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              ABSTRACT 

We defined some elementary terminology. It includes the vector space, linear combination, set of 
independent vectors, dependent vectors, basis of vector space, and direct sum of subspaces. This theory 
can help us lower the dimension of a given vector spaces. We apply to multivariate linear multiple 
regression analysis. It not only simplifies the computation and eases the interpretation, but also reduce 
the rate of errors. Cook (2010) developed an envelope model for the same reason. The main objective in 
that model is decomposing the covariance matrix into the sum of two matrices, each of whose column 
spaces either contains, or is orthogonal to, the subspace containing the mean. In other words, break the 
covariance matrix into the direct sum of the subspaces.  
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Keywords and Phrases: basis of the vector space, direct sum of subspaces, decompose the 
covariance matrix, envelope model, finite dimensional vector space, linear combinations of vector, 
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1 Introduction 
Author worked for Internal Revenue Service for a long period of time. That organization has over one-
hundred thousand variables available for study. It is not uncommon to study more than a hundred 
variables simultaneously at only one time. For example, in a case study there are 130 variables needed to 
find a relationship between the variables and predict its future trend. We need to run a multivariate 
regression analysis. Our experiences are calling a conference meeting with the subject matter group 
members. Using their suggestions, we can break down the variables into smaller groups. Let say 130 
variables are cut into six groups of 20 variables each, and 10 variables in the remainder one. In this way, 
it is not only easier to run the program, but it will also help to interpret the output, and reduce the chance 
to make errors. Cook (2010) developed the envelope model that decomposed the covariance matrix into 
the direct sum of two matrices, each of whose column spaces either contains or is orthogonal to the 
subspace containing the mean. The objective of his model is consistent with ours. 
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2 Linear Transformation 
Let V be n-dimensional vector space over a field F and let 1,... Nv v  be a basis of V over F. If (v)T A∈ , 

then T is determined on any vector as soon as we know its action on a basis of V. Since T maps V into V, 

1 2v , ,..... nT v T v T  must all be in V. As elements of V, each of these is a realization in a unique way as a 

linear combination of 1,... Nv v over F. Thus, 

1 11 1 12 2 1v ......... n nT v v vα α α= + + +  

2 21 1 22 2 2v ......... n nT v v vα α α= + + +
 

n 1 1 2 2v .........n n nn nT v v vα α α= + + +  

Where each ij Fα ∈  This system of equation can be written more compactly as 

i
1

v        i=1,2....n
n

ij j
j

T vα
=

=∑ j 

The ordered set of 2n  numbers ijα  in F completely describes T. They will serve as the measure of 

representing T. 

Definition 2.1 

Let V be an n dimensional vector space over F and let 1,.... nv v  

be a basis for v over F. If T A(V)∈  then the matrix of T in the basis 1,.... nv v  written as m(T), is 

11 12 1

21 22 2

1 2

i
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. .
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where T v

α α α
α α α

α α α

α
=

 
 
 
 =
 
 
 
 

=∑

 

Example 2.1 Let the vector space V of 2x2 matrix over R and the following usual basis E of V. 

1 2 3 4
1 0 0 1 0 0 0 0

E={E ,  ,  E ,  E }
0 0 0 0 1 0 0 1

E       
= = = =       
       
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Let 
1 2
3 4

M  
=  
 

 and 1T  be the linear transformation on V defined by 1T ( ) .E ME=  Find the matrix 

representation of 1T  relative to the above usual basis of V.   

1 1 1 1 2 3 4
1 2 1 0 1 0

( ) 1 0 3 0
3 4 0 0 3 0

T E ME E E E E    
= = = = + + +    

    
 

1 2 2 1 2 3 4
1 2 0 1 0 1

( ) 0 1 0 3
3 4 0 0 0 3

T E ME E E E E    
= = = = + + +    

    
 

1 3 3 1 2 3 4
1 2 0 0 2 0

( ) 2 0 4 0
3 4 1 0 4 0

T E ME E E E E    
= = = = + + +    

    
 

1 4 4 1 2 3 4
1 2 0 0 0 2

( ) 0 2 0 4
3 4 0 1 0 4

T E ME E E E E    
= = = = + + +    

    
 

Since dim V=4, any matrix representation of a linear transformation on V must be a 4-square matrix. 

Hence    1

1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

ET

 
 
 =
 
 
 

 

Example 2.2 Let 
a b

M
c d
 

=  
 

 and 2T  V->V be the linear transformation  on V defined by 

2T ( ) .E EM=  Find the matrix representation of 2T  in the above usual basis of V.  

2 1 1 1 2 3 4
1 0

( ) 0 0
0 0 0 0

a b a b
T E E M aE bE E E

c d
    

= = = = + + +    
    

 

2 2 2 1 2 3 4
0 1

( ) 0 0
0 0 0 0

a b c d
T E E M cE dE E E

c d
    

= = = = + + +    
    

 

2 3 3 1 2 3 4
0 0 0 0

( ) 0 0
1 0

a b
T E E M E E aE bE

c d a b
    

= = = = + + +    
    

 

2 4 4 1 2 3 4
0 0 0 0

( ) 0 0
0 1

a b
T E E M E E cE dE

c d c d
    

= = = = + + +    
    
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Hence    2

0 0
0 0 0

0 0 0
0 0

E

a b
c d M

T
a b M
c d

 
    = =     
 
 

 

3 Define Terms 
In this section we will define a sequence of useful terminology.  

It includes vector space, subspace of a vector space, linear combination of the vector, span of the vectors, 
set of linear independent vectors, basis of the vector space, dimension of vector space. All these terms 
are required for us to understand dimension reduction. Define the vector space as follow. 

Definition 3.1: A nonempty set V is said to be a vector space over a field F if V is an abelian group under 
an operation which we denote by +, and if for every ,F v Vα ∈ ∈  there is defined an element written 

as v Vα ∈ subject to:  

(1) ( ) ,  (2)( ) ,  (3) ( v)=( )v,
 (4) 1v=v for all , F, v,w V. 

v w v w v v vα α α α β α β α β αβ
α β

+ = + + = +
∈ ∈

 

Where 1 represents the unit element of F under multiplication. 

definition 3.2: If V is a vector space over F if W V⊂  then W is a subspace of V if under the operation of 
V, W, itself, forms 

a vector space over F. Equivalently, W is a subspace of V whenever 1 2, ,  Fw w W αβ∈ ∈  implies that 

1 2 .w w Wα β+ ∈  

Definition 3.3: A linear combination of the vector space  

is a sum of scalar multiples of these vectors, that is , 

1 1 2 2 ,.... n nc v c v c v+ + , for some scalar coefficients, 1 2, ,.... nc c c F∈ . If S is a set of vectors in V, a 

linear combination of vectors in S is a vector of the form 

1 1 2 2 i i,....  with i N, v ,  cn nc v c v c v S F+ + ∈ ∈ ∈  

Definition 3.4: The span of the vectors 1 2, ,.... nc c c V∈ is the set of all linear combinations of these 

vectors, denoted by 1 2( , ,.... )nspan c c c . If S is a (finite or infinite) set of vectors in V, then the span of 

S, denoted by span(S), is the set of all linear combinations of vectors in S. If V=span(S), then S spans the 
vector space V. 

Definition 3.5: A (finite or infinite) set of vectors S in V is linearly independent if the only linear combination 

of distinct vectors in S that produces the zero vector is a trivial linear combination. That is, if iv  are 

distinct vectors in S and 1 1 2 2 1 2 n,.... 0,  then c =c =....=c 0n nc v c v c v+ + = = . Vectors that are not 
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linearly independent are linear dependent. That is, there exist distinct vectors 

1 2 1 2, ,....  and , ,....n nv v v S c c c∈  not all 0 such that 

1 1 2 2 ,.... 0.n nc v c v c v+ + =   

Definition 3.6: Let V be a vector space over a field F. A set of vectors B in a vector space V is a basis for V 
if (1) B is a linearly independent set and (2) Span(B)=V. 

Definition 3.7: The number of vectors in a basis for a vector space V is the dimension of V denoted by 
dim(V).  

Definition 3.8: The sum of two subspaces is direct if and only if the intersection of these subspaces is zero. 

Since our objective is reduction the dimension of multivariate regression vector space using base theory. 
The following theorems can be found in Mal^Cev(1963) linear algebra. We only claim the theorems and 
not repeat its proof. 

Theorem 3.1 The dimension of the sum of two linear subspaces is the sum of their dimensions minus the 
dimension of their intersection. 

Proof: see Mal^Cev(1963), page 50. Alternatively, see Cook,R.D., 

Li,B. and Chiaromonte,F.(2010), page 936, Corollary 3.1. 

Theorem 3.2 The dimension of a direct sum of subspaces is the sum of their dimension. 

Proof: By theorem 3.1 the dimension of the sum is the sum of the dimensions minus the dimension of the 
intersection. From the definition 3.8, the intersection of the subspaces is zero 

and has dimension zero. Therefore, the dimension of the direct sum of two subspaces is the sum of their 
dimensions. 

If the number of summands is greater than 2, the proof carried out by induction. From theorem 3.2 we 
have the following.  

Theorem 3.3 If a subspace A is the direct sum of subspaces 

1,...... ,nA A  then taking a basis ' '
1.....  

ii ima a of each subspace  iA  

for i=1,....n and combining these bases into one system,  

1 111 1 1..... ...... .....m s sma a a a  we obtain a Basis of the subspace A. 

The above definitions and three theorems are the foundation of our applications. More of the related 
facts will be discussed in the section 4. We now give some examples to demonstrate its the real meaning 
and its possible applications. 

Example 3.1 If we are given that 

http://dx.doi.org/10.14738/tmlai.71.6070
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( ) ( )1 2 3

1 2 3

2 3
,  A 1 2 ,  A 3  

1 5

2 3 0 0 0
1 5 0 0 0
0 0 1 2 0
0 0 0 0 3

A then

A A A

 
= = = 
 

 
 
 ⊕ ⊕ =
 
 
 

 

Example 3.2 Let 1{ ....... }nV V=B  be a basis for V then  

1( ) ....... ( )nV span V span V= ⊕ ⊕  

Example 3.3 In the direct sum 2 2( ;2) xR x xR  

2 2 21 2 0 1 1 5
(2 7, ) 3( 4 2, ) (5 12 1, )

3 4 1 0 0 4
x x x x x     

+ + + − = + +     −     
 

4 Some Facts   
Although in section 3 we have defined the terms of basis and dimension of a vector space, it may not be 
good enough in actual application. We realize that these two terms are critical and useful to us. We list 
more facts to help us to more deeply understand these two terms. Fact 1: Every vector space has a basis. 

Fact 2: The standard basis for nF  is a basis for nF , and so dim .nF n=  Fact 3: A basis B in a vector 
space V is the largest set of linearly independent vectors in V that contain B, and it is the smallest set of 
vectors in V that contains B and spans V. Fact 4: The empty set is a basis for the trivial vector space <0>, 
and dim<0>=0. Fact 5: If S is a linearly independent set in a vector space V, then S can be expanded, if 

necessary, to a basis for V. Fact 6: If the set 1,.... pS v v=< >  spans a vector space V, then some subset 

of S forms a basis for V. For example, if one of the vectors, say iv , is a linear combination of the remaining 

vectors, then the set formed from S by removing iv , will be “closer” to a basis for V. This process can be 

continued until the remaining vectors form a basis for V.  

Fact 7: If a vector space V has a basis containing n vectors, then every basis of V must contain n vectors. 
Similarly if V has infinite basis, then every basis of V must be infinite. So the dimension of V is unique. Fact 
8: Let dim(V)=n and let S be a set containing n vectors. The following are equivalent: (8.1) S is a basis for 
V. (8.2) S span V. (8.3) S is linear independent. Fact 9: If dim(v)=n, then any subset of V containing more 

than n vectors is linearly dependent. Fact 10: If 1,..... pB b b=< >  is a basis for a vector space V, then 

each x V∈  can be expressed as a unique linear combination of the vectors in B. That is, for each x V∈  

there is a unique set of scalars 1 2, ,..... pc c c  such that 1 1 2 2 ...... p px c b c b c b= + + + . The concept 

of direct sum is the critical important to us. In section 3 we have clearly defined the direct sum and three 
important theorems. We found that the following fact can help us in real applications. Fact 1: 

1 2 1 2 if and only if W=W +WW W W= ⊕  1 2and W W =<0>∩  Fact 2: If W is a subspace of V, 
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then there exists a subspace U of V such that V=W U.⊕  Note that U is not usually unique. Fact 3: 

1 nLet W=W +....+W . The following statements are equivalent: (3.1) 1 nLet W=W .... W .⊕ ⊕  

That is, for all i=1…n,  

we have iW 0j
j i

W
≠

∩ =< >∑ . (3.2) 
1

i
1

W 0  for all i=2,......n
i

j
j

W
−

=

∩ =< >∑  

(3.3) For each w W,∈  w can be expressed in exactly one way as a sum of vectors in  1 nW ....W .   That 

is, there exists a unique i iw W ,∈  such that 1 nw=w +....+w .  (3.4) The subspace 

iw ,   i=1....n for are independent. (3.5) If iB is an ordered basis for iW , then 
n

i
i=1

B= B is an 

ordered basis for W. Fact 4: If B is a basis for V and B is partitioned into disjoint subset iB , for i=1……n. 

then 1 nV=span(B ) ........ span(B )⊕ ⊕ . Fact 5: If S is a linearly independent subset of V and S is 

partitioned into disjoint subsets iS ,  for i=1…n, then the subspaces 1 nspan(S ),........span(S )  are 

independent. Fact 6: If V is finite dimensional and 1 nV=W +........+W , then 

1 ndim(V)=dim(W )+........+dim(W )  if and only if 1 nV=W ........ W⊕ ⊕ . 

5 Concluding Remarks 
The Multivariate general linear multiple regression model is given by Y=XB+E where Y is nxp, X is nxq, B is 
qxp, and E is nxp error matrix. If we move E matrix to the other side of equation and combine with Y 
matrix, then we can view X matrix as a linear transformation on the parameter matrix B to the response 

matrix Y. This paper is seeking some square submatrix iW  such that 0i j
j i

W W
≠

∩ =< >∑  iW  

1 p i=1,2,...p and W=W ..... Wfor ⊕ ⊕ . We are sure that such square matrix exist as can be seen 

from example 2.2. However, the method to identify such submatrix from the given data set may not be 
trivial. Compare to the Cook (2010) envelope model, we found that our basic objective to reduce the 
dimension of vector space is identical. Envelope model attempt to decompose the covariance matrix into 
the direct sum of two submatrix, each of whose column space either contain or is orthogonal to the 
subspace containing the mean. The only way to do this is to create a split based on the eigenvector of the 
covariance. Of course, this will lead to a large computer related computation. 

REFERENCES   

[1] Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis. Second Edition, 

Wiley, New York.  

[2] Cook, R.D. (2007). Fisher lecture: Dimension Reduction in Regression (with discussion). Statist. 

Sci. 22 p1-26. 

http://dx.doi.org/10.14738/tmlai.71.6070


Transact ions on  Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume  7 ,  Issue 1,  Feb 2019 
 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 49 
 

[3] Cook, R.D., Li, B. and Chiaromonte, F. (2010). Envelope Models for Parsimonious and Efficient 

Multivariate Linear Regression. Statistica Sinica 20, p927-1010.  

[4] Cook, R.D., Li, B. and Chiaromonte, F. (2007). Dimension Reduction without matrix inversion. 

Biometrika, 94, p569-584.    

[5] Halmos, P.R. (1974,1987). Finite-Dimensional Vector Space. Published by Springer-Verlag, New 

York Inc. 

[6] Handbook of Linear Algebra. (2007). Edited by Leslie Hogben,Associate editors, Richard Brualdi, 

Anne Greenbaum, Roy Mathias. Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, 

London, New York. 

[7] Mal^Cev, A.I.(1963). Foundations of Linear Algebra. Translated from the Russian by Thomas 

Craig Brown, Edited by Roberts, J.B. Published by W.H. Freeman and Company, San Francisco 

and London. 

 

 

 

 

  

 

 

 


	Dimension Reduction in Multivariate Linear Regression
	Abstract
	1 Introduction
	2 Linear Transformation
	3 Define Terms
	4 Some Facts
	5 Concluding Remarks
	REFERENCES

