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ABSTRACT   

The description of this study is to make possibility analysis solution of online gradient method with 
smoothing 𝐿𝐿0 regularization for pi-sigma network training. Due to the effectiveness computational and 
theoretical analysis are a very important issues to improve the generalization performance of networks 
and the gradient descent algorithm with regularization is widely used method. However, 𝐿𝐿0 regularization 
is reefed to NP-hard nature problems, which has not differentiable objective functional-penalty term. In 
this paper to avoid this trick, we use a smoothing function to recover the origin 𝐿𝐿0 regularization into 
smoothing 𝐿𝐿0 regularization. Under this condition, the resulting obtained as a good decreases solution 
when compared with others. The monotonically of the error function, weak and strong convergence 
theorems are proved. 

Keywords:  Convergence; Online gradient method; Pi-Sigma networks; Smoothing 𝐿𝐿0 regularization. 

1 Introduction 
Pi-sigma network (PSN) is one of the most popular higher-order feedforward neural networks, which has 
generated substantial interest in a wide range of research communities, including function approximation 
[1], time series prediction [2], and pattern recognition [3]. Contrasting to traditional regularization term 
adding a penalty functional to the cost function, is that to improve the generalization performance and 
sometimes to control the size of the network weights to decrease the error between the desired and real 
outputs of the networks [4,5]. Due to the training process, practical there are two ways to implement the 
weights updating in the networks as online gradient [6] and batch gradient [7]. The modified cost error 
function with the regularization term is defined as follows 

𝐸𝐸(𝑊𝑊) = 𝐸𝐸�(𝑊𝑊) + 𝜆𝜆‖𝑊𝑊‖𝑝𝑝                                                                       (1) 

where λ is the regularization parameter, 𝐸𝐸�(𝑊𝑊) is a usual error function depending on the 𝑊𝑊 is the weights 
of the network, ‖𝑊𝑊‖𝑝𝑝 = ∑ |𝑤𝑤𝑘𝑘|𝑝𝑝𝑛𝑛

𝑘𝑘=1  is the 𝑝𝑝-norm (0 ≤ 𝑝𝑝 ≤ 2) of the weights of the network. It is well 
known that the 𝐿𝐿0 regularization (𝑝𝑝 = 0) is the earliest regularization method used to variable selection 
and feature extraction. The 𝐿𝐿0 regularization yields the most sparse solutions, but it faces the problem of 
combinatory optimization is a NP-hard nature [8]. To overcome this difficulty, a typical relaxation of the 
𝐿𝐿0 regularization term is introduced, which is the 𝐿𝐿1 regularization term [9]. 𝐿𝐿1 regularization is also called 
Lasso [10] and has been accepted as one of the most useful tools for sparse optimization. The 𝐿𝐿2 
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regularization term is common term introduced into the training procedure for neural networks, which 
has computational efficient due to having analytical solution [11, 12]. 

More related works, in [13] study the online gradient method with smoothing 𝐿𝐿0 regularization for FNNs 
training and shows how the absolute value approximated by a series of smoothing function. In [14] 
proposed online gradient method with smoothing 𝐿𝐿1/2  regularization for training FNN. The objective 
function of this term is the sum of a non-convex, non-smooth, which causes oscillation of the error 
function and the norm and difficulty in convergence analysis. However, the 𝐿𝐿1/2 regularization is 
approximated by smoothing function.  

The organization of this paper is as follows. In Section 2, we describe PSN algorithm and the online 
gradient method (OG) with smoothing 𝐿𝐿0 regularization. In Section 3, the convergence theorems and its 
analysis are presented. Contains some supporting simulation results in Section 4. The summarized of this 
work in Section 5. 

2 Description of the Proposed Method 
The description of the numbers neurons of PSN for the input, summation and product nodes are 𝑝𝑝, 𝑛𝑛 and 
1, respectively. Take 𝑤𝑤𝑗𝑗 = (𝑤𝑤𝑗𝑗1,𝑤𝑤𝑗𝑗2, . . . ,𝑤𝑤𝑗𝑗𝑗𝑗)𝑇𝑇 ∈ ℝ𝑃𝑃(1 ≤  𝑗𝑗 ≤ 𝑛𝑛) the weight vector connecting the input 
layer, the 𝑘𝑘 − 𝑡𝑡ℎ is summation unit and write 𝑤𝑤 =  (𝑤𝑤1𝑇𝑇 ,𝑤𝑤2𝑇𝑇 , . . . ,𝑤𝑤𝑛𝑛𝑇𝑇) ∈ ℝ𝑛𝑛𝑛𝑛. Note that the weights from 
summing units to product unit are fixed to be 1 and the topological structure of SPNN is given below. 

 
Figure 1.   Pi-Sigma network algorithm 

The network outputs calculated for input data  𝑥𝑥 = �𝑥𝑥1, . . . , 𝑥𝑥𝑝𝑝� ∈ ℝ𝑝𝑝  and given activation function 
𝑔𝑔:ℝ →  ℝ  by  

𝑦𝑦 = 𝑔𝑔 ��(𝑤𝑤𝑗𝑗 ∙ 𝑥𝑥

𝑛𝑛

𝑗𝑗=1

)�                                                                                           (2) 

Given a set of the training samples  {𝑥𝑥𝑙𝑙 ,𝑂𝑂𝑙𝑙}𝑙𝑙=1𝐿𝐿 ⊂  ℝ𝑝𝑝 × ℝ, where 𝑂𝑂𝑙𝑙  is the desired ideal output for the 
input 𝑥𝑥𝑙𝑙. The modified error with 𝐿𝐿0 regularization is defined by 

                                           𝐸𝐸�(𝑤𝑤) = ��𝑂𝑂𝑙𝑙 − 𝑔𝑔���𝑤𝑤𝑗𝑗 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

��

2
𝐿𝐿

𝑙𝑙=1

+ 𝜆𝜆‖𝑤𝑤‖0 

= �𝑔𝑔𝑙𝑙 ���𝑤𝑤𝑗𝑗 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

�
𝐿𝐿

𝑙𝑙=1

+ 𝜆𝜆‖𝑤𝑤‖0                                                             (3) 
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where 𝑔𝑔𝑙𝑙(𝑡𝑡) = 1
2

(𝑂𝑂𝑙𝑙 − 𝑔𝑔(𝑡𝑡))2 , λ > 0 is regularization coefficient and ‖ ∙ ‖0 is the 𝐿𝐿0-norm of a vector, 

defined as ‖ 𝑤𝑤 ‖0 = ∑ �𝑤𝑤𝑗𝑗�
0

𝑗𝑗∈𝑤𝑤  with the absolute value term denoted by | ∙ |. The problem mathematical 
of this term is not differentiable and the online gradient method can be directly used, which it difficult to 
fine  𝑤𝑤∗, such as 

 𝐸𝐸�(𝑤𝑤∗) = min𝐸𝐸�(𝑤𝑤)                                                                                       (4)  

To better understand the efficiency of the proposed methods we have reasonable way to fine practically 
needed to converge to a solution in (3). To this end, we use differentiable function to approximate the 
absolute value term; there are many smooth functions can be applied to various these kinds of problems. 
The modification of the error function with smoothing 𝐿𝐿0 regularization can be given by 

                                     𝐸𝐸(𝑤𝑤) = ��𝑂𝑂𝑙𝑙 − 𝑔𝑔���𝑤𝑤𝑗𝑗 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

��

2
𝐿𝐿

𝑙𝑙=1

+ 𝜆𝜆𝜆𝜆(𝑤𝑤) 

= �𝑔𝑔𝑙𝑙 ���𝑤𝑤𝑗𝑗 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

�
𝐿𝐿

𝑙𝑙=1

+ 𝜆𝜆𝜆𝜆(𝑤𝑤)                                                                   (5) 

where 𝐹𝐹(𝑤𝑤) = ∑ 𝑓𝑓(𝑤𝑤𝑗𝑗)𝑗𝑗∈𝑤𝑤  is a differentiable function and the smoothing function given by  

𝑓𝑓(𝑥𝑥) = �

−𝑥𝑥                                                           𝑥𝑥 ≤ −𝜀𝜀,           

−
1

8𝜀𝜀3
𝑥𝑥4 +

1
4𝜀𝜀
𝑥𝑥2 +

3
8
𝑥𝑥               − 𝜀𝜀 < 𝑥𝑥 < 𝜀𝜀,     

𝑥𝑥                                                             𝑥𝑥 ≥ 𝜀𝜀,              

                             (6) 

where 𝜀𝜀 > 0 is a small positive constant. The gradient of the error 𝐸𝐸(𝑤𝑤) with respect to 𝑤𝑤𝑗𝑗 as  

𝐸𝐸𝑤𝑤𝑗𝑗(𝑤𝑤) = �𝑔𝑔𝑙𝑙′ ���𝑤𝑤𝑗𝑗 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

�
𝐿𝐿

𝑙𝑙=1

��𝑤𝑤𝑘𝑘 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

𝑥𝑥𝑙𝑙 + 𝜆𝜆𝑓𝑓′�𝑤𝑤𝑗𝑗�                                (7) 

The network updates the weights {𝑤𝑤𝑚𝑚}  iteratively starting from 𝑚𝑚 = 0 by  

𝑤𝑤𝑗𝑗𝑚𝑚+1 = 𝑤𝑤𝑗𝑗𝑚𝑚 − 𝜂𝜂∆𝑤𝑤𝑗𝑗𝑚𝑚                                                                                                     (8) 

                                      ∆𝑤𝑤𝑗𝑗𝑚𝑚 = 𝑔𝑔𝑙𝑙′ ���𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

���𝑤𝑤𝑘𝑘𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

𝑥𝑥𝑙𝑙 + 𝜆𝜆𝑓𝑓′�𝑤𝑤𝑗𝑗𝑚𝑚� 

where η > 0  is the learning rate. 
3 Convergence analysis 

The following presumptions are required to prove the convergence Theorem 1. 
Assumption (A1) |𝑔𝑔(𝑡𝑡)|, |𝑔𝑔′(𝑡𝑡)|, |𝑔𝑔′′(𝑡𝑡)| are uniformly bounded for 𝑡𝑡 ∈ ℝ 
Assumption (A2) �wj

m ∙ xl� (𝑚𝑚 = 0,1, … ) is uniformly bounded. 
Assumption (A3) Chosen η and λ to satisfy:  0 <  𝜂𝜂 < 1/(𝑀𝑀𝑀𝑀 + 𝐶𝐶), where 

                  𝐶𝐶 =
1
2
𝐶𝐶1𝐶𝐶22𝐶𝐶3

2(𝑛𝑛−1)𝐿𝐿 +
1
2
𝐶𝐶1𝑛𝑛−1𝐶𝐶22𝐿𝐿(𝑛𝑛 − 1), 

                  𝐶𝐶1 = 𝑚𝑚𝑚𝑚𝑚𝑚 �sup
𝑡𝑡∈ℝ

|𝑔𝑔(𝑡𝑡)| , sup
𝑡𝑡∈ℝ

|𝑔𝑔′(𝑡𝑡)|, sup
𝑡𝑡∈ℝ

|𝑔𝑔′′(𝑡𝑡)| , sup
𝑡𝑡∈ℝ,1≤𝑙𝑙≤𝐿𝐿

|𝑔𝑔𝑙𝑙′(𝑡𝑡)| , sup
𝑡𝑡∈ℝ,1≤𝑙𝑙≤𝐿𝐿

|𝑔𝑔𝑙𝑙′′(𝑡𝑡)|�, 
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  𝐶𝐶2 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑙𝑙≤𝐿𝐿

�𝑥𝑥𝑙𝑙� ,                     𝐶𝐶3 = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚∈ℕ,1≤𝑙𝑙≤𝐿𝐿

�𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�                                                               (9) 

Assumption (A4) There exists a closed bounded region Φ  such that {𝑤𝑤𝑚𝑚} ⊂ Φ , and set Φ0 =
{𝑤𝑤 ∈ 𝛷𝛷: 𝐸𝐸𝑤𝑤(𝑤𝑤) = 0} contains only finite points. 

Theorem 1 Let the error function 𝐸𝐸(w)  is defined by (5) and the weight {𝑤𝑤𝑚𝑚} be generated by the 
iteration algorithm (8)  for an arbitrary initial value 𝑚𝑚 = 0. If Assumptions (A1) - (A3) are valid, then the 
following estimate exists: 

(𝑎𝑎)  𝐸𝐸(𝑤𝑤𝑚𝑚+1) ≤ 𝐸𝐸(𝑤𝑤𝑚𝑚),   𝑚𝑚 = 0,1, … ;  

(𝑏𝑏)  lim 
𝑚𝑚→∞

‖𝐸𝐸𝑤𝑤(𝑤𝑤𝑚𝑚)‖ = 0 ; 
Moreover, if Assumption (A4) is valid, the strong convergence will be established: There exists a 

point Φ0 satisfying that 
(𝑐𝑐) lim

𝑚𝑚→∞
𝑤𝑤𝑚𝑚 = 𝑤𝑤∗. 

4 Experiment and Analysis 
The purpose of this section is to carry out the numerical experiments of the proposed OG with the 
smoothing 𝐿𝐿0 regularization term (OGSL0) to performance of lean practices, which compared with OG 
with 𝐿𝐿1 regularization (OGL1) and  𝐿𝐿2 regularization (OGL2). Each of the three algorithms takes 10 trials 
as well as to be able to provide more powerful mapping capability.  In this test, we use identification of 
the nonlinear function 𝑦𝑦 =  𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋𝜋𝜋) with different closed interval 𝑥𝑥 ∈  [𝑎𝑎,−𝑎𝑎]. By choosing the learning 
rate  𝜂𝜂 =  0,05, 𝜆𝜆 =  0,0001 the penalty parameter and max number of iterations 2000.  

From Figures 2-5, we see that the proposed OGSL0  decreases monotonically and the corresponding 
gradient tends to zero it’s better than the OGL1 and OGL2 when the number of iteration increases. From 
Table 1, we also can see that the average error training, average error testing and the average numbers 
of neurons eliminated (ANE in brief) by the pruning over the 10 trials and the resulting of OGSL0 is more 
suitable.  

 
Figure 2.  Results of errors for OG𝐋𝐋𝟏𝟏, OG𝐋𝐋𝟐𝟐 and  
OGS𝐋𝐋𝟎𝟎 in interval [0.2,-0.2]. 

Figure 3.  Results of errors for OG𝐋𝐋𝟏𝟏, OG𝐋𝐋𝟐𝟐 
and OGS𝐋𝐋𝟎𝟎 in interval [0.5,-0.5]. 
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Figure 4.  Results of errors for OG𝐋𝐋𝟏𝟏, OG𝐋𝐋𝟐𝟐 and  
OGS𝐋𝐋𝟎𝟎 in interval [1,-1]. 

Figure 5.  Results of errors for OG𝐋𝐋𝟏𝟏, OG𝐋𝐋𝟐𝟐 
and OGS𝐋𝐋𝟎𝟎 in interval [1.3,-1.3]. 
 
 

Table 1.  Effect results of average error training/ testing with different interval. 

Algorithm Average Error of 
training patterns 

Average Error of 
testing patterns CAN of zero Initial weights 𝐖𝐖 ∈  [𝐚𝐚,−𝐚𝐚] 

OG𝐿𝐿1 
OG𝐿𝐿2 
OGS𝐿𝐿0 

1.7090e-04 
6.3672e-08 
5.4650e-10 

1.8748e-04 
4.8842e-08 
3.1593e-10 

1.4 
2.0 
5.4 

[0.2,-0.2] 
[0.2,-0.2] 
[0.2,-0.2] 

OG𝐿𝐿1 
OG𝐿𝐿2 
OGS𝐿𝐿0 

1.5960e-04 
4.7631e-13 
2.2005e-21 

1.7445e-04 
2.9299e-13 
1.3043e-21 

0 
0 

3.0 

[0.5,-0.5] 
[0.5,-0.5] 
[0.5,-0.5] 

OG𝐿𝐿1 
OG𝐿𝐿2 
OGS𝐿𝐿0 

1.7684e-04 
1.3566e-05 
2.0794e-06 

1.9067e-04 
1.1340e-05 
1.2024e-06 

1.0 
1.8 
4.0 

[1,-1] 
[1,-1] 
[1,-1] 

OG𝐿𝐿1 
OG𝐿𝐿2 
OGS𝐿𝐿0 

1.6778e-04 
9.7101e-08 
2.0367e-31 

1.6639e-04 
7.8366e-08 
5.7173e-29 

1.3 
2.4 
5.1 

[1.3,-1.3] 
[1.3,-1.3] 
[1.3,-1.3] 

 

5  Conclusion 
Regularization is the one of the most popular method used in neural networks applications. The 𝐿𝐿0  
regularization is the earliest regularization term applied to feature extraction and variable selection. This 
term yields the sparsest solutions, but it NP-hard problems in combinatory optimization. This study 
presents a novel online gradient method with smoothing 𝐿𝐿0  regularization for pi-sigma neural 
network  (OGSL0) . The key contribution of paper is to address the absolute value term of the 𝐿𝐿0 
regularization at the origin by using a smoothing function. The propose of OGSL0 it’s able to make a 
feasible analysis solution and shown a good effectiveness convergence results when compared with OGL1 
and OGL2. 
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7 Appendix  
The following lemma is a crucial tool for our analysis. Its proof is thus omitted (see [15]). 
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Lemma 1 Let Ϝ:ℝQ → ℝ  is continuous and differentiable on a compact set 𝐻𝐻 ⊂ ℝ and that ℳ =
{𝑈𝑈 ∈ 𝐻𝐻|𝛻𝛻𝛻𝛻(𝑈𝑈) = 0}  has only finite number of points. If a sequence {𝑈𝑈𝑘𝑘}𝑘𝑘=1∞ ∈ 𝐻𝐻 satisfies 𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘→∞
�𝑈𝑈𝑘𝑘+1 −

𝑈𝑈𝑘𝑘� = 0 and 𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

�𝛻𝛻Ϝ�𝑈𝑈𝑘𝑘�� = 0, then there exists a point U∗ ∈ ℳ such that 𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

𝑈𝑈𝑘𝑘 = 𝑈𝑈∗. 

The proof of Theorem 1 is divided into three steps. For convenience, we let  

𝜌𝜌𝑗𝑗𝑚𝑚 = ��Δ𝑤𝑤𝑗𝑗𝑚𝑚�
2

𝑛𝑛

𝑗𝑗=1

                                                                                         (10) 

By using the Taylor’s formula to extend 𝑔𝑔𝑙𝑙�∏ �𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�𝑛𝑛
𝑗𝑗=1 � at ∏ �𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�𝑛𝑛

𝑗𝑗=1 , we have 

                                          𝑔𝑔𝑙𝑙 ���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

� − 𝑔𝑔𝑙𝑙  ���𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

� 

                                          = 𝑔𝑔𝑙𝑙′ ���𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

���𝑤𝑤𝑘𝑘𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

��𝛥𝛥𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

 

                                         +
1
2

�

⎝

⎛�(𝑡𝑡1)
𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗 ⎠

⎞
𝑛𝑛

𝑗𝑗1,𝑗𝑗2=1
𝑗𝑗1≠𝑗𝑗2

�𝛥𝛥𝑤𝑤𝑗𝑗1
𝑚𝑚 ∙ 𝛥𝛥𝑤𝑤𝑗𝑗1

𝑚𝑚��𝑥𝑥𝑙𝑙�2 

       +
1
2
𝑔𝑔′′(𝑡𝑡2)���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�

𝑛𝑛

𝑗𝑗=1

 – ��𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

�

2

                                              (11) 

where 𝑡𝑡1 ∈  ℝ  is between 𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙   and 𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙  and 𝑡𝑡2 ∈  ℝ  is between ∏ �𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�𝑛𝑛
𝑗𝑗=1   and 

∏ �𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�𝑛𝑛
𝑗𝑗=1 . 

Proof to (𝒂𝒂) of Theorem 1. After dealing with (11) by accumulation (5) and Taylors formula  

  𝐸𝐸(𝑤𝑤𝑚𝑚+1)− 𝐸𝐸(𝑤𝑤𝑚𝑚) = ��𝑔𝑔𝑙𝑙 ���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

� − 𝑔𝑔𝑙𝑙 ���𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

��
𝐿𝐿

𝑙𝑙=1

 

                                          +𝜆𝜆(𝐹𝐹(𝑤𝑤𝑚𝑚+1)− 𝐹𝐹(𝑤𝑤𝑚𝑚)) 

                                          = �

⎝

⎛𝑔𝑔𝑙𝑙′ ���𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

���𝑤𝑤𝑘𝑘𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

𝑥𝑥𝑙𝑙

⎠

⎞
𝐿𝐿

𝑙𝑙=1

∙ Δ𝑤𝑤𝑗𝑗𝑚𝑚 

                                          +𝜆𝜆��𝑓𝑓′�𝑤𝑤𝑗𝑗𝑚𝑚�+ 𝑓𝑓′′(𝑡𝑡3)Δ𝑤𝑤𝑗𝑗𝑚𝑚� ∙
𝑛𝑛

𝑗𝑗=1

Δ𝑤𝑤𝑗𝑗𝑚𝑚    

                                          +
1
2
𝑔𝑔′′(𝑡𝑡2)���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ xl�

𝑛𝑛

𝑗𝑗=1

 – ��𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

�

2

+ 𝛿𝛿    

                                          ≤ −�
1
𝜂𝜂
−𝑀𝑀𝑀𝑀�  𝜌𝜌𝑗𝑗𝑚𝑚 

+
1
2
𝑔𝑔′′(𝑡𝑡2)���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�

𝑛𝑛

𝑗𝑗=1

 – ��𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

�

2

+ 𝛿𝛿                                     (12) 
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where  𝑡𝑡3 ∈  ℝ is between 𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙   and 𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙, 𝑓𝑓′′(𝑡𝑡3) = 𝑀𝑀 and  

𝛿𝛿 =
1
2
�𝑔𝑔𝑙𝑙′ ���𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�

𝑛𝑛

𝑗𝑗=1

�
𝐿𝐿

𝑙𝑙=1

� �(𝑡𝑡1)
𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

𝑛𝑛

𝑗𝑗1,𝑗𝑗2=1
𝑗𝑗1≠𝑗𝑗2

�𝛥𝛥𝑤𝑤𝑗𝑗1
𝑚𝑚 ∙ 𝛥𝛥𝑤𝑤𝑗𝑗1

𝑚𝑚��𝑥𝑥𝑙𝑙�2 

By Cauchy-Schwartz inequality and Assumption (A2), we have the following estimation  

���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

 – ��𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=1

� ≤ ���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛−1

𝑗𝑗=1

� �𝑤𝑤𝑗𝑗𝑚𝑚+1 − 𝑤𝑤𝑗𝑗𝑚𝑚�𝑥𝑥𝑙𝑙 

                                                                   +���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛−2

𝑗𝑗=1

�𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�� �𝑤𝑤𝑗𝑗𝑚𝑚+1 − 𝑤𝑤𝑗𝑗𝑚𝑚�𝑥𝑥𝑙𝑙 

                                                                    +⋯+ ���𝑤𝑤𝑗𝑗𝑚𝑚+1 ∙ 𝑥𝑥𝑙𝑙�
𝑛𝑛

𝑗𝑗=2

� �𝑤𝑤𝑗𝑗𝑚𝑚+1 − 𝑤𝑤𝑗𝑗𝑚𝑚�𝑥𝑥𝑙𝑙 

                                                                    ≤ 𝐶𝐶3𝑛𝑛−1�𝑥𝑥𝑙𝑙���𝑤𝑤𝑗𝑗𝑚𝑚+1 − 𝑤𝑤𝑗𝑗𝑚𝑚�
𝑛𝑛

𝑗𝑗=1

 

≤ 𝐶𝐶2𝐶𝐶3𝑛𝑛−1��Δ𝑤𝑤𝑗𝑗𝑚𝑚�
𝑛𝑛

𝑗𝑗=1

                                                                     (13) 

and  

                                    𝛿𝛿 ≤
1
2
�𝑔𝑔𝑙𝑙′ ���𝑤𝑤𝑗𝑗𝑚𝑚 ∙ 𝑥𝑥𝑙𝑙�

𝑛𝑛

𝑗𝑗=1

�
𝐿𝐿

𝑙𝑙=1

�

⎝

⎛�(𝑡𝑡1)
𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗 ⎠

⎞
𝑛𝑛

𝑗𝑗1,𝑗𝑗2=1
𝑗𝑗1≠𝑗𝑗2

�𝛥𝛥𝑤𝑤𝑗𝑗1
𝑚𝑚 ∙ 𝛥𝛥𝑤𝑤𝑗𝑗1

𝑚𝑚��𝑥𝑥𝑙𝑙�2 

                                        ≤
1
2
𝐶𝐶1𝑛𝑛−1𝐶𝐶22𝐿𝐿(𝑛𝑛 − 1) � �𝛥𝛥𝑤𝑤𝑗𝑗1

𝑚𝑚 ∙ 𝛥𝛥𝑤𝑤𝑗𝑗1
𝑚𝑚�

𝑛𝑛

𝑗𝑗1,𝑗𝑗2=1
𝑗𝑗1≠𝑗𝑗2

 

≤
1
2
𝐶𝐶1𝑛𝑛−1𝐶𝐶22𝐿𝐿(𝑛𝑛 − 1)𝜌𝜌𝑗𝑗𝑚𝑚                                                                                           (14) 

Substation (13) and (14) into (12), we fine that  

          𝐸𝐸(𝑤𝑤𝑚𝑚+1) − 𝐸𝐸(𝑤𝑤𝑚𝑚) ≤ −�
1
𝜂𝜂
−𝑀𝑀𝑀𝑀 −

1
2
𝐶𝐶1𝐶𝐶22𝐶𝐶3

2(𝑛𝑛−1)𝐿𝐿 −
1
2
𝐶𝐶1𝑛𝑛−1𝐶𝐶22𝐿𝐿(𝑛𝑛 − 1)�  𝜌𝜌𝑗𝑗𝑚𝑚 

                                                 ≤ −�
1
𝜂𝜂
−𝑀𝑀𝑀𝑀 − 𝐶𝐶�  𝜌𝜌𝑗𝑗𝑚𝑚 

≤ 0,                                                                                                                        (15) 

where 𝐶𝐶 = 1
2
𝐶𝐶1𝐶𝐶22𝐶𝐶3

2(𝑛𝑛−1)𝐿𝐿 + 1
2
𝐶𝐶1𝑛𝑛−1𝐶𝐶22𝐿𝐿(𝑛𝑛 − 1), thus leads to 

𝐸𝐸(𝑤𝑤𝑚𝑚+1) ≤ 𝐸𝐸(𝑤𝑤𝑚𝑚),𝑚𝑚 = 0,1,2, …                                                                           (16) 
The proof to (𝑎𝑎) of Theorem 1 is thus completed. 

Proof to (𝒃𝒃) of Theorem 1. According to the Assumption (A3), (15) and fine 𝛽𝛽 >  0 satisfied: 

𝛽𝛽 =
1
𝜂𝜂
−𝑀𝑀𝑀𝑀 − 𝐶𝐶.                                                                                              (17) 
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In view of (16), (17), there holds 

𝐸𝐸(𝑤𝑤𝑚𝑚+1) ≤ 𝐸𝐸(𝑤𝑤𝑚𝑚)− 𝛽𝛽𝜌𝜌𝑗𝑗𝑚𝑚 ≤ ⋯ ≤ 𝐸𝐸(𝑤𝑤0)− 𝛽𝛽�𝜌𝜌𝑗𝑗𝑚𝑚
𝑚𝑚

𝑞𝑞=0

. 

From  𝐸𝐸(𝑤𝑤𝑚𝑚+1) > 0, then 

                                                             𝛽𝛽�𝜌𝜌𝑗𝑗𝑚𝑚
𝑚𝑚

𝑞𝑞=0

≤ 𝐸𝐸(𝑤𝑤0) < ∞. 

Called  𝑚𝑚 → ∞, we obtain 

                                                             �𝜌𝜌𝑗𝑗𝑚𝑚
∞

𝑞𝑞=0

≤
1
𝛽𝛽
𝐸𝐸(𝑤𝑤0) < ∞, 

and thus leads to 

𝑙𝑙𝑙𝑙𝑙𝑙 
𝑚𝑚→∞

�𝛥𝛥𝑤𝑤𝑗𝑗𝑚𝑚� = 𝑙𝑙𝑙𝑙𝑙𝑙 
𝑚𝑚→∞

�𝐸𝐸𝑤𝑤𝑗𝑗(𝑤𝑤
𝑚𝑚)� = 0.                                           (18) 

Thus proof to (𝑏𝑏) of the Theorem 1 is omitted.  

Proof to (𝒄𝒄)  of Theorem 1. Note that the error function 𝐸𝐸(𝑤𝑤)  defined in (5) is continuous and 
differentiable. According to (18), Assumption (A4) and Lemma 1, we can easily get the desired result, i.e., 
there exists a point 𝑤𝑤∗ ∈ 𝛷𝛷 such that 

𝑙𝑙𝑙𝑙𝑙𝑙 
𝑚𝑚→∞

𝑤𝑤𝑚𝑚 = 𝑤𝑤∗ 

This proof is completed. 
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