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ABSTRACT

We defined some elementary terminology. It includes the vector space, linear combination, set of
independent vectors, dependent vectors, basis of vector space, and direct sum of subspaces. This theory
can help us lower the dimension of a given vector spaces. We apply to multivariate linear multiple
regression analysis. It not only simplifies the computation and eases the interpretation, but also reduce
the rate of errors. Cook (2010) developed an envelope model for the same reason. The main objective in
that model is decomposing the covariance matrix into the sum of two matrices, each of whose column
spaces either contains, or is orthogonal to, the subspace containing the mean. In other words, break the
covariance matrix into the direct sum of the subspaces.
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1 Introduction

Author worked for Internal Revenue Service for a long period of time. That organization has over one-
hundred thousand variables available for study. It is not uncommon to study more than a hundred
variables simultaneously at only one time. For example, in a case study there are 130 variables needed to
find a relationship between the variables and predict its future trend. We need to run a multivariate
regression analysis. Our experiences are calling a conference meeting with the subject matter group
members. Using their suggestions, we can break down the variables into smaller groups. Let say 130
variables are cut into six groups of 20 variables each, and 10 variables in the remainder one. In this way,
it is not only easier to run the program, but it will also help to interpret the output, and reduce the chance
to make errors. Cook (2010) developed the envelope model that decomposed the covariance matrix into
the direct sum of two matrices, each of whose column spaces either contains or is orthogonal to the
subspace containing the mean. The objective of his model is consistent with ours.
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2 Linear Transformation
Let V be n-dimensional vector space over a field F and let V;,...V be a basis of V over F. If Te A(V) ,
then T is determined on any vector as soon as we know its action on a basis of V. Since T maps V into V,

VlT ,VZT, ..... VnT must all be in V. As elements of V, each of these is a realization in a unique way as a

linear combination of Vy,...V over F. Thus,

VT = V) + ooV + .., + oy, Vv,
VoI =ay V) + 0V, +.e. +ay,V,
VT =a Vv +a,,V, +..e. + Vs

Where each o € F This system of equation can be written more compactly as
n
j=1

The ordered set of n2 numbers aij in F completely describes T. They will serve as the measure of

representing T.

Definition 2.1

Let V be an n dimensional vector space over Fand let V,,....V,

be a basis forvoverF.If T € A(V) then the matrix of T in the basis Vy,....V,, written as m(T), is

@ O - - Oy

Ay Gy - . Oy,
m(T) =

anl anz oo ann

n
where v;T => oV,
j=1

Example 2.1 Let the vector space V of 2x2 matrix over R and the following usual basis E of V.

0 0 1 0 0y _ (00

E={E, = ,E: 1E: y 4 —
{100200310401
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1 2
Let M = [3 4 and T, be the linear transformation on V defined by T, (E) = ME. Find the matrix

representation of Tl relative to the above usual basis of V.

1 2)(1 0) (1 0
T,(E,) = ME, = = =1E, + OE, + 3E, + OE,

3 4o 0) |30
1 2)(0 1) (0 1
TE)=ME=_ |, o|=|o 5|=0F +1E +0E; +3E,

1 2)(0 0) (2 0
T(E)=MEs=| | |=|, ,|=2E+0E; +4E;+0E,

1 2)(0 0) (0 2
TE)=ME =\ |, ,|=|, 4 7O0F:+2E+0E; +4E,

Since dim V=4, any matrix representation of a linear transformation on V must be a 4-square matrix.

1 0 2 0
01 0 2
Hence |T1|E: 3 40
0 0 4

0
3
Example 2.2 Let M = ( j and T2 V->V be the linear transformation on V defined by

T,(E) = EM. Find the matrix representation of T, in the above usual basis of V.

T,(E)=EM = L Oya by _fa by e bE,+0E, +0E
2\=1) "™+ _OOCd 0 1 2 3 4

0 1)a b c d
T,(E,) =E,M = = =CE, + dE, + 0E; +0E,
0 O)lc d 00
0 Oa b 00
T,(E;)=EM = = =0E, + OE, + aE; + bE,
1 0)ilc d a b
T(E)—EM—OO a b_OO =0E, +0E, +cE, + dE
2 4) — =4 - O 1 C d - C d 1 2 3 4
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a b 00

c d 0 O M O
Hence |T2|E: 0 0 a b = 0 M

0 0 cd

3 Define Terms

In this section we will define a sequence of useful terminology.

It includes vector space, subspace of a vector space, linear combination of the vector, span of the vectors,
set of linear independent vectors, basis of the vector space, dimension of vector space. All these terms
are required for us to understand dimension reduction. Define the vector space as follow.

Definition 3.1: A nonempty set V is said to be a vector space over a field F if V is an abelian group under

an operation which we denote by +, and if for every & € F,V €V there is defined an element written

as aV €V subject to:
Qa(v+w)y=av+aw, (2)(a+ S)IV=aVv+ pv, (3)a(LV)=(ap)v,
(4) lv=vforall o, F,vwe V.

Where 1 represents the unit element of F under multiplication.

definition 3.2: If V is a vector space over Fif W CV then W is a subspace of V if under the operation of
V, W, itself, forms

a vector space over F. Equivalently, W is a subspace of V whenever W, , W, eW, 05,3 € F implies that
aw, + Sw, eW.

Definition 3.3: A linear combination of the vector space

is a sum of scalar multiples of these vectors, that is,

C,V; +C,V,+,....C,\V,, for some scalar coefficients, C;,C,,....C,, € F .1f Sis a set of vectors in V, a
linear combination of vectors in S is a vector of the form
C\V; +CoVy+,...CV, Withie N,v; €S, ¢, eF

Definition 3.4: The span of the vectors C;,C,,....C, €V is the set of all linear combinations of these

vectors, denoted by span(cl,cz , ----Cn) . If Sis a (finite or infinite) set of vectors in V, then the span of

S, denoted by span(S), is the set of all linear combinations of vectors in S. If V=span(S), then S spans the
vector space V.

Definition 3.5: A (finite or infinite) set of vectors Sin Vis linearly independent if the only linear combination

of distinct vectors in S that produces the zero vector is a trivial linear combination. That is, if V; are

distinct vectorsin S and C,V; + C,V,+,...C V,, = 0, then C,=C,=...=C, = 0. Vectors that are not
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linearly independent are linear dependent. That is, there exist distinct vectors
Vi, V,,...V, €S and ¢;,C,,....C, notall 0such that

C\V; +C,V,+,...c.v, =0.
Definition 3.6: Let V be a vector space over a field F. A set of vectors B in a vector space V is a basis for V
if (1) B is a linearly independent set and (2) Span(B)=V.

Definition 3.7: The number of vectors in a basis for a vector space V is the dimension of V denoted by
dim(V).

Definition 3.8: The sum of two subspaces is direct if and only if the intersection of these subspaces is zero.

Since our objective is reduction the dimension of multivariate regression vector space using base theory.
The following theorems can be found in Mal*Cev(1963) linear algebra. We only claim the theorems and
not repeat its proof.

Theorem 3.1 The dimension of the sum of two linear subspaces is the sum of their dimensions minus the
dimension of their intersection.

Proof: see Mal*Cev(1963), page 50. Alternatively, see Cook,R.D.,
Li,B. and Chiaromonte,F.(2010), page 936, Corollary 3.1.
Theorem 3.2 The dimension of a direct sum of subspaces is the sum of their dimension.

Proof: By theorem 3.1 the dimension of the sum is the sum of the dimensions minus the dimension of the
intersection. From the definition 3.8, the intersection of the subspaces is zero

and has dimension zero. Therefore, the dimension of the direct sum of two subspaces is the sum of their
dimensions.

If the number of summands is greater than 2, the proof carried out by induction. From theorem 3.2 we
have the following.

Theorem 3.3 If a subspace A is the direct sum of subspaces

A A, then taking a basis ai'l ..... ai'm, of each subspace A

for i=1,....n and combining these bases into one system,
dgy.eeen asm1 we obtain a Basis of the subspace A.

The above definitions and three theorems are the foundation of our applications. More of the related
facts will be discussed in the section 4. We now give some examples to demonstrate its the real meaning
and its possible applications.

Example 3.1 If we are given that
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2 3
A = L s ,A,=(1 2), A;=(3) then

AOAODA=

o O O W
o r O O
o N O O
w O O O

2
1
0
0
Example 3.2 Let B :{Vl"""-vn} be a basis for V then

V =span(V,) @.......® span(V,)

Example 3.3 In the direct sum R(X; 2)XR2X2

1 2 0 1 1 5
(2x* +7, ) +3(x* +4x -2, )=(5x* +12x +1, )
3 4 -1 0 0 4

4 Some Facts
Although in section 3 we have defined the terms of basis and dimension of a vector space, it may not be
good enough in actual application. We realize that these two terms are critical and useful to us. We list
more facts to help us to more deeply understand these two terms. Fact 1: Every vector space has a basis.

Fact 2: The standard basis for F" is a basis for Fn, and so dim F" =nN. Fact 3: A basis B in a vector
space V is the largest set of linearly independent vectors in V that contain B, and it is the smallest set of
vectors in V that contains B and spans V. Fact 4: The empty set is a basis for the trivial vector space <0>,
and dim<0>=0. Fact 5: If S is a linearly independent set in a vector space V, then S can be expanded, if

necessary, to a basis for V. Fact 6: If the set S =< Vl,....Vp > spans a vector space V, then some subset

of S forms a basis for V. For example, if one of the vectors, say V;, is a linear combination of the remaining

vectors, then the set formed from S by removing V;, will be “closer” to a basis for V. This process can be
continued until the remaining vectors form a basis for V.

Fact 7: If a vector space V has a basis containing n vectors, then every basis of V must contain n vectors.
Similarly if V has infinite basis, then every basis of V must be infinite. So the dimension of V is unique. Fact

8: Let dim(V)=n and let S be a set containing n vectors. The following are equivalent: (8.1) S is a basis for
V. (8.2) Sspan V. (8.3) Sis linear independent. Fact 9: If dim(v)=n, then any subset of V containing more

than n vectors is linearly dependent. Fact 10: If B =< bl, ..... bp > is a basis for a vector space V, then

each X €V can be expressed as a unique linear combination of the vectors in B. That is, for each X €V

there is a unique set of scalars C;,C,,..... leJ such that X = Clbl + C2b2 T+ + Cpbp. The concept

of direct sum is the critical important to us. In section 3 we have clearly defined the direct sum and three
important theorems. We found that the following fact can help us in real applications. Fact 1:

W =W, ®@W, if and only if W=W, +W, and W, N W, =<0> Fact 2: If W is a subspace of V,
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then there exists a subspace U of V such that V=W @ U. Note that U is not usually unique. Fact 3:
Let W=W, +....+W, . The following statements are equivalent: (3.1) Let W=W, ©...® W, .

That is, for all i=1...n,

j#i j=1
(3.3) Foreach W € W, w can be expressed in exactly one way as a sum of vectors in Wl-"-Wn- That

is, there exists a unique WiEWi, such that W=W,;+....+W . (3.4) The subspace

n
Wi, for i=1....n are independent. (3.5) If Bi is an ordered basis for Wi , then B:U Bi is an
i=1

ordered basis for W. Fact 4: If B is a basis for V and B is partitioned into disjoint subset Bi , fori=1....n.

then V:span(Bl) ®D........ @ span(Bn) . Fact 5: If Sis a linearly independent subset of V and S is
partitioned into disjoint subsets S;, for i=1...n, then the subspaces span(Sl), ........ span(Sn) are
independent. Fact 6: If V is finite dimensional and V=W, +........ +W, , then

dim(V)=dim(W,)+........ +dim(W,) ifand only if V=W, @ ........ DW,.

5 Concluding Remarks
The Multivariate general linear multiple regression model is given by Y=XB+E where Y is nxp, X is nxq, B is
gxp, and E is nxp error matrix. If we move E matrix to the other side of equation and combine with Y
matrix, then we can view X matrix as a linear transformation on the parameter matrix B to the response

matrix Y. This paper is seeking some square submatrix W, such that W, mZWj =<0> W,

j#i
for i:1,2,...p and W:Wl ®D..... @ Wp. We are sure that such square matrix exist as can be seen

from example 2.2. However, the method to identify such submatrix from the given data set may not be
trivial. Compare to the Cook (2010) envelope model, we found that our basic objective to reduce the
dimension of vector space is identical. Envelope model attempt to decompose the covariance matrix into
the direct sum of two submatrix, each of whose column space either contain or is orthogonal to the
subspace containing the mean. The only way to do this is to create a split based on the eigenvector of the
covariance. Of course, this will lead to a large computer related computation.
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