use disk pages as the clustering unit and do not take into consideration the physical

adjacency of individual pages.

The traditional page-based index structures do not satisfy the requirements for the multidimensional long
range retrievals. The reasons are as follows: (1) Traditional 4 KB index pages are too small to handle the

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 2, Apr i l 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 47

multidimensional long range retrievals efficiently. Our performance analysis and experimental results will
justify this statement. Recent article by Gray and Graefe [10] indicated that the range of 8 KB to 32 KB are
preferable to smaller and larger index page sizes for current devices. (2) However, simple larger index
pages may consume much disk bandwidth. (3) They have to access many index pages randomly because
the index pages are widely scattered on the disk due to dynamic page allocation. (4) To avoid the
performance degradation due to many random disk accesses, the related index nodes have to be
clustered. However, existing indexing methods do not take into account the index clustering. They take
into consideration only the clustering (or partition-ing) of data objects. Moreover, the dynamic index
clustering requires the on-line index reorganizations, and the overhead of the global index reorganization
is excessive. (5) They measure the search performance by the average number of disk page accesses, and
do not take into consideration the physical adjacency of individual pages.

To overcome the drawbacks of the existing multidimensional indexing methods, we propose the
segmented page indexing (UD-index) technique. The UD-index is based on the concept of segments. The
UD-index considers the disk to be partitioned into a collection of segments. Each segment consists of a
set of L contiguous pages on disk. A segment is the unit of clustering in the UD-index. Thus all disk pages
in a segment can be read by a single disk sweep, and thus it saves much disk startup and seek time. In the
UD-index, all disk pages are addressed by a pair of (segment no, page no). This address-ing scheme means
that we can access disk in page unit as well as in segment unit. When random accesses are required or
when query ranges are very small, page-based disk ac-cesses can be used instead of segment-based
accesses.

2 Related Work
The concept of the segment is similar to the idea of the multi-page block used in the SB-tree [19] and the
bounded disorder (BD) access method [16, 17], which are variants of the B-trees, in the sense that they
accommodate a set of contiguous pages and support multi-page disk accesses. However, this concept has
not been applied to the multidimensional indexing methods because it might consume the disk bandwidth
excessively with increas-ing dimensionality. As an instance, let us suppose that a query range overlaps
only a half on each dimension of the data region occupied by a segment. Then the wasteness of the disk
bandwidth caused by reading a segment instead of reading individual pages is ½ (= 1 - ½) in one-
dimensional case, while it is 1 - (½)d in d-dimensional case. In fact, however, the multi-page disk reads
such as segment reads are more needed in high dimensions be-cause the probability that the query range
overlaps with the regions covered by the index nodes increases with the dimensionality due to the sparsity
of the domain space, and thus more disk pages are required to be read in higher dimensions. In addition,
unlike the multi-page blocks used in the B-trees in which all index nodes as well as all data objects have
total ordering among themselves, the index nodes within segments for multidimensional indexing
methods have no linear order among them. This makes the design and mainte-nance, such as partitioning
and merging, of the segments in the multidimensional indexing method more difficult than those of the
multi-page block in the B-trees.

The concept of segments has also some similarity to supernodes of the X-tree [3]. The supernodes are
extended nodes over the usual page size, and thus the read of a large su-pernode at a time can be
performed. In contrast to the segment which consists of smaller pages, the supernode is a larger node
with variable size designed to avoid splits in the in-ternal nodes. Thus, in the X-tree, larger supernodes are
always read regardless of the exact match query or the range query, while, in the UD-index scheme,

Guang-Ho Cha; A New Indexing Method for Uncertain Databases. Transactions on Machine Learning and Artificial
Intelligence, Volume 7 No 2 April (2019); pp: 46-55

URL:http://dx.doi.org/10.14738/tmlai.72.6234 48

segments or pages can be read selectively depending on the query type. Additionally, the supernodes are
applied only to the internal nodes of the index tree in order to maintain efficient internal index structures.

With respect to the index clustering, the UD-index also has some similarity to the bulk loading of
multidimensional indexes [4]. However, in contrast to the UD-index which is a generic dynamic index
structure creation method, the bulk loading is applied to the creation of initial index structure. In other
words, the bulk loading assumes the initially empty index structure but the UD-index can be used
dynamically in any time of the in-dex creation.

3 The UD-index

3.1 The Structure of the UD-index
The UD-index considers the disk to be partitioned as a collection of segments. Segments are separated
into index segments and data segments. The index segments accommodate in-ternal nodes of the index
tree and the data segments hold the leaf nodes. The reason why we separate the segments into two kinds
is two folds: it simplifies the design of the index structure and it encourages the upper part of the index
structure to reside in the main memory when we cache the index into the main memory. We call the index
segment i-segment and the data segment d-segment.

Each segment consists of a set of L contiguous pages on disk (which can be read or written with a single
sweep of the disk arm). In our implementation and experiments, we took L = 16. From the first page
encountered by the disk head in reading and writing a segment to the last one in the segment, the pages
are numbered 1, 2, …, L. A segment has the following properties:

o A segment consists of a set of L nodes which reside on contiguous pages on disk. The number L is
called the fanout of a segment.

o K, 1 ≤ K ≤ L, nodes falling in a segment are filled contiguously from the beginning of the
segment.Re-rank the search results according to our algorithm.

o The UD-index reads K nodes from a segment at a time rather than all L nodes, and it saves the
bandwidth.

o Every node of the UD-index sits on segments.
o Leaf nodes reside in the d-segments and internal nodes are in the i-segments.

3.2 Building the UD-index
The UD-index has a hierarchical node structure. As usual for index structures which support spatial
accesses for point data, the UD-index divides the data space into pairwise disjoint data cells. With every
data cell a data page is associated, which stores all objects contained in the cell. In this context, we call a
data cell a directory region.

When the first entry of an UD-index is inserted, a single page of the d-segment is allocated for the first
node of the UD-index. This node is a root node as well as a leaf node. We assume that the range of each
dimension is 0 to 100, and a pair of numbers on the directory regions indi-cates (d-segment number, page
number). Successive entries are added to this node until an insert forces a split in the root node. This node
is then split into two leaf node pages which occupy page 1 and page 2 of the d-segment 1. An i-segment
is allocated and the first page of the i-segment is assigned for new root node. The root node now contains
a single separator and two pointers. A separator contains the information about the split dimension and

http://dx.doi.org/10.14738/tmlai.72.6234

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 2, Apr i l 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 49

the split position in the dimension. The split is performed in dimension 1 at position 60. With subsequent
insertions, overflows are occurred in the d-segment 1 and they cause the node split. Whenever a node
split occurs, the UD-index looks for an empty page on the segment containing the node receiving the
insert. This will be the page number K+1 in the containing segment, where K nodes already exist. We keep
the infor-mation in the index header which tells us how many pages are occupied in each segment. If an
empty page exists, we place the new node created by the split on that page. If there is no empty page in
the segment, then a segment split is necessary. A new segment S is allocated, and the overfull segment R
containing the splitting node is read into the memory. Then the L+1 nodes of the segment are distributed
into two segments.

3.3 Segment Split Strategy
An important part of the insertion algorithm of the UD-index is the segment split strategy which
determines the split dimension and the split position. First, the UD-index finds the internal node u which
(directly or indirectly) plays a role of root for the overfull segment R. The separator of the internal node u
has the dimension and the position to split the segment R. For example, if a new entry is inserted into the
page (1, 1) and it causes the d-segment 1 to overflow, the UD-index finds the internal node which plays a
role of root of the d-segment 1. Since the UD-index maintains an array to save the traversal path from the
root of the UD-index to the target page where a new entry to be inserted, it is not difficult to find the
internal node that plays a role of root for the overfull segment. Starting from the root of the UD-index,
we check if the overfull segment can be split into two when we apply the separator (split dimension and
split position) of the current internal node to split the segment. If the segment can be split using the
separator, the corresponding internal node is selected as the root node of the overfull segment, and the
segment is split. The data pages belonging to the right children of u are reallocated to the front positions
of a new segment S, and the remaining pages are moved forward so that they fall on the front pages of
the segment R. As a result of this segment split strategy, the data pages under the same internal node are
collected in the same segment.

4 Cost Model for the UD-Index
One common characteristic of traditional indexing schemes is that the average number of disk pages
accessed is used as a performance estimator, and the design goal is to minimize it. These schemes assume
that each page access takes one disk I/O, and the total access time is measured by multiplying the number
of accessed pages by the average access time per page. Hence, they do not consider the actual
performance based on the relative positions of accessed pages, which may result in non-uniform access
time for individual pages. In this section, we present a cost model to estimate the performance of the UD-
index. The cost model distinguishes whether the pages accessed were stored sequentially or randomly.
Table 1 gives the summary of symbols and their definitions used in this section.

4.1 Search Cost

In our cost model, we assume that a segment needs one disk I/O by multi-page read. The search cost (Cq)
for processing the query q can be estimated by

 (1)

where m is the number of disk accesses and Cj is the cost of the j-th disk access. A simple
model for the cost Cj of a single disk access is given as follows:

∑
=

=
m

j
jCC

1
q

Guang-Ho Cha; A New Indexing Method for Uncertain Databases. Transactions on Machine Learning and Artificial
Intelligence, Volume 7 No 2 April (2019); pp: 46-55

URL:http://dx.doi.org/10.14738/tmlai.72.6234 50

 Disk Access Cost = Disk Access Time + Transfer Size / Disk Transfer Rate

Table 1. Average over 6 types of range queries.

Symbols Definitions
q
qi

E(q)
N
n
nl
ns
d
xij

f
Sp
Ss

Se

Up
Us

Cq

Cs

DAr

DAi

 range query with sides q
 length of the query region in the i-th dimension
 average number of nodes accessed by range query q
 number of objects in the database
 number of pages (or segments) in the index tree
 number of leaf nodes in the index tree
 number of segments in the index tree
 dimensionality of the domain space
 length of the directory region of node j in the i-th dimension
 fanout of a page
 size of a page
 size of a segment
 size of a data entry
 storage utilization of a page
 storage utilization of a segment
 search cost (Cq) for the range query q
 access cost for a segment
 number of disk accesses needed to locate a specific entry on

the leaf level
 b f di k d d t i t t i t th

 Let ∆A be the average disk access time (seek time + latency time), ∆Sj be the transfer size for the j-th
disk access, and ∆R be the disk transfer rate. Then, Equation (1) would be

According to today’s device technology [10], reading a 2 KB page from a disk with 10 ms average disk
access time and 10 MB/sec transfer rate incurs 10.2 ms of disk access cost. Using these representative
values, we set ∆A = 10 ms and ∆R = 10 KB/ms. Then, the search cost Cq in ms is given by

where the size unit of ∆Sj is 1KB and m is the number of (random) disk accesses.

The expected number E(q) of disk pages accessed by the range query q is usually modeled by means of
the so-called Minkowski sum which transforms the range query into an equivalent point query by
enlarging the directory regions of the page accordingly [2, 7]. To determine the probability that the
directory region of a page intersects the query region, we consider the portion of the data space in which
the center point of the query must be located such that query and directory region intersect. Therefore
we move the center point of the query to each point of the data space marking the positions where the
query rectangle intersects the directory region (see Figure 1). The resulting set of marked positions is
called the Minkowski sum which is the original directory region having all sides enlarged by the query side

length qi, 1 ≤ i ≤ d, d is the dimensionality of the domain space. Taking into account that the volume of
the data space is 1, the Minkowski sum directly corresponds to the intersection probability. Then the

∑
= ∆

∆
+∆=

m

j

j

R
S

AC
1

)(q
 (2)

 (4) ∑∏
= =

+=
n

j

d

i
iij qxE

1 1

)()(q

∑
=

∆⋅+=
m

j
jSC

1
)0.1(10q (3)

http://dx.doi.org/10.14738/tmlai.72.6234

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 2, Apr i l 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 51

expected number E(q) of disk pages accessed by the range query q on the d-dimensional unit domain
space is given by the following formula

where xij is the length of the directory region of node j in the i-th dimension, qi is the length of the query
region in the i-th dimension, and n is the number of pages (or segments) in the index tree. Thus, the search
cost Cq for range query q is given by Equation (1), and m in Equation (1) is determined by the Equation (4).

4.2 Insertion Cost
Insertion of a new entry into a multidimensional index tree entails, at a minimum, searching from the root
for the proper leaf location, placing the new entry in the leaf node, and writing back the modified leaf
node. Thus, the number of disk accesses is at least DAr + 1, where DAr is number of disk accesses needed
to locate a specific entry on the leaf level. We can assume that the leaf node may have no room for the
new entry, and a split occurs with probability Psplit. In this case, we must move about half of the entries of
the splitting node into a new buffer page, and write the newly created leaf node and the overflowed node
with the remained half of the entries out to a disk (two page write). In addition, we must write the parent
node out with a new separator (a page write). At this point, the expected number of disk accesses DAi for
an insertion is DAr + 1 + Psplit ⋅ 3. Now when the new separator for the split is inserted in the parent index
node, this results in a split in the parent node with probability Ppsplit. We ignore the event of higher level
node splits since the probability Ppsplit is small in most real situations. Then total number of disk accesses
DAi for an insertion in the conventional multidimensional index tree is

 DAi(conv) = DAr + 1 + Psplit ⋅ 3 (5)

Now consider the case of an insert to an UD-index. When a page split occurs, we may find no page on the
containing segment to take the new leaf node. Thus, with probability Pssplit, we have to read in the entire
segment (L), allocate a new segment, move about a half (L/2) of nodes to it and write it out, and then
move forward about a half (L/2) of nodes remaining in the overfull segment and write back the segment
to the disk. We also write the parent node out with a new separator (a page write). We note that the
contribution to the cost of insert as a result of a leaf level segment split occurs only with probability Psplit ⋅
Pssplit. We also ignore the event of higher level segment split since the probability Psplit ⋅ Ppsplit ⋅ Pssplit is
extremely low. Then total number of disk accesses DAi for an insertion in the UD-index is

 DAi(UD) = DAr + 1 + Psplit (1 + Pssplit ⋅ (L + 2 ⋅ L/2)) (6)

data space

directory

region

query
rectangle

Minkowski
sum

query
center

Figure 1. Minkowski sum

Guang-Ho Cha; A New Indexing Method for Uncertain Databases. Transactions on Machine Learning and Artificial
Intelligence, Volume 7 No 2 April (2019); pp: 46-55

URL:http://dx.doi.org/10.14738/tmlai.72.6234 52

Taking some typical values of index page fanout f1 = 300, segment fanout f2 = 16 (i.e., L = 16), and 70%
storage utilization for each page and segment, we have the probability Psplit is about 1/(300 ⋅ 0.7) ≈ 0.0048
and the probability Pssplit is about 1/(16 ⋅ 0.7) ≈ 0.0893. Thus, DAi(conv) is DAr + 1.0144 and DAi(UD) is DAr
+ 1.0185. In the estimate of disk accesses for an insert, the number of additional disk accesses due to the
UD-index is only 0.0041, an insignificant addition. This result shows that the update cost of the UD-index
is comparable to the conventional indexing methods.

4.3 Segment Size
The size of a segment determines its retrieval cost and fanout (number of pages per segment). We choose
the segment size which minimizes the search cost Cq in Equation (3). Using Equation (3) with m = 1, single
segment access costs for various segment sizes can be computed as shown in Table 2.

Table 2. Single segment access cost on various segment size

Segment Size (KB) 4 8 16 32 64 128

Segment Access Cost (ms) 10.4 10.8 11.6 13.2 16.4 22.8

Now let’s look at the range query costs using various sizes of segments based on our experimental
database. Consider a database with following characteristics:

d = 2, N = 1000000, Se = 12 bytes, Sp = 4 KB, Ss = 64 KB, Up = 70%, Us = 70%.

Then a 4 KB index page will contain

238 entries (= (4×1024×0.7) ⁄ 12), i.e., f = 238.

The number of leaf nodes in the index tree is

4202 (= 1000000 ⁄ 238), i.e., nl = 4202.

We only consider leaf nodes because nonleaf nodes are less than 1% of the total number of nodes in the
index tree in most cases. Then the number of segments in the index tree is

376 (= 4202 ⁄ (16 × 0.7)).

The area covered by a single segment in a unit domain space is

(1⁄376)1/2 = 0.0516

Given a range query q with the area of 1% of the whole domain space, the length of each side of the query
window is 0.1. Then the expected number E(q) of segments accessed by the range query q is

376 ⋅ (0.0516 + 0.1)2 = 8.64.

Thus, from Equation (3), the expected cost to process a range query with 1% range of whole data space is

38.71 ms (= 8.64 × (10ms + 64 × 0.7 × 0.1ms)).

Table 3 summarizes the range query processing costs for 4 KB page and various sizes of a segment from 4
KB to 256 KB. The query range varies from 0.01% to 10% of the whole domain space. The 0.01%, 0.1%,
1%, and 10% shown in the first row of each Table denote the sizes of the query range. The shape of a
query is assumed to be a square, i.e., the length of the query window in each dimension is same. The qi in
the third column in each Table denotes the length of the query window in the i-th dimension. Since Gray

http://dx.doi.org/10.14738/tmlai.72.6234

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 2, Apr i l 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 53

and Graefe [10] indicated that 16 KB is a good size for index pages, we also computed the range query
costs for a 16 KB page and various sizes of a segment, and summarized them in Table 4.

Table 3. Range query processing cost for 4KB page size and various segment sizes

Ss
(KB) ns qi Cs

E(q)
0.01%

E(q)
0.1%

E(q)
1%

E(q)
10%

Cq
0.01%

Cq
0.1%

Cq
1%

Cq
10%

4 4202 0.015
4

10.40 2.71 9.28 55.96 462.0
5

28.2 96.5 582.0 4805.
3

8 3002 0.018
3

10.56 2.40 7.48 42.01 335.8
9

25.3 79.0 443.6 3547.
0

16 1501 0.025
8

11.12 1.92 4.95 23.75 175.5
6

21.4 55.0 264.1 1952.
2

32 751 0.036
5

12.24 1.62 3.48 13.99 93.42 19.8 42.6 171.2 1143.
5

64 376 0.051
6

14.48 1.43 2.60 8.64 50.86 20.7 37.6 125.1 736.5

128 188 0.073
0

18.96 1.30 2.06 5.63 28.48 24.6 39.1 106.7 540.0

256 94 0.103
1

27.92 1.20 1.71 3.88 16.53 33.5 47.7 108.3 461.5

Table 4. Range query processing cost for 16KB page size and various segment sizes

Ss (KB) ns qi Cs
E(q)

0.01%
E(q)
0.1%

E(q)
1%

E(q)
10%

Cq
0.01%

Cq
0.1%

Cq
1%

Cq
10%

16 1047 0.0309 11.6 1.75 4.09 17.94 126.14 20.3 47.4 208.1 1463.2

32 748 0.0366 12.24 1.62 3.48 13.96 93.10 19.8 42.6 170.9 1139.5

64 374 0.0517 14.48 1.42 2.60 8.61 50.62 20.6 37.6 124.7 733.0

128 187 0.0731 18.96 1.29 2.05 5.60 28.34 24.5 38.9 106.2 537.3

256 94 0.1031 27.92 1.20 1.71 3.88 16.53 33.5 47.7 108.3 461.5

Considering only the index page size, the performance of the indexing using 16 KB pages is better than
that of the indexing using small 4 KB pages in all example cases. This result is consistent with the statement
of the Gray and Graefe. Comparing the segment-based indexing with the page-based indexing, the
performance of the segment-based indexing is far better than that of the page-based indexing in all
example cases. The indexing with Ss = 4KB in Table 3 and Ss = 16 KB in Table 4 are in fact the page-based
indexing with those sizes of pages.

When we consider an optimal segment size, it differs according to the size of the query range. For
example, while a 64 KB segment is the best when the query range is 0.1% of the whole data space, a 256
KB segment is the best when the query range is 10% of the whole data space.

In summary, segment sizes in the range of 32 KB to 256 KB are preferable to smaller and larger segment
sizes. However, since disks are predicted to have larger transfer rates as the device technology advances,
larger segment (> 32 KB) will be preferable.

5 Conclusion
We have introduced the UD-indexing method and the cost model for range queries and insertions in
multidimensional data spaces. Both the theoretical performance analysis and the experimental results

Guang-Ho Cha; A New Indexing Method for Uncertain Databases. Transactions on Machine Learning and Artificial
Intelligence, Volume 7 No 2 April (2019); pp: 46-55

URL:http://dx.doi.org/10.14738/tmlai.72.6234 54

demonstrate that in most cases the UD-indexing is superior to traditional multidimensional indexing
methods for range queries. For random queries such as exact-match queries and k-nearest neighbor
queries, there is almost no performance difference between the UD-index and the LSDh-tree when the
page-based access is used. In addition, the performance degradation for updates in the UD-index is
negligible. The superiority of the UD-indexing increases greatly as the dimensionality of the domain space
in-creases and the query range grows. High dimensionality and long range retrievals are quite common in
today’s environments such as multimedia databases. The performance ad-vantage of the UD-indexing to
traditional indexing methods was revealed up to several times in experiments depending on the data set
and the size of range queries. In addition, it has been demonstrated that using larger pages (e.g., 16 KB)
is more efficient for range queries than using traditional smaller pages (e.g., 4 KB). The performance
advantage of the UD-indexing comes from saving much disk startup time. Moreover, storing a sequence
of index pages contiguously within a segment provides a compromise between optimal index node
clustering and the excessive full index reorganization overhead. Thus, the UD-indexing methods may be
used as an alternative index clustering scheme. The UD-indexing is so generic that it can be applied to any
multidimensional indexing methods.

ACKNOWLEDGEMENTS

This research was financially supported by Seoul National University of Science and Technology (2018-
0237).

REFERENCES

[1]. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: An efficient and robust access method
for points and rectangles,” Proc. of ACM SIGMOD International Conference on Management of Data, pp. 322-
331, 1990.

[2]. S. Berchtold, C. Boehm, D.A. Keim, and H.-P. Kriegel, “A Cost Model for Nearest Neighbor Search in High-
Dimensional Data Space,” Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
System, pp. 78-86, 1997.

[3]. S. Berchtold, D.A. Keim, H.-P. Kriegel, “The X-tree: An Index Structure for High-Dimensional Data,” Proc. of
the 22nd International Conference on Very Large Data Bases, pp. 28-39, 1996.

[4]. J.v.d. Bercken, B. Seeger, and P. Widmayer, “A Generic Approach to Bulk Loading Multidimensional Index
Structures,” Proc. of the International Conference on Very Large Data Bases, pp. 406-415, 1997.

[5]. P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An Efficient Access Method for Similarity Search in Metric
Space,” Proc. of the International Conference on Very Large Data Bases, pp. 426-435, 1997.

[6]. D. Comer, “The Ubiquitous B-tree,” ACM Computing Surveys, Vol. 11, No. 2, pp. 121-137, 1979.

[7]. C. Faloutsos and I. Kamel, “Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of
Fractal Dimension,” Proc. of SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 4-
13, 1994.

http://dx.doi.org/10.14738/tmlai.72.6234

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 7 , Issue 2, Apr i l 2019

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 55

[8]. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steele, and P. Yanker, “Query by image and video content: the QBIC system,” IEEE Computer, Vol. 28, pp.
23-32, Sep. 1995.

[9]. V. Gaede and O. Gunther, “Multidimensional Access Methods,” ACM Computing Surveys, Vol. 30, No. 2, pp.
170-231, June 1998.

[10]. J. Gray and G. Graefe, “The Five-Minute Rule Ten Years Later, and Other Computer Storage Rules of Thumb,”
ACM SIGMOD Record, Vol 26, No. 4, pp. 63-68, Dec. 1997.

[11]. A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc. of the ACM SIGMOD
International Conference on Management of Data, pp. 47-57, 1984.

[12]. A. Henrich, "The LSDh-tree: An Access Structure for Feature Vectors," Proc. of the 14th International
Conference on Data Engineering, pp. 362-369, 1998.

[13]. D. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, Addison Wesley, Reading, MA,
1973.

[14]. J.-H. Lee, D.-H. Kim, and C.-W. Chung, “Multidimensional Selectivity Estimation Using Compressed Histogram
Information,” Proc. of the ACM SIGMOD International Conference on Management of Data, pp. 205-214,
1999.

[15]. K.-I. Lin, H.V. Jagadish, and C. Faloutsos, “The TV-tree: An Index Structure for High-Dimensional Data,” VLDB
Journal, Vol. 3, No. 4, pp. 517-542, 1994.

[16]. W. Litwin and D.B. Lomet, “The Bounded Disorder Access Method,” Proc. of the IEEE International
Conference on Data Engineering, pp. 38-48, 1986.

[17]. D.B. Lomet, “A Simple Bounded Disorder File Organization with Good Performance,” ACM Transactions on
Database Systems, Vol. 13, No. 4, pp. 525-551, Dec. 1988.

[18]. J. Nievergelt, H. Hinterberger, and K.C. Sevcik, “The grid file: an adaptable, symmetric multikey file structure,”
ACM Transactions on Database Systems, Vol. 9, No.1, pp. 38-71, 1984.

[19]. P.E. O’Neil, “The SB-tree: An Index-Sequential Structure for High-Performance Sequential Access,” Acta
Informatica, Vol. 29, pp. 241-265, 1992.

[20]. J.T. Robinson, “The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes,” Proc. of
the ACM SIGMOD International Conference on Management of Data, pp. 10-18, 1981.

[21]. B. Seeger and H.-P. Kriegel, “The Buddy-tree: An Efficient and Robust Access Method for Spatial Data Base
Systems,” Proc. of the 16th International Conference on Very Large Data Bases, pp. 590-601, 1990.

	A New Indexing Method for Uncertain Databases
	ABSTRACT
	1 Introduction
	2 Related Work
	3 The UD-index
	3.1 The Structure of the UD-index
	3.2 Building the UD-index
	3.3 Segment Split Strategy

	4 Cost Model for the UD-Index
	4.1 Search Cost
	4.2 Insertion Cost
	4.3 Segment Size

	5 Conclusion
	ACKNOWLEDGEMENTs
	References

