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ABSTRACT   

The development of brain-computer interfaces based upon steady-state visual evoked potentials (SSVEP) 
requires the processing of electroencephalogram signals to detect brain activity triggered on the occipital 
region of the scalp caused by visual stimuli. Different algorithms based on stochastic and analytical 
processes have been proposed. However, most of them involve complex transformations and are highly 
susceptible to local errors. The present work presents algorithms based upon population to optimize the 
dimensionality of the characteristics of electroencephalogram signals focusing on SSVEP. Population-
based algorithms are substantiated on the collective behavior of individuals observed in nature, such as 
flocks of birds, fish populations and some microorganisms, in order to find optimal solutions. This work 
shows the algorithms of optimization of particle swarm optimization, ant colony optimization, genetic 
algorithm and differential evolution algorithms in order to generate an optimum subset of features that 
improves the identification of features of electroencephalogram signals. Spectral Density of Power, 
Spectral Coherence methods and the computational cost between these algorithms are presented as 
measure of comparison. 

Keywords: Population-Algorithms; EEG signal processing; BCI-SSVEP; Particle Swarm Optimization; Ants 
Colony Optimization; Genetic Algorithm; Differential Evolution. 

1 Introduction  
One of the most common applications of artificial intelligence (AI) is the search for the optimal solution in 
highly complex problems, both in continuous and discrete spaces. An optimization algorithm is a 
numerical method that finds a value θi ∈ Rn , where 𝑅𝑅n  is an n -dimensional search space, which 
minimizes or maximizes a function J(θ), by way of the systematic selection of values of the variable θi 
possibly with some restrictions. The variable θi can be a scalar or a vector of discrete or continuous values 
called feasible functions, while J(θ) is called the objective function. A feasible solution that minimizes or 
maximizes the objective function is called an optimal solution. One type of optimization problem is the 
one that requires combinations of values, which is called combinatorial optimization (Muñoz, et al., 2008). 

In general, in the study of neurosciences and complex biological systems, it is often necessary to adapt 
mathematical models with a large number of parameters or highly complex data sets (Svensson, et al., 
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2012). Several modern heuristic algorithms have been developed to solve combinatorial and numerical 
optimization problems. These algorithms can be classified into different groups: constructive methods, 
local search or population based. Population-based algorithms are sets of elements that mimic their 
behavior in some phenomenon of nature. These algorithms will be inspired by biological evolutionary 
processes, in which, a population formed by a group of individuals, of one or more generations, contribute 
in some way to significant changes in future generations, these changes are carried out in a non-
deterministic way (Mishra, et al 2013). Population-based algorithms can be classified into two categories: 
evolutionary algorithms (EA), and swarm intelligence algorithms (SI) (Mishra, et al 2013). EA resemble 
natural evolutionary principles to constitute search and optimization procedures. SI algorithms are based 
on collective behavior of decentralized, self-organized natural or artificial systems, the term swarm is used 
in a general way to refer to any collection of individuals interacting and cooperating with one another 
(Mishra, et al 2013). 

Non-invasive brain computer interface (BCI) uses electroencephalogram (EEG) signals to capture the 
electrical activity of the brain associated with some specific activity. BCI systems are based on a variety of 
EEG signal characteristics, including slow cortical powers (SCP), oscillatory activity, P300 potentials, motor 
imaging (IM) and visual evoked potentials (VEP) (Bevilacqua, et al., 2014). In addition, VEP measurements 
have been developed successfully in terms of performance, speed and accuracy; it requires a shorter 
training time, are immune to artifacts (blinking, involuntary movements, etc.) and has better signal-to-
noise ratio. These measurements are known as Steady State Visual Evoked Potential (SSVEP). SSVEPs 
generate a periodic electrical potential difference induced by repetitive visual stimulation, typically at 
frequencies above 6 Hz. The frequency range associated with SSVEP generally comprises the fundamental 
frequency of the visual stimulus, as well as its harmonics (Lin, et al., 20075; Zhang et al., 2014). In addition, 
BCI systems based on SSVEP require few EEG channels for their development (Lalor, et al., 2004; Tello,et 
al., 2015; Valbuena,et al., 2007; Wang & Jung, 2010). 

One of the main areas of study of signal processing in BCI systems is the measure extraction, that consists 
in finding the characteristic elements of the data signal, that is, to determine a characteristic vector from 
a regular vector. A characteristic is a distinctive measure or structural component or a pattern extracted 
from a data segment. The measure extraction scheme is designed to choose the characteristics or 
information that is most important for the classification exercise (Al-Fahoum & Al-Fraihat, 2014). To 
obtain a characteristic vector, the signal will be decomposed into groups of frequencies (brain rhythms), 
each group represent a vector.  

In this work population-based algorithms will be introduced and their possible applications in 
neuroscience are presented. Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Genetic 
Algorithm (GA) and Differential Evolution (DE) will be implemented to measure its behavior in the feature 
extraction process of BCI based SSVEP. 

In order to evaluate the behavior of algorithms, Power Spectral Density (PSD), which shows the average 
power distribution as a function of frequency, as well as the Spectral Coherence (SC) that measures the 
correlation between two signals as a function of the frequency was implemented. 
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2 Materials and Methods 

2.1 Experimentation 
In the present work, the inverse pattern stimulus test is used where graphical patterns are represented 
on a screen by oscillatory alternation. The experiment consists of at least two patterns that alternate in a 
specified number of alternations per second. Patterns are usually colored in black and white, as shown on 
Figure 1; where chessboard patterns are used. All repetitive visual stimuli have diverse properties, such 
as frequency, color and contrast. The stimulus of the chessboard is characterized by the subtended visual 
angle of each mosaic (spatial frequency), the number of changes per second, and the average luminance, 
the size of the board and the contrast of the pattern. Individual graphic stimuli provoke an SSVEP response 
to the frequency during a complete cycle (two alternations), while the actual pattern of inversion stimuli 
causes an SSVEP response to the frequency of an alternation (Zhu, et al., 2010). 

 

 

 

Figure 1. Inverse pattern stimuli, chessboards. 

Bakardjian, Tanaka, and Cichocki (2010) used a single chessboard, which is shown for three sequential 
alternating frequencies (8, 14 and 28 Hz), covering each of the three SSVEP response regions (low, medium 
and high Frequencies) (Regan, 1977). Six replicates of assay were used for each frequency. Each trial 
consisted of 5 s basal (screen black) and 15 s stimulation, the SSVEP ONSET point is at second 5 from 
beginning of the data and the SSVEP OFFSET point is at second 20 from beginning of the data (Bakardjian, 
et al., 2010). 

2.2 Data Recording 
EEG signals were obtained under the experimental design of the Brain Science Institute, Laboratory for 
Advanced Brain Signal Processing (RIKEN), using the 128-channel BIOSEMI system with a sampling 
frequency of 256 Hz (Bakardjian, et al., 2010). For the visualization of the experiment, a vertical refresh 
rate monitor of 170 Hz was used and the users were located to a distance of 90 cm of the monitor. The 
signals used in the present work were acquired from the SSVEP database provided by RIKEN and Dr. 
Hovagim Bakardjian (Bakardjian, et al., 2010; RIKEN). 

2.3 Particle Swarm Optimization (PSO) 
PSO was developed by Kennedy and Eberhart (1995), as an optimization method of nonlinear functions in 
continuous and discrete spaces. PSO is a computational method that optimizes a problem by iteratively 
trying to improve a candidate solution with regard to a given measure of quality (Mojžíš, et al., 2014). 
Based on the simulation of a simple social model of the displacement of schools or flocks as shown on 
Figure 2. In a PSO system, the search is performed using a population of particles that correspond to the 
individuals, each of which represents a candidate solution to the problem. Particles change their state by 
"flying" through the search space until a relatively stable state has been found. Figure 3 shows the particle 
optimization process (Muñoz, et al., 2008). PSO has been used for the development of different areas of 
BCI systems: in signal processing for measure selection, (Atyabi, et al., 2013; Atyabi, et al., 2012; Yu, et al., 
2012); EEG signals classification (Cinar & Sahin, 2013; Escalona-Vargas, et al., 2014; Rajaguru & Prabhakar, 
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2016) as adaptive signal filter (Ahirwal, et al., 2014. Ahirwal, et al., 2012; Yu, et al., 2009) feature 
recognition of EEG (Ma, et al., 2016). PSO as a static classifier in conjunction with neural networks (Sun, 
et al., 2009) and as dynamic classifier (Hema, et al., 2008). 

 

 

 

 

 

 

Figure 2. Representation of a swarm of particles. 

 

 

 

 

Figure 3. Particle optimization process (Ab Wahab et al., 2015).  

Consider each EEG signal as a time series X(n) = (x1, x2, … xN),, with a length N. In PSO the i-th particle 
is treated as a point within an N-dimensional space, represented by Xi = (xi1, xi2, … , xiN). The best 
position found by the particle, this means, the one where the best value in the cost function was obtained, 
is represented as pi = (pi1, pi2, … , piN). The best position found by the total population is represented 
by g. The rate of change of position (velocity) for a particle i is represented as vi = (vi1, vi2, … , viN). The 
particles are manipulated according to equations (1) and (2), where c1 and c2 are two positive constants, 
R1 and R2 are two random numbers in the range of [0 1], and w is the inertial weight (Ab Wahab et al., 
2015). 

 

vin(t + 1) = wvin(t) + c1R1�pin − xin(t)� + c2R2 �pgn − xin(t)�  (1) 

 

xin(t + 1) = xin(t) + vin(t + 1) (2) 
 

Eq. (1) calculates the new velocity of the particle in relation to its previous speed and the distances from 
its current position to its best position and the best position within the group. Then, the particle moves to 
a new position according to Eq. (2). The inertial weight w, formulated by Shi and Eberhart (1998), is used 
to control the impact of the previous velocities on the current velocity, influencing the change between 
the global (wide range) or local (short range) particles (Muñoz, et al., 2008). 

A feature of the PSO algorithm is that its global and local exploration capabilities can be easily balanced 
by adjusting the relative influence of best local solution and global solution during speed update (Merkle 

Time 
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& Middendorf, 2008). A PSO system combines a "socially only" model, which suggests that individuals 
ignore their own experience and adjust their knowledge according to the successful beliefs of individuals 
in the neighborhood; and a "cognitive-only" model, which treats individuals as isolated beings (Muñoz, et 
al., 2008). The influence of the best personal position is considered as the cognitive aspect of the behavior 
of the particles, while the influence of the best overall position is considered as the social aspect. 

2.4 Ant Colony Optimization (ACO) 
Dorigo and his colleagues firstly developed ACO in the early 1990s to solve the hard combinatorial 
optimization problems such as the Traveling Agent Problem (TSP) (Huang, et al., 2012; Chandra & 
Baskaran 2011), obtaining good enough solutions in a reasonable amount of computation time (Kanan & 
Faez, 2008).  

ACO algorithms are a type of metaheuristic that simulates the social behavior of insect swarms to solve 
optimization problems and are inspired by the real "foraging" behavior type of colonies of ants. (Das, et 
al., 2008). When they find a food source, the ants deposit a pheromone to mark the path. Pheromone is 
an odorous substance that is used as an indirect means of communication. The amount of pheromone 
deposited depends on the distance, quantity and quality of the food source. If an isolated and random ant 
detects the established pheromone, it is very likely that it decides to follow that route. This ant will 
reinforce the trail of pheromones of that specific route by depositing a quantity of pheromone itself. 
Therefore, it is more attractive to follow the path that has been used by more ants (Figure 4) (Khushaba,ert 
al., 2008). 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Ant’s behavior process. a denotes the feed search direction and b is the returning nest direction. (a) 
Shows the early process where the ants begin to find a path between the nest and the source and the 

pheromone deposit in the path. (b) Shows an intermediate process in which the ants crossed all the possible 
ways until arriving at the food increasing the deposit of pheromone in the route. (c) Shows that most ants 

choose the path with the highest pheromone concentration. 
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The first algorithm proposed within the ACO metaheuristic was the Ants System (AS) to solve the Traveling 
Agent Problem (TSP) (Stützle & Dorigo,1999; Dorigo, & Gambardella, 1997; Dorigo, et al., 2006; Gan, et 
al., 2010; Aggarwal & Saroj, 2012; Yun, et al., 2013). The objective of this problem is to find the shortest 
route that allows visiting a set of cities, where the distance between them is known, and these cities are 
visited only once. Formally, the objective is to find a Hamiltonian path of minimum length in a fully 
connected graph (Dorigo, et al., 2006).  

AS main characteristic is that, each m ant makes a complete path of the graph according to the 
probabilistic rule of passing from one node to another. The pheromone values are updated at each level 
of iteration by all the m ants in the problem space (Adubi & Misra, September 2014). In each iteration, 
pheromone values are updated for all m ants that have generated a solution in the same iteration (Dorigo, 
et al., 2006). The pheromone τij, associated with the edge joining cities i and j, is updated as follows: 

 

τij = (1 − ρ)τij + �Δτijk
m

k=1

      ∀(i, j) ∈ L (3) 

where 0 < 𝜌𝜌 ≤ 1 is the evaporation rate, 𝑚𝑚 is the number of ants, 𝛥𝛥𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘  is the amount of pheromone 
deposited in the arc (𝑖𝑖, 𝑗𝑗) by the ant 𝑘𝑘 and 𝐿𝐿 the set of arcs between cities. 

 

Δτijk = �
Q
Lk

if (i, j) ∈ Lk

0 otherwise
 (4) 

 

Lk  representing the length of the trail constructed and Q as a constant of generation of pheromone 
(Khushaba,ert al., 2008; Dorigo, & Gambardella; 1997; Yun, et al., 2013; Adubi & Misra, 2014; Mancera-
Galván, et al., 2015). 

The general structure of ACO algorithms can be described Figure 5.  
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Figure 5. Ant Colony Optimization flow chart. 

2.5 Genetic Algorithms (GA) 
The GA are based on biological evolution and are the oldest and most used search algorithms. The term 
GA was first published by Bagley (1967), who designed algorithms to look for sets of parameters in game 
evaluation functions. However, John Holland is considered the creator of the GA; in his book, "Adaptation 
in Natural and Artificial Systems" (1975) presented the theoretical bases of Genetic Algorithms 
(Rodríguez-Piñero, 2003). 

The optimal global solution of GA is obtained by moving from an old population of individuals (solutions 
or chromosomes) that uses genetic operators (crossing and mutation) to obtain a new population. Each 
individual within the population receives a fitness value through an evaluation function. The basic 
optimization strategy is the selection of the best individuals, based on their fitness value, to generate 
better individuals in the next generation (Huang, et al., 2012; Whitley, 1994; Kołodziej,et al., 2011). 

A typical GA involves four main steps: assessment of fitness, selection, crossover and mutation of a new 
population (Ahirwal, et al., 2014). The aptitude assessment determines that individuals are better, based 
on the parameters defined in the fitness function, and that they will become part of the next generation. 
The selection process is randomized to diversify possible solutions to the system. The crossover operation 
is defined as 

 

Init ACO Algorithm

Initialize ACO 
parameters

Construction solution
(pherormone trail and ant randomization)

Update pherormone trail

All ants visited 
all cities?

NO

Compute the length 
of optimal path 

YES

Update amount of the 
pherormone only on optimal 

path

Goal END 
condition 

parameter

NO

STOP YES
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Ci
gen+1 = aCi

gen + (1 − a)Cj
gen and  Cj

gen+1 = (1 − a)Ci
gen + aCj

gen (5) 
 

where Ci
gen and Cj

gen are two randomly selected chromosomes for the crossover,  Ci
gen+1 and Cj

gen+1 are 

the next generation of individuals which are a linear combination of their parents, a is a random number 
in the range of  [0 1]. The mutation operation involves a random alteration of an individual generating 
random real value, multiplied to make a random change. 

The population of chromosomes is defined as C1, C2, … , CN where N is the size of the population. After 
performing genetic operations such as crossover and mutation, the population size becomes 2 × N. 
Among 2 × N values, the selection of the L-values may be done by different methods, being the "roulette 
wheel" selection the most popular method used. The physical fitness values after the assessment are 
normalized and the cumulative distribution of the normalized fitness values obtained is obtained, Figure 
6 (Ahirwal, et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Genetic Algorithm flow chart. 

2.6 Differential Evolution (DE) 
The Differential Evolution (DE) is an optimization method capable of handling non-differentiable, non-
linear and multimodal objective functions. Is a population-based and parallel direct search method, which 
is used to approximate the global optimal solution (Jiang, et al., 2013). A simple, parallel, and direct search 
has good convergence properties and rapid implementation (Khushaba, et al., 2008; Lian, et al., 2013). 
Storn and Price introduced this algorithm in 1997 (Storn & Price, 1997).  

Init GA 
Algorithm

Initial 
Population

Fitness 
Evaluation

Stop 
condition? Stop

Parent 
selection

NO

Crossover 
function

Mutation 
function

Output 
Results

YES
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Based on evolutionary metaheuristic techniques, similar in the operation of a GA, first generate a 
population of ND-dimensional vectors Xi,G, i = 1,2, … , N  and G  denotes the current generation. Each 
vector contains a randomly selected potential solution (a random location in the search space). The 
mutation for a "target" vector Xi,G is defined as 

 

Vi,G+1 = Xr1,G + F(Xr2,G − Xr3,G) (6) 
 

where Xr1,G, Xr2,G, Xr3,G|r1 ≠ r2 ≠ r3 ≠ i are random population vectors and F is a constant weighting 
factor, F ∈ [0 2]. The vector Vi,G+1 is called the "donor” vector. 

For the crossover operation, a crossover scheme is applied to the "target" vector Xi,G and the "donor" 
vector Vi,G to produce the vector "trail" Ui,G+1 defined by 

 

Uj,i,G+1 = �
Vj,i,G+1ifRj,i ≤ CR ∨ j = Irand
Xj,i,GifRj,i > CR ∧ j ≠ Irand

 (7) 

 

where i = 1, 2, … , N, j = 1,2, … , D. CR is a crossover constant between [0 1], Rj is a random real number 
between [0 1] and Irand is a random integer between [1,2, . . . , D] which ensures Vi,G+1 ≠ Xi,G. For the 
selection process, we defined that 

 

Xi,G+1 = �Ui,G+1iff�Ui,G+1� ≤ f�Xi,G�
Xi,G                  othercase

 (8) 

 

where f(∙) evaluates the fitness of the candidate vector to meet the requirements of the desired solution. 
DE algorithm is interactive until some stop criterion is met (Figure 7) (Ab Wahab, et al., 2015; Khushaba, 
et al., 2008; Daly, I., et al., 2011). 

 

 

 

 

 

 

 

Figure 7. Crossing process of the DE (Ab Wahab, et al., 2015). 

2.7 Spectral Coherence (SC) 
Spectral Coherence (CS) measures the correlation between two signals as a function of frequency and 
similarity between them. The coherence is a quadratic correlation coefficient that estimates the relative 
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amplitude and phase consistency between a pair of signals x(t) and y(t) in each frequency band. When 
the coherence is equal to 1, it is considered that the signal x(t) corresponds totally to the signal y(t), that 
is, they are equal; when coherence is 0 indicates that the corresponding frequency components of both 
signals are uncorrelated; any other value between [0 1] represents the correlation between both signals 
(Esqueda Elizondo et al., 2016). 

The spectral coherence is also one of the most used methods for the analysis of the coordination between 
different brain signal derivations (Tauscher et al., 1996 and Astolfi et al., 2005. Used especially in event 
potentials (Weiss et al., 1996; Tauscher et al., 1996, 1997; Miranda de Sá et al., 2001; Abraham et al., 
2001; Frederick et al., 2004), (Daly, I., et al., 2011). 

The SC is a normalized measure of the crossed spectrum Pxy(ω) = Px(ω)Py∗(ω) of two EEG signals, x(t) 
and y(t), recorded at different sites, defined by 

 

SCxy(ω) =
Pxy(ω)

�Pxx(ω)Pyy(ω)
 (9) 

 

where ω represents all the frequencies, Pxx(ω), Pyy(ω) represent the power spectral density (PSD) of 
each signal and Pxy(ω) represents the crossed PSD between the two signals (Vera, 2009; Arcentales et al., 
2009; Castellanos & Makarov, 2006; Dobrea et al.,2007; Thatcher, et al., 2005; Tierra-Criollo & Infantosi, 
2001). In this contribution, the spectral coherence will be used to have a reference parameter of the 
characteristics of the signals optimized with respect to the original signals. 

3 Results and Discussion 
The present work, the set of real signals used was selected. In order to make comparisons, each algorithm 
will be executed and the results of the optimization of the subject´s signal will be compared; this is, each 
algorithm generates an optimized signal, which is used to evaluate its behavior in the feature selection 
process of the BCI systems. Finally, a table will be presented showing the general evaluation of the 
presented algorithms.  

Figure 8 shows the proposed methodology. O1 and O2 electrodes were selected because they are related 
to the visual activities, based on the international system 10-20 of 128 electrodes (Figure 9). The stimulus 
frequency selected for this study was 8 Hz. We used EEGLAB V13.6.5b for the representation of EEG signal 
graphics. Fig. 10 represented de Original raw signal used in the present work. For the PSO, GA and DE 
algorithms, the signals shown in Fig. 10a are used independently O1/O2 for the optimization process. For 
ACO the signals identified as O1 Trial 1/Trial2 and O2 Trial1/Trial2 are used in combination, this is because 
the signals have the same amplitude range for a more efficient optimization process (Figure. 10a and 10b). 

 

 

 

 

http://dx.doi.org/10.14738/tmlai.72.6215


Transact ions on  Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume  7 ,  Issue 2,  Apr i l  2019 
 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 11 
 

 

 

 

 

 

 

 

 

Figure 8. Methodology proposed for the present study.  

 

 

 

 

 

 

 

 

Figure 9. International System 10-20 for 128 electrodes. 
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(b) 

Figure 10. Original Signals. (a) Trial 1. (b) Trial 2. 

The parameters to be considered for the implementation of the algorithms were: PSO c1 = c2 = 1.492. 
GA crossover percentage of 0.8 and mutation rate of 0.3. DE CR = 0.2. ACO Q = 1, α = 0.5,β = 2, ρ =
0.25, ants = 10. The number of iterations for each algorithm was 20. An important parameter in the 
performance of BCI systems is computational cost of the optimization process. 

Figure 11 shows the computational cost for the proposed algorithms. In Figure 11a we can see the 
convergence to the best solution during the 20 generations for each algorithm. We can observe in all cases 
that starting from the fourth generation the algorithms begin to obtain a stable solution. PSO shows 
greater changes searching for the best solution in relation to the rest of algorithms. DE showed a fast 
convergence to the best solution and remains constant during the longest time of the process. In the case 
of GA, it has some changes at the end of the process due to the very nature of the algorithm, since 
searched for better solutions the process of mutation can showed some difference in the best solution. 
For the case of ACO, the best solution arrives faster in the case of O1 electrodes since its signals have a 
smaller amplitude changes than O2, as shown in Figure 10 and Figure 11b shows the processing time of 
the algorithms, where it is observed that PSO is the fastest and ACO processes are the most time 
consuming. It is important to mention that in the case of PSO, GA and DE the time represents the 
optimization of both signals (O1/O2), for ACO that the optimization was performed for both signals 
separated. 

After the optimization process, the optimized signals either are obtained, which must improve the 
processes of the BCI systems, in the feature extraction or feature selection. Figures 12-15 shows, in an 
illustrative way, the comparison between the original signals and the signals obtained in the optimization 
process (BestSol) which are shown to entire duration of the test. For all figures, the similarity between the 
original signals and the optimized signals during the test stimulation time [5 to 20] seconds are shown. 
We noticed that for the optimized signals of PSO, GA and DE in O1 a similar behavior is observed to the 
original signal, but not for O2 where it is observed that the amplitude of the optimized signal has a greater 
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variation in the amplitude in those regions where the original signal shows changes in amplitude (Figure 
16). For the ACO case, we can observe that the optimization result is the same original signal O1, i.e. for 
ACO the O1 signal has better characteristics than the O2 signal. (Figure 15). 
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(b) 

Figure 11. Algorithm performance computational cost. (a) Convergence to the best solution. (b) Total process 
time. 
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Figure 12. PSO Comparative originals signals vs optimization signals, time domain. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. GA Comparative originals signals vs optimization signals, time domain. 
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Figure 14. DE comparative originals signals vs optimization signals, time domain. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. ACO comparative originals signals vs optimization signals, time domain. 
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Figure 16. Details of the optimization process. 

Power Spectral Density (PSD) is the frequency response of a random or periodic signal. In other words, 
PSD is the average power that is distributed as a function of frequency. Figure 17 shows the PSD for the 
original signals and the optimized signals of each electrode for the study algorithms specifically for the 
frequency corresponding to the stimuli performed during the test (8 Hz), the higher the power, the greater 
the probability of finding the stimulus frequency. Figures 18-21 shows, that for all activity power 
spectrum, the stimulus frequency is identified in every algorithm, the spectrogram plot over trial time 
shows an intensity energy in in case of  PSO-O2 (Figure 18), GA-O2 (Figure 19), DE-O1 (Figure 20), ACO-O1 
and ACO-O2 (Figure 21); the energy decreases in PSO-O1 (Figure 18), GA-O1 (Figure 19), and DE-O2 (Figure 
20). With these results, we may conclude that the algorithms used in this study can be used to feature 
selection BCI process to identify de stimulus frequency. 

 

 

 

 

 

 

 

Figure 17. Raw Signals electrodes Power Spectral Density. 
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Figure 18. PSO electrodes Power Spectral Density. 

 

 

 

 

 

 

Figure 19. GA electrodes Power Spectral Density. 

 

 

  

 

 

 
 

Figure 20. DE electrodes Power Spectral Density. 

 

 

 

 

 

 

Figure 21. ACO electrodes Power Spectral Density. 

Furthermore, Figures 22-24 shows frequency/time and PSD. For the case of PSO, GA and DE, the power 
of the signal in the range of 2-10 Hz is greater in the optimized signals, in the case of ACO the signal power 
is practically the same (Figure 24). In the range of 0-2 Hz the signal strength decreases for PSO, GA and DE 
and is conserved for ACO. For PSO-O1 the power is lower than in GA and DE (Figure 22). On the contrary, 
for PSO-O2 the power is higher than in GA and DE (Figure 23). In the case of ACO, the power in that range 
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is practically unchanged. We can conclude that the optimization process of PSO, GA and DE concentrates 
more signal energy in the frequency range greater than 2Hz and some features embedded in the signal in 
the range of less than 2Hz are lost. For ACO, which requires two sets of data for the optimization process, 
the optimized signals retain much more power characteristics throughout the study range. 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. O1 Frequency/time PSD. 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. O2 Frequency/time PSD. 
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Figure 24. ACO optimal signal Frequency/time PSD. 

Figure 25 shows the power of the original signals and the signals optimized in the frequency domain. We 
note in the original signal O1 that the signal strength is higher in the first harmonic and decreases 
considerably for harmonics 2 and 3. In the case of the optimized signals, the power is maintained at a high 
level with respect to the signal original, with a high power even for DE in the 3rd harmonic (Figure 25a). 
In the case of O2, we also observed a decrease in the power signal from the first harmonic and the power 
is maintained at a high and similar level for the signals optimized in harmonics 1, 2 and 3 (Figure 25b). In 
addition, we can observe that in Figure 25c the harmonics are present in the signals optimized with ACO, 
where we observe that the intensity of the power in the harmonics of O1 is greater than in the harmonics 
of O1. The amplitude of the power is considered as a frame of reference between the signals. We can 
conclude that the presence of harmonics in the optimized signals represents the presence of the stimulus 
frequency in all optimized signals.  

The selection of the most discriminating characteristics of the EEG signals is essential for the design of the 
functional BCI systems. In order to obtain this characteristics we will use the Discrete Wavelet Transform 
(DWT) to decompose the signals in the main brain rhythms: δ: 0.1−2.7 Hz, θ: 2.70−5.40 Hz, α: 5.40−10.80 
Hz, β: 10.8−21.7 Hz and γ: 21.7−43.4 Hz. For this, a fourth order wavelet mother, Daubechies (db4) is used. 
We will make a comparison of the characteristics obtained from original signals and optimized signals.  

Figure 26 and 27 represent the brain rhythms obtained from the original signals, Figure 28 to 31 represent 
the brain rhythms obtained from the optimal signals. The amplitude in delta rhythms is observed to be 
greater in the signals optimized than the original signals. This means that to have a greater amplitude in 
the signals, detect events would be more active, because generally the maximum and minimum points of 
the signal are seeked out. In addition, it is observed in alpha rhythms a greater signal saturation in the 
originals than in the optimized ones. Signal saturation generally implies signal noise, duplicate 
components or minimal differences could be considered as equals in later processes as we can observed 
in (Whitley, 1994). The optimized signals, having a lower saturation, are better adapted for later 
processes. From these results, we may conclude that in general, the proposed algorithms can be used for 
the measure extraction process of BCI system and improve the conditions of delta and alpha rhythms. 
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Subsequently, a reconstruction of the signals based on the brain rhythms obtained is performed, that is, 
a signal formed only by the most representative characteristics of the signal is built. For this purpose, SC 
method to analyze the behavior of the reconstructed signal in relation to the original signal is 
implemented.  

The reconstruction of the signals (extracted) and comparison with the original signals are shown in Figures 
32 to 35, in such figures, it can be observed that in the time domain, both signals show a great similarity 
with marginal differences between them. SC allows us to make a comparison of the signals in the 
frequency domain; the results of such comparison are presented later. 

  

(a) (b) 

 

(c) 

 
Figure 25. Power Spectrum signal in the frequency domain. (a) O1 EEG raw and optimal signals. (b) O2 EEG raw and 

optimal signal. (c) ACO optimal signal. 
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Figure 26. Cerebral rhythms decomposition of the original signals Trial 1.  

 

Figure 27. Cerebral rhythms decomposition of the original signals Trial 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Santiago M. Fernandez-Fraga, Marco Antonio Aceves-Fernandez, José Emilio Vargas Soto, Juan Manuel Ramos 
Arreguín; Population-Based Algorithms Applied to Brain-Computer Interfaces upon Steady-State Visual Evoked 
Potentials, Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 2 April, (2019); pp: 1-33 

 

URL: http://dx.doi.org/10.14738/tmlai.72.6215      22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Decomposition of the cerebral rhythms of the signals Optimized by PSO 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Decomposition of the cerebral rhythms of the signals Optimized by GA. 
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Figure 30. Decomposition of the cerebral rhythms of the signals Optimized by DE. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Decomposition of the cerebral rhythms of the signals Optimized by ACO. 
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Figure 32. PSO Reconstruction signal based brain rhythms. 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. GA Reconstruction signal based brain rhythms. 
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Figure 34. DE Reconstruction signal based brain rhythms. 

 

 

 

 

 

 

 

 

 

 

p 

Figure 35. ACO Reconstruction signal based brain rhythms. 

Considering the relative consistency between the frequencies of the original signals and the optimized-
reconstructed signals (SC), for the case of O1 (Figure 36a) we observed that PSO, GA and DE SC the 
frequencies relation is very similar to the original signal. Unlike ACO an identical relation is observed, this 
we can interpret that the optimized signal is 100% coherent with the original signal O1-Trial 1 and low 
coherence with O1-Trial 2. In terms of O2 (Figure 36b), a low SC behavior is shown for all cases, except 
100% coherence witch O2-Trial 1. We can conclude with respect to the correlation between the optimized 
signals and the original signals that the SC, for all proposed algorithms is high for O1 and low for O2, 
highlighting the outstanding result on ACO in O1. 

Table 1 shows a summary of the parameters evaluated for the different algorithms as a frame of reference 
for the performance of the process of optimization of biomedical electroencephalogram signals based on 
synchronous SSVEP. 



Santiago M. Fernandez-Fraga, Marco Antonio Aceves-Fernandez, José Emilio Vargas Soto, Juan Manuel Ramos 
Arreguín; Population-Based Algorithms Applied to Brain-Computer Interfaces upon Steady-State Visual Evoked 
Potentials, Transactions on Machine Learning and Artificial Intelligence, Volume 7 No 2 April, (2019); pp: 1-33 

 

URL: http://dx.doi.org/10.14738/tmlai.72.6215      26 
 

Table 1.  Evaluation Table Summary. 

Algorithm No. signals 
optimization 

process 

Process 
time 

(seconds) 

PSD 
stimulus 

frequency 
detect 

Harmonics 
detection 

brain rhythms 
decomposition 

brain rhythms 
reconstruction 

spectral 
coherence 

performance 

PSO-O1 1 134.33     HIGH 
PSO-O2 1 134.33     LOW 
GA-O1 1 1,048.69     HIGH 
GA-O2 1 1,048.69     LOW 
DE-O1 1 848.94     HIGH 
DE-O2 1 848.94     LOW 
ACO-O1 2 4,841.13     IDENTICAL 
ACO-O2 2 4,693.78     IDENTICAL 
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Figure 36. Coherence between the original signals and reconstruction-optimized signals. (a) Electrode O1. (b) 
Electrode O2.  
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4 Conclusions 
In this contribution, the comparison between PSO, GA, DE and ACO algorithms as a new paradigm for EEG 
signal processing is presented. It is observed that the performance to find optimal solutions is much faster 
PSO than the other algorithms, in terms of the computational cost. Optimized signals are good candidates 
for obtaining cerebral rhythms by improving the measurement power signal and eliminating noise. 
Likewise, we can observe that the detection of the stimulus frequency was much better in the optimized 
signals than in the original signal, especially in the O1 electrode. The results show that PSD is a tool that 
identifies the stimulus frequency, both in the optimized signals and in the original signals. We can also 
observe that the use of SC to measure the correlation between the optimized signals and the original 
signals is greater in the O1 electrode with an outstanding ACO performance in both electrodes. These 
results allow us to demonstrate that signal optimization using population-based algorithms is a good 
alternative solution for the processing of EEG signals and to improve the performance of BCI systems.  

Implementing signal-processing techniques that reduce computational cost and solve problems of 
optimization of complex systems is an important part of the development of new research in the field of 
bioinformatics. As future work the authors suggest tasks such as comparing algorithms based on 
populations with the most used methods in BCI investigations, Canonical Correlation Analysis, 
Independent Component Analysis, etc., are an opportunity to present new alternatives in the area of 
biomedical signal processing. 
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Table 1.  Normalized DCG gains of Google and our fuzzy JEKS algorithm. 

Query Google Ranking Fuzzy JEKS Algorithm Ranking 

Q1 0.980211 0.959274 
Q2 0.896716 0.92342 
Q3 0.937156 0.926431 
Q4 0.979388 0.978542 
Q5 0.987652 0.987472 
Q6 0.94898 0.948706 
Q7 0.98502 0.98638 
Q8 0.91282 0.877635 
Q9 0.900639 0.929049 
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We obtained normalized DCG values for the 10 queries for our algorithm as well as for Google results. It 
can be seen that our algorithm acquires higher values of normalized DCG for 3 queries out of 10 queries 
when compared to Google. 

5 Conclusion 
In a professional context it often happens that private or corporate clients corder a publication to be made 
and presented with the actual content still not being ready. Think of a news blog that's filled with con 

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the 
blind texts. Separated they live in Bookmarksgrove right at the coast of the Semantics, a large language 
ocean. A small river named Duden flows by their place and supplies it with the necessary regelialia. It is a 
paradisematic country, in which roasted parts of sentences fly into your mouth. Even the all-powerful 
Pointing has no control about the blind texts it is an almost unorthographic life One day however a small 
line of blind text by the name of Lorem Ipsum decided to leave for the far World of Grammar. The Big 
Oxmox advised her not to do so, because there were thousands of bad Commas, wild Question Marks and 
devious Semikoli, but the Little Blind Text didn’t listen. She packed her seven versalia, put her initial into 
the belt and made herself on the way. When she reached the first hills of the Italic Mountains, she had a 
last view back on the skyline of her hometown Bookmarksgrove, the headline of Alphabet Village and the 
subline of her own road, the Line Lane. Pityful a rethoric question ran over her cheek, then 

In the future work, we will further improve the algorithm. Blind texts it is an almost unorthographic life 
One day however a small line of blind text by the name of Lorem Ipsum decided to leave for the far World 
of Grammar by adding these effects. 
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