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ABSTRACT 

Here we generalize the notions of determinative conjunct and strongly equal tautologies formany-valued 
logic (MVL) and  compare the proof complexity measures of strongly equal many-valued tautologies in 
some proof systems of MVL. It is proved  that in some “weak”   proof system the strongly equal many-
valued tautologies have the same proof complexities, while in the “strong” proof systems the measures 
of proof complexities for strongly equal tautologies can essentially differ from each other.  

Keywords: many-valued logic, determinative conjunct, strongly equal tautologies, proof complexity 
characteristics.  

1 Introduction 
In the mean time many interesting applications of many-valued logic (MVL) were found in such fields as 
Logic, Mathematics, Formal Verification, Artificial Intelligence, Operations Research, Computational 
Biology, Cryptography, Data Mining, Machine Learning, Hardware Design etc., therefore the investigations 
of proof complexity for different systems of MVL are very important.  

The traditional assumption that all tautologies as Boolean functions are equal to each other is not fine-
grained enough to support a sharp distinction among tautologies. The authors of [1]  have provided a 
different picture of equality for classical tautologies. They have introduced the notion of strong equality 
of 2-valued tautologies on the basis of   determinative conjunct notion. The idea to revise the notion of 
equivalence between tautologies in such way that is takes into account an appropriate measure of their 
“complexity”.  

It was proved in [2,3]  that in “weak”   proof systems the strongly equal 2-valued tautologies have the 
same proof complexities, while in the “strong” proof systems the measures of proof complexities for 
strongly equal tautologies can essentially differ from each other.  

Here we generalize the notions of determinative conjunct and strongly equal tautologies for MVL and  
compare the proof complexity measures of strongly equal many-valued tautologies in some proof 
systems of MVL. 
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2 Preliminaries. 

2.1 Main notions and notations of k-valued logic.  

Let Ek be the set �0, 1
k−1

, … , k−2
k−1

, 1�. We use the well-known notions of propositional formula, which 

defined as usual from propositional variables with values from Ek, (may be also propositional constants), 
parentheses (,), and logical connectives & ,∨ ,⊃ ,¬, every of which can  be defined by different mode. 
Additionaly we use two modes of exponential function p𝛔𝛔 and introduce the additional notion of formula: 

for every formulas A and B  the expression  𝑨𝑨𝑩𝑩  (for both modes) is formula also. 

In the  considered logics either only 1 or every of values  1
2

 ≤ 𝒊𝒊
𝐤𝐤−𝟏𝟏

≤ 1 can be fixed as designated values. 

Definitions of main logical functions are: 

𝒑𝒑 ∨ 𝒒𝒒 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝, 𝑞𝑞)                                               (1) disjunction  or 

𝒑𝒑 ∨ 𝒒𝒒 = ((𝑘𝑘 − 1)(𝑝𝑝 + 𝑞𝑞))(𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘)/(𝑘𝑘 − 1)  (2) disjunction,    

 𝒑𝒑&𝑞𝑞 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝, 𝑞𝑞)                                                (1) conjunction or       

 𝒑𝒑&𝑞𝑞 = max (𝒑𝒑 + 𝑞𝑞 − 1, 0)                               (2) conjunction 

Sometimes  (1) conjunction is denoted by ˄.   

For implication we have two following versions: 

𝒑𝒑 ⊃ 𝒒𝒒 = �1,                         𝑓𝑓𝑓𝑓𝑓𝑓  𝑝𝑝 ≤ 𝑞𝑞
1 − 𝑝𝑝 + 𝑞𝑞,          𝑓𝑓𝑓𝑓𝑓𝑓  𝑝𝑝 > 𝑞𝑞                 (1)  Łukasiewicz’s implication or 

 p⊃ 𝒒𝒒 = �1,        𝑓𝑓𝑓𝑓𝑓𝑓          𝑝𝑝 ≤ 𝑞𝑞
𝑞𝑞,       𝑓𝑓𝑓𝑓𝑓𝑓          𝑝𝑝 > 𝑞𝑞                             (2) Gödel’s implication 

And for  negation two versions also: 

¬𝒑𝒑 = 1 − 𝑝𝑝                                                              (1)  Łukasiewicz’s negation    or 

¬𝒑𝒑 = ((𝑘𝑘 − 1)𝑝𝑝 + 1)(𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘)/(𝑘𝑘 − 1)            (2)  cyclically permuting negation. 

Sometimes we can use the notation 𝒑𝒑� instead of ¬𝒑𝒑. 

For propositional variable p and 𝛅𝛅= 𝑖𝑖
k−1

(0≤i≤k-1) additionally “exponent” functions are defined in (4): 

p𝛅𝛅              as (𝑝𝑝 ⊃ δ)& (δ ⊃ 𝑝𝑝) with (1) implication            (1)  exponent, 

p𝛅𝛅              as p with (k-1)(1– 𝛅𝛅)  (2) negations.                       (2)  exponent. 

Note, that both (1) exponent and (2) exponent are no new logical functions. 
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If we fix “1” (every of values  1
2

 ≤ 𝑖𝑖
k−1

≤ 1) as designated value, so a formula φ with variables p1,p2,…pn is 

called 1-k-tautology (≥1/2-k-tautology) if for every 𝛿𝛿 = (𝛿𝛿1, 𝛿𝛿2, … , 𝛿𝛿𝑛𝑛) ∈ 𝐸𝐸𝑘𝑘𝑛𝑛 assigning 𝛿𝛿j (1≤j≤n) to each 

pj gives the value 1 (or some value  1
2

 ≤ 𝑖𝑖
k−1

≤ 1) of φ. 

Sometimes we call 1-k-tautology or ≥1/2-k-tautology simply k-tautology. 

2.2 Determinative Disjunctive Normal Form for MVL 

The  notions of determinative conjunct and determinative disjunctive normal forms are introduced at first 
in [1].  Based on these notions  some new proof system for classical propositional logic, dual to resolution 
system, was defined. Then the analogous systems were given for intuitionistic, minimal, monotone, 
positive and some others two-valued propositional logics.  

The  notions of determinative conjunct and determinative disjunctive normal form are generalized for all 

variants of MVL in [4]. For every propositional variable 𝑝𝑝 in k-valued logic 𝑝𝑝0,𝑝𝑝
1
k−1� ,…, 𝑝𝑝

k−2
k−1�   and 𝑝𝑝1in 

sense of both exponent modes are the literals. The conjunct K (term) can be represented simply as a set 
of literals (no conjunct contains a variable with different measures of exponents simultaneously), and DNF 
can be represented as a set of conjuncts. 

Each of the following trivial identities for a propositional formula 𝝍𝝍 are called replacement-rule: 

 

for both conjunction and (1) disjunction 

𝜑𝜑&0 = 0&𝜑𝜑 = 0,      𝜑𝜑⋁0 = 0⋁𝜑𝜑 = 𝜑𝜑,    𝜑𝜑&1 = 1&𝜑𝜑 = 𝜑𝜑,      𝜑𝜑 ∨ 1 = 1 ∨ 𝜑𝜑 = 1,  

for (2) disjunction 

�𝜑𝜑⋁
𝑖𝑖

𝑘𝑘 − 1
� = �

𝑖𝑖
𝑘𝑘 − 1

⋁𝜑𝜑� = ¬¬ … ¬�����
𝑖𝑖

𝜑𝜑          (0 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1), 

for (1) implication 

𝜑𝜑 ⊃ 0 = 𝜑𝜑�   with  (1) negation,     0 ⊃ 𝜑𝜑 = 1,     𝜑𝜑 ⊃ 1 = 1,      1 ⊃ 𝜑𝜑 = 𝜑𝜑, 

for (2) implication  

𝜑𝜑 ⊃ 1 = 1,   0 ⊃ 𝜑𝜑 = 1,  𝜑𝜑 ⊃ 0 = 𝑠𝑠𝑠𝑠���𝜑𝜑, where 𝑠𝑠𝑠𝑠���𝜑𝜑 𝑖𝑖𝑖𝑖 0 for 𝜑𝜑˃0 and 1 for 𝜑𝜑=0, 

for (1) negation 

¬(i/k-1)=1-i/k-1    (0≤i≤k-1),   ¬𝝍𝝍 =  𝝍𝝍, 

for (2) negation 

¬(i/k-1)=i+1/k-1  (0≤i≤k-2),      ¬𝟏𝟏 = 𝟎𝟎,  ¬¬ … ¬�����
𝒌𝒌

𝝍𝝍 =  𝝍𝝍. 

Application of a replacement-rule to some word consists in replacing of its subwords, having the form of 
the left-hand side of one of the above identities, by the corresponding right-hand side. 

The following auxiliary relations for replacement are introduced in [5] as well: 

http://dx.doi.org/10.14738/tmlai.71.6187
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for both variants of conjunction  

�𝜑𝜑& 𝑖𝑖
𝑘𝑘−1

� = � 𝑖𝑖
𝑘𝑘−1

&𝜑𝜑� ≤ 𝑖𝑖
𝑘𝑘−1

                      (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 2), 

for (1) implication 

�𝜑𝜑 ⊃ 𝑖𝑖
𝑘𝑘−1

� ≥ 𝑖𝑖
𝑘𝑘−1

  and     � 𝑖𝑖
𝑘𝑘−1

⊃ 𝜑𝜑� ≥ 𝑘𝑘−(𝑖𝑖+1)
𝑘𝑘−1

           (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 2), 

for (2) implication 

�𝜑𝜑 ⊃ 𝑖𝑖
𝑘𝑘−1

� ≥ 𝑖𝑖
𝑘𝑘−1

          (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 2),    � 𝑖𝑖
𝑘𝑘−1

⊃ 𝜑𝜑� ≥ 𝜑𝜑           (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1). 

Let 𝝋𝝋 be a propositional formula of k-valued logic, 𝑷𝑷 = {𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐, … ,𝒑𝒑𝒏𝒏} be the set of all variables of φ 
and  𝑷𝑷′ = �𝒑𝒑𝒊𝒊𝟏𝟏 ,𝒑𝒑𝒊𝒊𝟐𝟐 , … ,𝒑𝒑𝒊𝒊𝒎𝒎�  (𝟏𝟏 ≤ 𝒎𝒎 ≤ 𝒏𝒏) be some subset of 𝑷𝑷. 

Definition 1: Given 𝝈𝝈� = (𝝈𝝈𝟏𝟏,𝝈𝝈𝟐𝟐, … ,𝝈𝝈𝒎𝒎) ∈ 𝑬𝑬𝐤𝐤𝒎𝒎, the conjunct  𝑲𝑲𝝈𝝈 = {𝒑𝒑𝒊𝒊𝟏𝟏
𝝈𝝈𝟏𝟏 ,𝒑𝒑𝒊𝒊𝟐𝟐

𝝈𝝈𝟐𝟐 , … ,𝒑𝒑𝒊𝒊𝒎𝒎
𝝈𝝈𝒎𝒎} is called 𝝋𝝋−

𝒊𝒊
𝒌𝒌−𝟏𝟏

-determinative (𝟎𝟎 ≤ 𝒊𝒊 ≤ 𝒌𝒌 − 𝟏𝟏) , if assigning  𝝈𝝈𝒋𝒋 (𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒎𝒎)  to each  𝒑𝒑𝒊𝒊𝒋𝒋 and successively using 

replacement-rules and, if it is necessary, the auxiliary relations for replacement also, we obtain the value  
𝒊𝒊

𝒌𝒌−𝟏𝟏
 of 𝝋𝝋  independently of the values of the remaining variables. 

Every 𝝋𝝋− 𝒊𝒊
𝒌𝒌−𝟏𝟏

−determinative conjunct is called also 𝝋𝝋-determinative or determinative for 𝝋𝝋. 

Example. It is not difficult to see that the conjuncts {p1},  {¬¬p3},  {p2},  {¬p1, ¬p2} are determinative 
for formula(p1 ⊃ p2) ⊃ �p3 ⊃ (¬p2 ⊃ p1)� in 3-valued Łukasiewicz’s system based on (1) conjunction, 
(1) disjunction, (1) implication, (1) negation and (1) exponent. Note that  correctness of this statement for 
conjunct  {¬p1, ¬p2} must be proved by using the auxiliary relations for replacement as well.  

Definition 2. A DNF 𝑫𝑫 = {𝑲𝑲𝟏𝟏,𝑲𝑲𝟐𝟐, … ,𝑲𝑲𝒋𝒋} is called determinative DNF (dDNF) for 𝝋𝝋 if 𝝋𝝋 = 𝑫𝑫 and if “1”  

(every of values  𝟏𝟏
𝟐𝟐

 ≤ 𝒊𝒊
𝐤𝐤−𝟏𝟏

≤ 𝟏𝟏) is (are) fixed as designated value, then every conjunct  𝑲𝑲𝒊𝒊(𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒋𝒋) is 

1-determinative ( 𝒊𝒊
𝐤𝐤−𝟏𝟏

− 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢)  for 𝝋𝝋. 

  Remark  As in [3] it is also easily proved,  that  

1) if for some k-tautology 𝝋𝝋, the minimal number of literals, containing in 𝝋𝝋-determinative conjunct, is 
𝒎𝒎,then 𝝋𝝋-determinative DNF has at least 𝐤𝐤𝒎𝒎conjuncts;  

2) if for some k-tautology 𝝋𝝋 there is such 𝒎𝒎 that every conjunct with 𝒎𝒎 literals is 𝝋𝝋-determinative, then 
there is 𝝋𝝋-determinative DNF with no more than 𝐤𝐤𝒎𝒎conjuncts. 

Main Definition. The k- tautologies φ and 𝜓𝜓 are strongly equal in given version of many-valued 

logic if every φ -determinative conjunct is also 𝜓𝜓 -determinative and vice versa. 

2.3 Definition of considered systems. 

First of considered system is the following universal elimination system UE for all versions of MVL, which 
is   defined in mentioned paper [5]. 

The axioms of Elimination systems 𝐔𝐔𝐄𝐄 aren’t fixed, but for every formula 𝒌𝒌 − 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 𝝋𝝋 each conjunct 
from some DDNF of 𝝋𝝋 can be considered as an axiom. 
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For k-valued logic the  inference rule is elimination rule (𝜀𝜀-rule)  

𝐾𝐾0∪�𝑝𝑝0�,   𝐾𝐾1∪�𝑝𝑝
1

𝑘𝑘−1�,   … ,   𝐾𝐾𝑘𝑘−2∪�𝑝𝑝
𝑘𝑘−2
𝑘𝑘−1�,   𝐾𝐾𝑘𝑘−1∪{𝑝𝑝1}

𝐾𝐾0∪ 𝐾𝐾1∪ … ∪ 𝐾𝐾𝑘𝑘−2∪ 𝐾𝐾𝑘𝑘−1
’ 

where mutual supplementary literals (variables with corresponding (1) or (2) exponents) are eliminated. 

A finite sequence of conjuncts such that every conjunct in the sequence is one of the axioms of UE or is 
inferred from earlier conjuncts in the sequence by 𝜀𝜀-rule is called a proof in UE.  

A DNF 𝐷𝐷 = {𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾𝑙𝑙} is k-tautological if by using 𝜀𝜀-rule can be proved the empty conjunct (∅) from 
the axioms {𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾𝑙𝑙}. 

We consider also the well-known Frege style systems of  MVL. We define Gödel’s  (G) and  Łukasiewicz’s 
(L) systems following [6,7]. 

Łukasiewicz’s proof system (L) uses (1) definitions for all logical functions. 

For every formula A, B, C of k-valued logic the following formulas are axioms schemes of L [6]:  

1. 𝐴𝐴 ⊃ (𝐵𝐵 ⊃ 𝐴𝐴)         2. (𝐴𝐴 ⊃ (𝐵𝐵 ⊃ 𝐶𝐶)) ⊃ (𝐵𝐵 ⊃ (𝐴𝐴 ⊃ 𝐶𝐶)) 

3. (𝐴𝐴 ⊃ 𝐵𝐵) ⊃ ((𝐵𝐵 ⊃ 𝐶𝐶) ⊃ (𝐴𝐴 ⊃ 𝐶𝐶))  

4. (𝐴𝐴 ⊃ (𝐴𝐴 ⊃ 𝐵𝐵)) ⊃ ((¬ 𝐵𝐵 ⊃ (¬ 𝐵𝐵 ⊃¬ 𝐴𝐴)) ⊃ (𝐴𝐴 ⊃ 𝐵𝐵))  

5. (𝐴𝐴 ⊃ 𝐵𝐵) ⊃ (¬ 𝐵𝐵 ⊃¬ 𝐴𝐴)      6. 𝐴𝐴 ⊃¬¬ 𝐴𝐴 7. ¬¬ 𝐴𝐴 ⊃ 𝐴𝐴  

8. 𝐴𝐴&𝐵𝐵 ⊃ 𝐵𝐵       9. 𝐴𝐴&𝐵𝐵 ⊃ 𝐴𝐴          10. (𝐶𝐶 ⊃ 𝐴𝐴) ⊃ ((𝐶𝐶 ⊃ 𝐵𝐵) ⊃ (𝐶𝐶 ⊃ 𝐴𝐴&𝐵𝐵))  

11. 𝐴𝐴 ⊃ 𝐴𝐴 ∨ 𝐵𝐵    12. 𝐵𝐵 ⊃ 𝐴𝐴 ∨ 𝐵𝐵      13. (𝐴𝐴 ⊃ 𝐶𝐶) ⊃ ((𝐵𝐵 ⊃ 𝐶𝐶) ⊃ (𝐴𝐴 ∨ 𝐵𝐵 ⊃ 𝐶𝐶))  

             Inference rule is modus ponens /m.p./   𝐴𝐴,𝐴𝐴 ⊃ 𝐵𝐵 ⊢  𝐵𝐵. 

Gödel’s proof system (G) uses (1) definitions for conjunction and disjunction, (2) for implication and 
negation. 

For every formula A, B, C of k-valued logic the following formulas are axioms schemes of G  [7]:  

    1.(𝐴𝐴 ⊃ 𝐵𝐵) ⊃ ((𝐵𝐵 ⊃ 𝐶𝐶) ⊃ (𝐴𝐴 ⊃ 𝐶𝐶)) 

   2. 𝐴𝐴 ⊃ 𝐴𝐴 ∨ 𝐵𝐵      3. 𝐵𝐵 ⊃ 𝐴𝐴 ∨ 𝐵𝐵      4. (𝐴𝐴 ⊃ 𝐶𝐶) ⊃ ((𝐵𝐵 ⊃ 𝐶𝐶) ⊃ (𝐴𝐴 ∨ 𝐵𝐵 ⊃ 𝐶𝐶))  

   5. 𝐴𝐴&𝐵𝐵 ⊃ 𝐵𝐵      6. 𝐴𝐴&𝐵𝐵 ⊃ 𝐴𝐴        7. (𝐶𝐶 ⊃ 𝐴𝐴) ⊃ ((𝐶𝐶 ⊃ 𝐵𝐵) ⊃ (𝐶𝐶 ⊃ 𝐴𝐴&𝐵𝐵)) 

   8. (𝐴𝐴 ⊃ (𝐵𝐵 ⊃ 𝐶𝐶)) ⊃ ( &𝐵𝐵 ⊃ 𝐶𝐶)      9. ( 𝐴𝐴&𝐵𝐵 ⊃ 𝐶𝐶) ⊃ (𝐴𝐴 ⊃ (𝐵𝐵 ⊃ 𝐶𝐶)) 

   10. 𝐴𝐴&¬A ⊃ 𝐵𝐵       11. (𝐴𝐴 ⊃  &¬A)⊃ ¬A      12.(𝐴𝐴 ⊃ 𝐵𝐵) ∨  (𝐵𝐵 ⊃ 𝐴𝐴). 

   Inference rule is modus ponens /m.p./   𝐴𝐴,𝐴𝐴 ⊃ 𝐵𝐵 ⊢  𝐵𝐵. 

In both systems  “1” is fixed as designated value. 

http://dx.doi.org/10.14738/tmlai.71.6187
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2.4 Proof complexity measures 

In the theory of proof complexity two main characteristics of the proof are: 𝒕𝒕 − 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜, defined as 
the number of proof steps (length) and 𝒍𝒍 − 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜, defined as total number of proof symbols (size). 
We consider two measures (space and width) as well : 𝒔𝒔 − 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 (space), informal defined as 
maximum of minimal number of symbols on blackboard, needed to verify all steps in the proof and 𝒘𝒘−
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐱𝐱𝐱𝐱𝐱𝐱𝐱𝐱 (width), defined as the maximum of widths of proof formulas (the strong definitions of all 
proof complexity characteristics see in [9]). 

Let 𝚽𝚽 be a proof system and 𝝋𝝋 be a k-tautology. We denote by 𝒕𝒕𝝋𝝋𝚽𝚽(𝒍𝒍𝝋𝝋𝚽𝚽, 𝒔𝒔𝝋𝝋𝚽𝚽,𝒘𝒘𝝋𝝋
𝚽𝚽) the minimal possible value 

of 𝒕𝒕 − 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  (𝒍𝒍 − 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, 𝒔𝒔 − 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝒘𝒘− 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) for all proofs of tautology 
𝝋𝝋 in 𝚽𝚽.  

By |𝝋𝝋| we denote the size of a formula 𝝋𝝋, defined as the number of all logical signs entries. It is obvious 
that the full size of a formula, which is understood to be the number of all symbols is bounded by some 
linear function in|𝝋𝝋|. 

2.5 Essential subformulas of tautologies 

For proving the main results we use also the notion of essential subformulas, introduced in [8]. 

Let F be some formula and )(FSf  be the set of all non-elementary subformulas of formula F . 

For every formula F , for every )(FSf∈ϕ  and for every variable p  by pFϕ  is denoted the result of the 

replacement of the subformulas ϕ  everywhere in F  by the variable p . If )(FSf∉ϕ , then pFϕ  is F . 

We denote by )(FVar  the set of variables in F . 

Definition 3. Let p  be some variable that )(FVarp∉  and )(FSf∈ϕ  for some tautology F . We say 

that ϕ  is an essential subformula in F  iff pFϕ  is non-tautology. 

We denote by )(FEssf  the set of essential subformulas in tautology F . 

If F  is minimal tautology, i.e. F  is not a substitution of a shorter tautology, then )(=)( FSfFEssf . 

It is not difficult to prove the following statement. 

Proposition. Let F  be a minimal tautology and )(FEssf∈ϕ , then in every L-proof (G-proof) of F  

subformula ϕ  must  be essential either at least in some axiom of this system.
 
. 

Really, if some subformula is essential in formula  𝐵𝐵, which is derived from formlas 𝐴𝐴 and 𝐴𝐴 ⊃ 𝐵𝐵, then this 
subformula must be essential in 𝐴𝐴 or in 𝐴𝐴 ⊃ 𝐵𝐵. 

Note that for both systems L and G the number of  essential subformulas in every axioms is bounded with 
some constant. 

3 Main results. 
Here we  compare the proof complexities measures of strongly equal k- tautologies in above defined 
systems of some versions of MVL.  
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Theorem 1. The strongly equal k-tautologies have the same t,l,s,w complexities in the systems U E  for all 
versions of  MVL.   

The proof is based on the fact that refutations in the systems UE  deal exclusively with the conjuncts of 
dDNF, which are the same for strongly equal tautologies. 

The situation for the systems L and G  is  the essentially other.  

For simplification of  our result presentation, we demonstrate them only for 3-tautoogies.  

Let us consider 

a) for Łukasiewicz’s  3-valued logic the following two 3-tautologies: 

 An= (p1 & p1/2 & p0)1/2 ⊃ ((p1 & p1/2 & p0)1  ⊃  (¬¬. . . ¬�����
2𝑛𝑛

 (p1 ⋁ p1/2 ⋁ p0)))  with (1)  exponent,       (n 

≥0), 

 Bn = ( p1 ⋁ p1/2 ⋁ p0)  &  (¬¬. . . ¬�����
2𝑛𝑛

 (p1 ⋁ p1/2 ⋁ p0)) )))  with (1)  exponent,  (n ≥0), 

b) for Gödel’s  3-valued logic the following two 3-tautologies: 

Cn= ¬(¬¬𝑝𝑝&¬𝑝𝑝&𝑝𝑝) ⊃ ((¬¬𝑝𝑝&¬𝑝𝑝&𝑝𝑝) ⊃ (¬¬ … ¬�����
3𝑛𝑛

(¬¬𝑝𝑝⋁¬𝑝𝑝⋁𝑝𝑝))) (n   ≥0), 

Dn = (¬¬𝑝𝑝⋁¬𝑝𝑝⋁𝑝𝑝) & (¬¬ … ¬�����
3𝑛𝑛

(¬¬𝑝𝑝⋁¬𝑝𝑝⋁𝑝𝑝))    )))    (n ≥0). 

  It isn’t difficult to see that dDNF for both  An  and Bn is  {p1 , p1/2 , p0} and for both   Cn 𝐚𝐚𝐚𝐚𝐚𝐚 Dn is  

{¬¬𝒑𝒑, ¬𝒑𝒑,𝒑𝒑}, therefore An  and Bn are strongly equal and Cn 𝐚𝐚𝐚𝐚𝐚𝐚 Dn are strongly equal as well. 

          Note also that the sizes of all above formulas are Θ(n). 

Theorem 2. a)                    𝒕𝒕An𝑳𝑳 = 𝑂𝑂(1),      𝒍𝒍An𝑳𝑳 = 𝑂𝑂(𝑛𝑛) 

                                            𝒕𝒕Bn𝑳𝑳 = 𝜴𝜴(𝒏𝒏),      𝒍𝒍Bn𝑳𝑳 = Ω(𝑛𝑛2). 

                     b)                   𝒕𝒕Cn𝑮𝑮 = 𝑂𝑂(1),      𝒍𝒍Cn𝑮𝑮 = 𝑂𝑂(𝑛𝑛), 

                                           𝒕𝒕Dn𝑮𝑮 = 𝜴𝜴(𝒏𝒏),      𝒍𝒍Dn𝑮𝑮 = Ω(𝑛𝑛2). 

Proof. a) We can derive An  as follow. 

At first we derive  the 3-tautology (p1 & p1/2 & p0)0
 , then the 3-tautology 

  (p1 & p1/2 & p0)0
  ⊃((p1 & p1/2 & p0)1/2

 ⊃ ((p1 & p1/2 & p0)1  ⊃  (¬¬. . . ¬�����
2𝑛𝑛

 (p1 ⋁ p1/2 ⋁ p0)))), after them we 
derive by modus ponens the formula An . The lower bounds can be received by the same techniques as for 
2-valued logic.           

        b) We can derive Cn  as follow. 

At first we derive  the 3-tautology ¬¬(¬¬𝑝𝑝&¬𝑝𝑝&𝑝𝑝) , then the 3-tautology 

¬¬(¬¬𝑝𝑝&¬𝑝𝑝&𝑝𝑝) ⊃ (¬(¬¬𝑝𝑝&¬𝑝𝑝&𝑝𝑝) ⊃ ((¬¬𝑝𝑝&¬𝑝𝑝&𝑝𝑝) ⊃ (¬¬ … ¬�����
3𝑛𝑛

(¬¬𝑝𝑝⋁¬𝑝𝑝⋁𝑝𝑝)))    
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after them we derive by modus ponens the formula Cn . The lower bounds can be received by the same 
techniques as for 2-valued logic.           

Remark. If as formula An (Cn) we take the new one, in which the number of repeated “negations” before 
the last  subformula is 2n , and in Bn (Dn)  is 3m for m=[nlog3 2], then the sizes for such formulas will be the 
same by order as  well, but the bounds for steps will be more contrast: O(1) and 𝛀𝛀(2n ) for strongly equal 
new 3-tautologies An (Cn) and Bn (Dn)   accordingly. 

4 Conclusion 
We introduce the notion of strong equality of many-valued tautologies on the basis of   determinative 
conjunct notion. The idea to revise the notion of equivalence between tautologies in such way that is 
takes into account an appropriate measure of their “complexity”.  

 It is proved   that in “weak”   proof systems the strongly equal many-valued tautologies have the same 
proof complexities, while in the “strong” proof systems the measures of proof complexities for strongly 
equal tautologies can essentially differ from each other.  
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