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ABSTRACT

Here we generalize the notions of determinative conjunct and strongly equal tautologies formany-valued
logic (MVL) and compare the proof complexity measures of strongly equal many-valued tautologies in
some proof systems of MVL. It is proved that in some “weak” proof system the strongly equal many-
valued tautologies have the same proof complexities, while in the “strong” proof systems the measures
of proof complexities for strongly equal tautologies can essentially differ from each other.

Keywords: many-valued logic, determinative conjunct, strongly equal tautologies, proof complexity
characteristics.

1 Introduction
In the mean time many interesting applications of many-valued logic (MVL) were found in such fields as
Logic, Mathematics, Formal Verification, Artificial Intelligence, Operations Research, Computational
Biology, Cryptography, Data Mining, Machine Learning, Hardware Design etc., therefore the investigations
of proof complexity for different systems of MVL are very important.

The traditional assumption that all tautologies as Boolean functions are equal to each other is not fine-
grained enough to support a sharp distinction among tautologies. The authors of [1] have provided a
different picture of equality for classical tautologies. They have introduced the notion of strong equality
of 2-valued tautologies on the basis of determinative conjunct notion. The idea to revise the notion of
equivalence between tautologies in such way that is takes into account an appropriate measure of their
“complexity”.

It was proved in [2,3] that in “weak” proof systems the strongly equal 2-valued tautologies have the
same proof complexities, while in the “strong” proof systems the measures of proof complexities for
strongly equal tautologies can essentially differ from each other.

Here we generalize the notions of determinative conjunct and strongly equal tautologies for MVL and
compare the proof complexity measures of strongly equal many-valued tautologies in some proof
systems of MVL.
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2 Preliminaries.

2.1 Main notions and notations of k-valued logic.

1 k-2 . . .
Let Ex be the set {O’E’ g 1}. We use the well-known notions of propositional formula, which

defined as usual from propositional variables with values from Ex (may be also propositional constants),
parentheses (,), and logical connectives &,V ,D,—, every of which can pe defined by different mode.

Additionaly we use two modes of exponential function pe and introduce the additional notion of formula:

for every formulas A and B the expression AZ (for both modes) is formula also.
In the considered logics either only 1 or every of values % < ﬁ < 1 can be fixed as designated values.

Definitions of main logical functions are:
pVq=max(p,q) (1) disjunction or
pvq=(_(k—1p+q)(modk)/(k—1) (2)disjunction,
p&q = min(p, q) (1) conjunction or
p&q =max(p+q—1,0) (2) conjunction
Sometimes (1) conjunction is denoted by A.
For implication we have two following versions:

_(L for p<gq S
poq= {1 — for p>q (1) tukasiewicz’s implication or

1, for p<q . C
oqg= 2) Godel’s implication
P-4 {q, for  p>gq 2) P

And for negation two versions also:

-p=1-p (1) tukasiewicz’s negation or
-p=((k—Dp+1)(mod k)/(k—1) (2) cyclically permuting negation.
Sometimes we can use the notation p instead of —ip.

For propositional variable p and S:k%l(Osisk—l) additionally “exponent” functions are defined in (4):

ps as (p 2 6)& (8 o p) with (1) implication (1) exponent,
p? as p with (k-1)(1- é) (2) negations. (2) exponent.

Note, that both (1) exponent and (2) exponent are no new logical functions.
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If we fix “1” (every of values % < é < 1) as designated value, so a formula ¢ with variables p1,p,,...pnis
called 1-k-tautology (21/2-k-tautology) if for every § = (84, 8,, ..., 8,) € E}} assigning §;(1<j<n) to each

. 1 j
p;jgives the value 1 (or some value 3 < é <1)of ¢.

Sometimes we call 1-k-tautology or >1/2-k-tautology simply k-tautology.

2.2 Determinative Disjunctive Normal Form for MVL

The notions of determinative conjunct and determinative disjunctive normal forms are introduced at first
in [1]. Based on these notions some new proof system for classical propositional logic, dual to resolution
system, was defined. Then the analogous systems were given for intuitionistic, minimal, monotone,
positive and some others two-valued propositional logics.

The notions of determinative conjunct and determinative disjunctive normal form are generalized for all

variants of MVL in [4]. For every propositional variable p in k-valued logic p°, pl/k—l,..., pk_z/k—l and plin
sense of both exponent modes are the literals. The conjunct K (term) can be represented simply as a set
of literals (no conjunct contains a variable with different measures of exponents simultaneously), and DNF
can be represented as a set of conjuncts.

Each of the following trivial identities for a propositional formula ¥ are called replacement-rule:

for both conjunction and (1) disjunction

p&0=0&p =0, @VO=0Vp=¢, &l =1&p=¢, @eVli=1ve=1,

for (2) disjunction
i

<(pvki1>=(ki1\/‘ﬂ)=—'ﬂ---ﬂ<p 0<i<k-1),

for (1) implication

@ D0=¢ with (1) negation, 0D¢p=1, ¢>1=1 1>¢=9¢,

for (2) implication

>21=1 0o¢p=1, ¢ 20=5g@, wheresgg is 0 for ¢>0 and 1 for ¢=0,
for (1) negation

—(i/k-1)=1-i/k-1 (0<igk-1), =P = Y,

for (2) negation

k
~(i/k-1)=i+1/k-1 (0sisk-2), —1=0, S5 SP = .

Application of a replacement-rule to some word consists in replacing of its subwords, having the form of
the left-hand side of one of the above identities, by the corresponding right-hand side.

The following auxiliary relations for replacement are introduced in [5] as well:
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for both variants of conjunction

(p2=) = (=8&0) <= 1<i<k-2),

for (1) implication

(<p3k%1)2k%1and (k%l:up)zk_k(il) 1<i<k-2),

for (2) implication

(po25)2-=  a=<i<k-2), (52¢)2z¢ (A<i<k-1)

Let ¢ be a propositional formula of k-valued logic, P = {p1, P2, ..., Pn} be the set of all variables of ¢
and P' = {pil,piz, ...,pim} (1 < m < n) be some subset of P.

Definition 1: Given & = (04, 03, ..., 0y,) € E}, the conjunct K° = {p; °1,p;,%%, ...,p;, "™} is called @ —
ﬁ—determinative (0<i<k-1), if assigning g; (1 <j<m) to each pi;and successively using
replacement-rules and, if it is necessary, the auxiliary relations for replacement also, we obtain the value

ﬁ of ¢ independently of the values of the remaining variables.

Every @ — ﬁ —determinative conjunct is called also ¢-determinative or determinative for ¢.

Example. It is not difficult to see that the conjuncts {p;}, {=—p3}, {p2}, {—p1, —p,} are determinative
for formula(p; D p,) D (ps 2 (—p; 2 py)) in 3-valued tukasiewicz’s system based on (1) conjunction,
(1) disjunction, (1) implication, (1) negation and (1) exponent. Note that correctness of this statement for
conjunct {—p;, =p,} must be proved by using the auxiliary relations for replacement as well.

Definition 2. A DNF D = {K{, K3, ..., K|} is called determinative DNF (dDNF) for ¢ if ¢ = D and if “1”

(every of values % < é < 1) is (are) fixed as designated value, then every conjunct K;(1 <i <j)is

1-determinative (ﬁ — determinative from indicated intervale) for ¢.

Remark As in [3] it is also easily proved, that

1) if for some k-tautology ¢, the minimal number of literals, containing in @-determinative conjunct, is
m,then ¢@-determinative DNF has at least K™ conjuncts;

2) if for some k-tautology ¢ there is such m that every conjunct with m literals is ¢-determinative, then
there is ¢p-determinative DNF with no more than k™conjuncts.

Main Definition. The k- tautologies ¢ and v are strongly equal in given version of many-valued

logic if every @ -determinative conjunct is also 1) -determinative and vice versa.

2.3 Definition of considered systems.

First of considered system is the following universal elimination system UE for all versions of MVL, which
is defined in mentioned paper [5].

The axioms of Elimination systems UE aren’t fixed, but for every formula k — valued ¢ each conjunct
from some DDNF of ¢ can be considered as an axiom.
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For k-valued logic the inference rule is elimination rule (&-rule)

1 k-2
Kou{p®}, K1U{pk—1}. Kk-zU{pk—l}. Kr-1U{p'}

KOU K1U ..U Kk_zu Kk—l

where mutual supplementary literals (variables with corresponding (1) or (2) exponents) are eliminated.

A finite sequence of conjuncts such that every conjunct in the sequence is one of the axioms of UE or is
inferred from earlier conjuncts in the sequence by &-rule is called a proof in UE.

ADNF D = {K;,K,, ..., K;} is k-tautological if by using &-rule can be proved the empty conjunct (@) from
the axioms {Ky, K>, ..., K; }.

We consider also the well-known Frege style systems of MVL. We define Godel’s (G) and tukasiewicz’s
(L) systems following [6,7].

tukasiewicz’s proof system (L) uses (1) definitions for all logical functions.

For every formula A, B, C of k-valued logic the following formulas are axioms schemes of L [6]:
1.A> (B> A) 22.(A>(Bo(C)>(B>(AD0)
33.(A>B)o((Bo(C)o(AD ()

4. (Ao(A>B)>((=wB>(—~B>=A)>(A>DB))

5 (A>B)2(=B>=4) 6.A>a-A7.-~ADA

8.A&B>B 9.A&B > A 10. (C 2 A) o ((C o B) o (C o A&B))
11.ADAVB 12B>AvB 13.(A>2C)>((Bo2C)>2(AvB>V())
Inference rule is modus ponens /m.p./ A,AD> B+ B.

Godel’s proof system (G) uses (1) definitions for conjunction and disjunction, (2) for implication and
negation.

For every formula A, B, C of k-valued logic the following formulas are axioms schemes of G [7]:
1(ADB)D((B2C)>(AD())
2ADAVB 3.BDAVB 4. (ADC)D((B>oC)>2(AvB>C()
5.A&BDOB 6.A&B DA 7.(C>A)>((C>B)>(C>A&B))
8.(AD(BoC(C)D(&B>DC) 9.(A&B>(C)>(A>(B>())
10. A&—=ADB 11.(AD &-A)D -A 12.(ADB)V (B> A).
Inference rule is modus ponens /m.p./ A,AD B+ B.

In both systems “1” is fixed as designated value.
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2.4 Proof complexity measures

In the theory of proof complexity two main characteristics of the proof are: t — complexity, defined as
the number of proof steps (length) and I — complexity, defined as total number of proof symbols (size).
We consider two measures (space and width) as well : s — complexity (space), informal defined as
maximum of minimal number of symbols on blackboard, needed to verify all steps in the proof and w —
complexity (width), defined as the maximum of widths of proof formulas (the strong definitions of all
proof complexity characteristics see in [9]).

Let ® be a proof system and ¢ be a k-tautology. We denote by tg (I3, 55, wg) the minimal possible value
of t — complexity (I — complexity,s — complexity,w — complexity) for all proofs of tautology
@in ®.

By || we denote the size of a formula ¢, defined as the number of all logical signs entries. It is obvious
that the full size of a formula, which is understood to be the number of all symbols is bounded by some
linear function in|¢|.

2.5 Essential subformulas of tautologies

For proving the main results we use also the notion of essential subformulas, introduced in [8].

Let F be some formula and Sf (F) be the set of all non-elementary subformulas of formula F .

For every formula F , forevery ¢ € Sf (F) and for every variable p by F(pp is denoted the result of the

replacement of the subformulas ¢ everywherein F by the variable p.If @ ¢ Sf (F), then pr is F.

We denote by Var(F) the set of variables in F .

Definition 3. Let P be some variable that p ¢Var(F) and ¢ € Sf(F) for some tautology F . We say

that ¢ is an essential subformula in F iff F(pp is non-tautology.

We denote by ESSf (F) the set of essential subformulas in tautology F .

If F is minimal tautology, i.e. F is not a substitution of a shorter tautology, then ESSf (F) = Sf (F).
It is not difficult to prove the following statement.

Proposition. Let F be a minimal tautology and ¢ € ESSf (F), then in every L-proof (G-proof) of F

subformula @ must be essential either at least in some axiom of this system. .

Really, if some subformula is essential in formula B, which is derived from formlas A and A D B, then this
subformula must be essential in A orin A D B.

Note that for both systems L and G the number of essential subformulas in every axioms is bounded with
some constant.

3 Main results.
Here we compare the proof complexities measures of strongly equal k- tautologies in above defined
systems of some versions of MVL.
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Theorem 1. The strongly equal k-tautologies have the same t,/,s,w complexities in the systems U E for all
versions of MVL.

The proof is based on the fact that refutations in the systems UE deal exclusively with the conjuncts of
dDNF, which are the same for strongly equal tautologies.

The situation for the systems L and G is the essentially other.
For simplification of our result presentation, we demonstrate them only for 3-tautoogies.
Let us consider

a) for tukasiewicz’s 3-valued logic the following two 3-tautologies:

2n

An= (p! & p2 & p°) 2> ((pl & p2 & p?)! D (5=...= (p1V p2V p%)) with (1) exponent,
>0),

2n
Bn=(p!V p2V p°) & (5=...= (p1V p2V p?)))) with (1) exponent, (n >0),
b) for Gédel’s 3-valued logic the following two 3-tautologies:

3n
——

Ch= —|(—|—|p&—|p&p) o ((—|—|p&—|p&p) - (—|—| vee T (—|—|pV—|pr))) (n ZO),

3n

Dn= (——pV-pVp) & (5= ... a2 (=—=pV-pVp)) )) (n=20).
It isn’t difficult to see that dDNF for both A, and Bnis {p?, p¥?, p°} and for both C,and Dis
{—=—p, 7, p}, therefore A, and B, are strongly equal and C, and D, are strongly equal as well.

Note also that the sizes of all above formulas are @(n).

Theorem 2. a) tk =0), KL,=0mn
tin = 2(n), g, =Qn?).
b) té, =0, & =0,

thh = 2(m), I§, =Q(n?).
Proof. a) We can derive A, as follow.

At first we derive the 3-tautology (p* & p¥? & p°)°, then the 3-tautology

2n

(p* & p¥? & p°)° D((p* & p? & P°)? 2 ((p* & p”? & P°)* D (5= 3 (p*V p¥2V p%)))), after them we
derive by modus ponens the formula A,. The lower bounds can be received by the same techniques as for
2-valued logic.

b) We can derive C, as follow.

At first we derive the 3-tautology =—(—=—p&-p&p), then the 3-tautology

3n

—|—|(—|—|p&—|p&p) -] (—|(—|—|p&—|p&p) -] ((—|—|p&—|p&p) ) (—|—| | (—|—|pV—|pr)))
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after them we derive by modus ponens the formula C,. The lower bounds can be received by the same
techniques as for 2-valued logic.

Remark. If as formula A, (C) we take the new one, in which the number of repeated “negations” before
the last subformulais 2", and in B, (Dn) is 3™ for m=[nlogs 2], then the sizes for such formulas will be the
same by order as well, but the bounds for steps will be more contrast: O(1) and (2") for strongly equal
new 3-tautologies A, (Cn) and B, (Dn) accordingly.

4 Conclusion

We introduce the notion of strong equality of many-valued tautologies on the basis of determinative
conjunct notion. The idea to revise the notion of equivalence between tautologies in such way that is
takes into account an appropriate measure of their “complexity”.

It is proved thatin “weak” proof systems the strongly equal many-valued tautologies have the same
proof complexities, while in the “strong” proof systems the measures of proof complexities for strongly
equal tautologies can essentially differ from each other.
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