

DOI: 10.14738/tmlai.66.5811
Publication Date: 27th December, 2018
URL: http://dx.doi.org/10.14738/tmlai.66.5811

 Volume 6 No. 6

Automatic Classification of Program Paths Feasibility Using
Active Learning

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify
Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt

moheb.girgis@mu.edu.eg; nashar_al@yahoo.com; as_mo_elsify@yahoo.com

ABSTRACT

One of the challenging problems that faces the automated test data generation for path testing is the
existence of infeasible paths, where no input data can be found to exercise them. Substantial time and
effort may be wasted in trying to generate input data to exercise such paths. This paper proposes an
active-learning approach to the automatic feasibility classification of program paths. This approach is
based on the hypothesis that certain features of program behavior are stochastic processes that exhibit
the Markov property, and that the resultant Markov models of individual program paths can be
automatically clustered into effective predictors of path feasibility. To this end, the paper presents a
technique that represents program paths as Markov models, and a clustering algorithm for Markov
models that aggregates them into an effective path feasibility classifier. In this approach, the classifier is
a map from program path statistics, namely, edge, branch, or definition-use profiles, to a label for the
path, “feasible” or “infeasible”. The presented technique employs the bootstrapping active learning
strategy, where the classifier is trained incrementally on a series of labeled instances, to extend its scope
of training to be able to succeed in classifying new paths. The paper also presented the results of the
experiments that were conducted to evaluate the effectiveness of the three paths feasibility classifiers
built by using the proposed technique, and the bootstrapping technique.

Keywords: Software testing; Infeasible paths detection; Batch learning; Active learning; Paths feasibility
classifier; Markov model.

1 Introduction
Software testing is a practical way of obtaining increased confidence in software. Software testing consists
of generating test data according to some testing strategy, such as path testing, and then checking the
output produced by the test data against the expected results. One of the challenging problems that faces
the automated test data generation for path testing is the existence of infeasible paths, where no input
data can be found to exercise them. Experimental evidences have shown that a significant amount of
infeasible paths are present in complicated programs, and the detection of these infeasible paths is an
undecidable question [1]. Substantial time and effort may be wasted in trying to generate input data to
exercise such paths. So, timely detecting these infeasible paths cannot only save test resources but also
improve test efficiency.

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 36

Machine learning techniques, such as classification, have been successfully applied to software
engineering problems. Some researchers used the batch learning approach (e.g., [2-8]), in which a fixed
quantity of manually labeled training data is collected at the start of the learning process. Other
researchers used the active learning approach (e.g., [9-10]), in which the classifier is trained incrementally
on a series of labeled data elements. The advantage of active learning is that it can extend the scope of
the classifier beyond what batch learning would yield, for the same amount of labeling effort [10].

Any program path has control-flow components, such as branches and edges, and data-flow components,
such as definition-use (def-use) chains. These components are features for which aggregate statistical
measures can be collected, such as branch profiles, edge profiles, and def-use profiles. The aim of this
paper is to explore the use of these features as predictors of path feasibility. In order to achieve this aim,
the paper proposes an active-learning approach to the automatic feasibility classification of program
paths. This approach is based on the hypothesis that these program features are stochastic processes that
exhibit the Markov property, and that the resultant Markov models of individual program paths can be
automatically clustered into effective predictors of path feasibility.

The proposed approach includes a technique that represents program paths as Markov models, and a
clustering algorithm for Markov models that aggregates them into a path feasibility classifier. In this
approach, the classifier is a map from program path statistics, namely, edge, branch, or def-use profiles,
to a label for the path, “feasible” or “infeasible”. This is based on the idea that such profiles can reflect
the patterns that may cause path infeasibility, so the models of two infeasible paths that share these
profiles can be similar, i.e. belong to the same class. The proposed approach, initially, employs the batch-
learning technique for path feasibility classification, then the technique is combined with the
bootstrapping active learning strategy [10], where the classifier is trained incrementally on a series of
labeled instances, to improve it.

So far as the authors are aware, no other work has been proposed combining the use of Markov models
and batch/active learning in the classification of paths feasibility.

The paper is organized as follows: Section 2 presents a review of the related work in using machine
learning in program behavior classification and paths feasibility classification. Section 3 describes the
proposed approach for building a path feasibility classifier, which includes modeling program paths using
Markov models built from edges, branches, and def-use profiles; training the path feasibility classifier;
using the trained classifier; and improving the classifier by using the bootstrapping active learning
strategy. Section 4 describes the results of the experiments that have been conducted to evaluate the
proposed approach. Section 5 presents the conclusion of the work presented in this paper.

2 Related Work
As the main concern of this work is the automatic feasibility classification of program paths using active-
learning, this section reviews examples of the related work in using machine learning in program behavior
classification and paths feasibility classification.

Several approaches have been proposed for program behavior classification using machine learning.
Examples of these approaches are reviewed below.

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 37

Some of the approaches in this area used Markov models to describe the stochastic dynamic behavior of
program executions. Whittaker and Poore [11] used Markov chains to model software usage from
specifications prior to implementation. Cook and Wolf [12] used Markov models to represent individual
executions in their study of automated process discovery from execution traces. They concentrated on
transforming Markov models into finite state machines as models of process. Jha et al. [4] used Markov
models of event traces as the basis for intrusion detection. They address the problem of scoring events
that have not been encountered during training. Bowring et al. [10] proposed an active learning approach
to build a classifier of program behaviors. Firstly, they model individual program executions as Markov
models built from the profiles of event transitions such as branches. Then, they build clusters of these
Markov models, which then together form a classifier tuned to predict specific behavioral characteristics
of the considered program, such as “pass” or “fail”.

Another group of approaches focused on failure detection. Dickinson et al. [3] proposed a technique that
uses cluster analysis of execution profiles to find failures among the executions induced by a set of
potential test cases. They use many feature profiles (e.g., branch decision, method calls) as the basis for
cluster formation. Podgurski et al. [6] proposed an approach to fault detection and failure categorization
that combines clustering with feature selection, and used multidimensional scaling to visualize the
resulting grouping of executions. In both of these approaches, the clusters are formed once using batch
learning and then used for subsequent analysis. Brun and Ernst [8] used dynamic invariant detection to
extract program properties relevant to revealing faults and then applied batch learning techniques to rank
and select these properties. Gross et al. [7] proposed the Software Dependability Framework, which
monitors running programs, collects statistics, and, using multivariate state estimation, automatically
builds models for use in predicting failures during execution. Their models are built once using batch
learning. Haran et al. [13-14] proposed techniques for automatically classifying execution data collected
in the field. They used statistical learning algorithms to build the classification models. Their techniques
build the models by analyzing executions performed in a controlled environment (e.g., test cases run in-
house) and then use the models to predict whether execution data produced by a fielded instance were
generated by a passing or failing program execution. Lo et al. [15] proposed a technique to classify
software behaviors based on past history or runs. With this technique, it is possible to generalize past
known errors and mistakes to capture failures and anomalies. Francis et al. [16] proposed two tree-based
techniques for classifying reported software failures in order to facilitate prioritizing them and diagnosing
their causes. The first technique is based on the use of dendrograms, which are rooted trees used to
represent the results of hierarchical cluster analysis. The second technique employs a classification tree
constructed to recognize failed executions.

The final group of related work used statistical learning methods to analyze program executions. Harder
et al. [17] automatically classify software behavior using an operational differencing technique. Their
method extracts formal operational abstractions from statistical summaries of program executions and
uses them to automate the augmentation of test suites. Munson and Elbaum [18] postulate that actual
executions are the final source of reliability measures. They model program executions as transitions
between program modules, with an additional terminal state to represent failure. They focus on reliability
estimation by modeling the transition probabilities into the failure state. Ammons et al. [5] proposed a
mining technique for extracting formal specifications from interaction traces by learning probabilistic
finite suffix automata models. Their technique recognizes the stochastic nature of executions, but it

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 38

focuses on extracting invariants of behavior rather than mappings from execution event statistics to
behavior classes.

To the best of our knowledge no much work have been done in the area of using machine learning in
paths feasibility classification. Baskiotis et al. [19] proposed an adaptive feasible paths sampling
mechanism, called EXIST. It proceeds by iteratively generating candidate paths based on the current
distribution on the program paths, and updating this distribution after the path has been labelled as
feasible or infeasible. Baskiotis and Sebag [20] proposed an active learning algorithm, called S4T (for
Structural Sampling for Statistical Software Testing), which samples new feasible paths using some initially
available feasible paths.

3 Building Path Feasibility Classifier
Our path feasibility classifier employs Markov models for program paths in predicting the path feasibility.
In order to build such models, we considered subset of the features that profile event transitions in
program paths. An event transition is a transition from one program entity to another; types of first-order
event transitions include branches (source statement to destination statement), method calls (caller to
callee), and definition to use (def-use) chains; one type of second-order event transition is branch-to-
branch [10]. An event-transition profile is the frequency with which an event transition occurs in a
program path.

As demonstrated by Bowring et al. [10], such event-transition features describe stochastic processes that
exhibit the Markov property. So, in this work, the ability of Markov models built from them to predict
program path feasibility is explored. The Markov property provides that the probability distribution of
future states of a process depends only upon the current state. Thus, a Markov model captures the time-
independent probability of being in state s1 at time t+1 given that the state at time t was s0.

The relative frequency of an event transition in a program path provides a measure of its probability. For
example, an edge in the program control-flow graph (CFG) can be considered as event transition between
its source and destination nodes. Thus, these nodes represent states in the Markov model. The transition
probability in the Markov model between the source node and the destination node is the relative
occurrence frequency, or profile, of the edge in a path. In this work, three event transitions are
considered: the edge event transition between an edge source node and its destination node, the branch
event transitions between a predicate node and its two destination nodes, and the def-use event
transition between a variable definition node and its use node. The frequencies of transitions between
these events in program paths will be collected for use in building the Markov models representing these
paths.

The proposed approach to build a classifier for path feasibility has two stages. First, individual program
paths are modeled as Markov models built from the profiles of event transitions (edges, branches, or def-
uses) in these paths. Each program path is represented by one model. Then, an automatic clustering
algorithm is used to build clusters of these Markov models, which together form a classifier tuned to
predict the feasibility of the paths of the program under test.

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 39

Figure 1 shows the structure of the Paths Feasibility Classifier Building System, which implements the
proposed approach. It consists of four modules: Static Analysis Module, Paths Generation Module,
Training Instances Preparation Module, and Classifier Training Module.

Figure 1. The paths feasibility classifier building system.

Firstly, the program to be tested P is presented to the Static Analysis Module, which produces the CFG
elements (lists of edges and branches) and list of def-use chains of P. This information is passed to the
Paths Generation Module, which generates the ZOT subset of program paths, which includes program
paths that traverse loops zero, one and two times [21]. This subset constitutes the training paths set of P.
It is passed to the Training Instances Preparation Module, which computes the event-transition
(branches, edges, or def-uses) profiles for each path in the training paths set, and assigns to it a feasibility
label using a Symbolic Execution System [22]. The feasibility label can be "f" for feasible or "inf" for

Paths Generation Module

Program CFG
and def-use

chains

Training Instances
Preparation Module

Static Analysis Module

Program to be
tested P

Training
paths set

Labeled paths
and profiles

Classifier Training
Module

Paths
Feasibility

Classifier C

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 40

infeasible. This module produces the training instances of P, where each training instance consists of a
path with its event-transition profiles and feasibility label. Finally, the training instances are passed to the
Classifier Training Module. This module first groups the training instances by the distinct feasibility labels
f and inf. Then, it converts each training instance in each feasibility group to a Markov model. The module
initially uses a batch-learning paradigm to train one classifier per feasibility group. Finally, the module
assembles the two feasibility groups of classifiers, Cf and Cinf to form the classifier C for P.

The Classifier Training Module implements the algorithm TrainPathFeasibilityClassifier, shown in Figure
7. Before describing this algorithm, the Markov model building process is explained.

3.1 Building Markov Model
The proposed approach depends on using Markov models to encode the event-transition profiles of
program paths. In this subsection, the mapping from program events to the concept of state, which is
used in building Markov models, is illustrated for the three types of event-transitions considered in the
approach, which are program edges, branches, and def-uses.

The algorithm BuildMarkovModel, shown in Figure 2, is a generic algorithm that constructs a matrix
representation of a Markov model from event-transition profiles of each edge, branch, or def-use in a
program path.

Figure 2. Algorithm BuildMarkovModel to build Markov model for a path.

BuildMarkovModel algorithm takes, for a path p, three inputs: S, D, 𝑓𝑓𝑓𝑓, where S is a set of states used to
specify the event transitions; D is a list of the event transitions in p and their profiles stored as ordered
triples, (sfrom, sto, profile), where sfrom and sto are the source and destination nodes of an event transition

Algorithm BuildMarkovModel(S, D, 𝒇𝒇𝒍𝒍)
Input: S = {s0, s1, …, sn-1}, a set of states

D = ��𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗� : 0 ≤ 𝑗𝑗 < |𝐷𝐷|�, a list of ordered triples for
each event transition and its profile
𝑓𝑓𝑓𝑓 = a string representing a feasibility label

Output: (M, D, 𝑓𝑓𝑓𝑓), a Markov model M, D and 𝑓𝑓𝑓𝑓
Begin
1. M ← new double array [|s|,|s|] initialized to 0
2. For each (sfrom, sto, profile) ϵ D where sfrom, sto ϵ S
3. m[sfrom, sto] ← profile;
4. End For
5. For i ← 0 to |s|-1
6. rowSum = 0;
7. For j ← 0 to |s|-1
8. rowSum ← rowSum + m[i,j];
9. End For
10. If rowSum > 0
11. For j←0 to |s|-1
12. m[i,j] ← m[i,j] / rowSum;
13. End For
14. End If
15. End For
16. Return (M, D, 𝑓𝑓𝑓𝑓);

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 41

(edge, branch, or def-use), respectively, and profile is the occurrence frequency of the event transition in
p; and 𝑓𝑓𝑓𝑓 is the feasibility label for the model. The output (M, D, 𝑓𝑓𝑓𝑓) is a triple consisting of the model M,
the profile data D, and the feasibility label 𝑓𝑓𝑓𝑓 of the path p. In line 1, the matrix M for the model is
initialized using the cardinality of S. In lines 2-4, each transition in D that involves states in S is recorded in
M. In lines 5-15, each row in the matrix M is normalized by dividing each element in the row by the sum
of the elements in the row, unless the sum is zero.

3.1.1 Building Markov model from edge profiles

The edges are possible transfers of control flow between the nodes of the CFG, e.g. an edge (i, j)
corresponds to a possible transfer of control from node i to node j. Each node represents a group of
consecutive statements which together constitute a basic block. An edge (i, j) is considered as an event
transition in the CFG between the source node i and the destination node j.

Consider the path p = 1, 2, 4, 5, 6, 5, 6, 5, 7, 9 in the CFG of the example program, shown in Figure 3. We
compute the profiles of each edge by counting how many times the edge occurred in the path. For
example, the profile of edge (5-6) is 2. The Markov model, built from the edges and their profiles in p, is
shown in Figure 4 as a matrix. It models the program states identified by the source and destination nodes
of each edge. The transitions are read from row to column. A Markov model built from edge profiles is
simply the adjacency matrix of the CFG with each entry equals to the row-normalized profile. For example,
in the row of node 5, as the profile of edge (5-6) is 2 and the profile of edge (5-7) is 1, i.e. 3 in total, there
are two entries, 2/3 and 1/3, in the cells (5, 6) and (5, 7).

Figure 3. Example program and its CFG.

As mentioned above, the algorithm BuildMarkovModel, shown in Figure 2, can construct a Markov model
from edge profiles in a program path. In this case, the input S is the set of CFG nodes; D is a list of the
edges in p and their profiles stored as ordered triples, (sfrom, sto, profile), where sfrom and sto are the source
and destination nodes of an edge, respectively, and profile is the occurrence frequency of the edge in p.
For the example path, p = 1,2,4,5,6,5,6,5,7,9, the inputs to BuildMarkovModel are:

o S = {1, 2, 3, 4, 5, 6, 7, 8, 9}
o D = ((1, 2, 1), (2, 4, 1), (4, 5, 1), (5, 6, 2), (6, 5, 2), (5, 7, 1), (7, 9, 1))
o 𝑓𝑓𝑓𝑓 = “inf”

1

2 3

4

5
6

7

8 9

static void Main(string[] args) {
1 int x=double.Parse(Console.ReadLine());
1 int y=double.Parse(Console.ReadLine());
1 int pow;
1 if(y < 0)
2 pow = -y;
3 else
3 pow = y;
4 int z = 1;
5 while (pow != 0) {
6 z =z * x;
6 pow = pow – 1;
6 }
7 if(y < 0)
8 z =1/z;
9 double answer =z + 1;
9 Console.WriteLine(answer);
 }

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 42

In this case, the output component M is the Markov model shown in Figure 4.

 1 2 3 4 5 6 7 8 9
1 0 1/1 0 0 0 0 0 0 0

2 0 0 0 1/1 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 1/1 0 0 0 0

5 0 0 0 0 0 2/3 1/3 0 0

6 0 0 0 0 2/2 0 0 0 0

7 0 0 0 0 0 0 0 0 1/1

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

Figure 4. Markov model for the edge profiles of the example path p = 1,2,4,5,6,5,6,5,7,9.

3.1.2 Building Markov model from branch profiles

Next, we illustrate the process of building Markov model from branches profiles. Here, a branch means
an out edge of a predicate node. A branch (i, j) of a predicate node i is considered as an event transition
in the CFG between the source node i and the destination node j.

In the CFG of the example program, shown in Figure 3, there are three predicate nodes, 1, 5, and 7. Again,
consider the path p = 1, 2, 4, 5, 6, 5, 6, 5, 7, 9 in this CFG. We compute the profiles of each branch of each
predicate node by counting how many times the branch has occurred in the path. For example, the profile
for branch (1-2) of predicate node 1 is 1. The matrix representation of the Markov model, built from the
branches and their profiles in p, is shown in Figure 5. It models the program states identified by the source
and destination nodes of each branch of each predicate node. Each row shows the row-normalized
profiles of the branches of a predicate node. For example, in the row of predicate node 5, as the profile
of branch (5-6) is 2 and the profile of branch (5-7) is 1, i.e. 3 in total, there are two entries, 2/3 and 1/3, in
the cells (5, 6) and (5, 7), respectively.

The algorithm BuildMarkovModel, shown in Figure 2, can also construct a Markov model from branch
profiles in a program path. In this case, the input S is the set of predicate nodes in the CFG; D is a list of
the branches in p and their profiles stored as ordered triples, (sfrom, sto, profile), where sfrom and sto are the
source and destination nodes of a branch, respectively, and profile is the occurrence frequency of the
branch in p. For the example path, p = 1,2,4,5,6,5,6,5,7,9, the inputs to BuildMarkovModel are:

o S = {1, 5, 7}
o D = ((1, 2, 1), (5, 6, 2), (5, 7, 1), (7, 9, 1))
o 𝑓𝑓𝑓𝑓 = “inf”

In this case, the output component M is the Markov model shown in Figure 5.

 1 2 3 4 5 6 7 8 9
1 0 1/1 0 0 0 0 0 0 0

5 0 0 0 0 0 2/3 1/3 0 0

7 0 0 0 0 0 0 0 0 1/1

Figure 5. Markov model for the branch profiles of the example path p = 1,2,4,5,6,5,6,5,7,9.

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 43

3.1.3 Building Markov model from def-use profiles

Finally, we illustrate the process of building Markov model from def-use chain profiles. A def-use chain of
a variable is a path from the definition to the use of the variable without any intervening redefinitions.
Here, we consider the def-use chains required to fulfill the all-uses criterion, which is one of the most
demanding in the family of data flow criteria described by Rapps and Weyuker [23]. A def-use chain <d,
u> of a variable v is considered as an event transition in the CFG between the source (def) node d and the
destination (use) node u.

Table 1 shows the list of def-use chains required to fulfill the all-uses criterion for the example program
shown in Figure 3. In this list, each def-use chain (path) is represented by: a def-node (a node containing
a def of a variable); a use-node (a node containing a use of that variable); and the set of nodes that must
not be included in that path (i.e., nodes containing other defs of that variable). These nodes are called
killing nodes [21]. The value (-1) is used in the killing node column to indicate that the def-use path has
no killing nodes. A path is said to cover a def-use chain if it has a subpath that starts at the def-node and
ends at the use-node of the def-use chain and does not pass through its killing nodes [21].

In the example program, there are 8 defs: (x,1), (y,1), (pow,2), (pow,3), (z,4), (z,6), (pow,6), and (z,8).
Again, consider the path p = 1, 2, 4, 5, 6, 5, 6, 5, 7, 9 in the CFG, shown in Figure 3. We compute the profiles
of each def-use chain by counting how many times a def-clear subpath from the def-node to the use-node
in the chain has occurred in the given path. For example, as the variable y is defined in node 1 and used
in nodes 2 and 7, the corresponding def-use chains are: <(y,1), 2> and <(y,1), 7>. Both of these two def-
use chains have profile 1, as each occurred once in p. The matrix representation of the Markov model
built from the def-use chains and their profiles in p is shown in Figure 6. It models the program states
identified by a def node of each variable as the source and its use node as the destination. Each row shows
the row-normalized profiles of the def-use chains of a variable def. For example, in the row of def (pow,6),
as the profile of def-use chain <(pow,6), 5> is 2 and the profile of def-use chain <(pow,6), 6> is 1, i.e. 3 in
total, there are two entries, 2/3 and 1/3, in the cells ((pow,6), 5) and ((pow,6), 6), respectively.

Table 1. List of def-use chains of the example program.

Variable Def-node Use-node Killing Nodes
Y 1 2 -1
Y 1 3 -1
X 1 6 -1

pow 2 5 3
pow 2 6 3
pow 3 5 2
pow 3 6 2

Z 4 6 8
Z 6 6 4, 8

pow 6 5 2, 3
pow 6 6 2, 3

Y 1 7 -1
Z 4 8 6
Z 6 8 4
Z 4 9 6, 8
Z 6 9 4, 8
Z 8 9 4, 6

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 44

The algorithm BuildMarkovModel, shown in Figure 2, can also construct a Markov model from def-use
chain profiles in a program path. In this case, the input S is the set of variable defs in the program; D is a
list of the def-use chains in p and their profiles stored as ordered triples, (sfrom, sto, profile), where sfrom and
sto are the source and destination nodes of a def-use chain, respectively, and profile is the occurrence
frequency of the def-use chain in p. For the example path, p = 1,2,4,5,6,5,6,5,7,9, the inputs to
BuildMarkovModel are:

o S = {(x,1), (y,1), (pow,2), (pow,3), (z,4), (z,6), (pow,6), (z,8)}
o D = (((y,1), 2, 1), ((y,1), 7, 1), ((x,1), 6, 2), ((pow,2), 5, 1), ((pow,2), 6, 1), ((z,4), 6, 1) , ((z,6), 6, 1), ((z,6), 9, 1),

((pow,6), 5, 2), ((pow,6), 6, 1))
o 𝑓𝑓𝑓𝑓 = “inf”

In this case, the output component M is the Markov model shown in Figure 6.

 1 2 3 4 5 6 7 8 9
y,1 0 1/2 0 0 0 0 1/2 0 0

x,1 0 0 0 0 0 2/2 0 0 0

pow,2 0 0 0 0 1/2 1/2 0 0 0

pow,3 0 0 0 0 0 0 0 0 0

z,4 0 0 0 0 0 1/1 0 0 0

z,6 0 0 0 0 0 1/2 0 0 1/2

pow,6 0 0 0 0 2/3 1/3 0 0 0

z,8 0 0 0 0 0 0 0 0 0

Figure 6. Markov model for the def-use profiles of the example path p = 1,2,4,5,6,5,6,5,7,9.

3.2 Training the Path Feasibility Classifier
Our approach is to train a path feasibility classifier using the Markov models, which are constructed from
the path profiles of the training paths set, as training instances. We use a training technique that is based
on an established technique known as agglomerative hierarchical clustering [24]. With this technique,
initially each training instance is considered to be a cluster of size one. The technique proceeds iteratively
by finding the two clusters that are nearest to each other according to some similarity function. These
two clusters are then merged into one, and the technique repeats. The stopping condition is either a
desired number of clusters or some valuation of the quality of the remaining clusters. Each merged cluster
is also a Markov model. For example, in the first iteration, the merged model is built by combining the
path profiles that form the basis for the two models being merged. Then, from this merged profile,
BuildMarkovModel generates a Markov model that represents the new cluster.

The specification of the similarity function is typically done heuristically according to the application
domain. In our approach, we use a simple comparison technique called Hamming distance to compare
two Markov models, as in [10]. To compute the Hamming distance, each of the Markov models is
transferred to a binary representation where a 1 is entered for all values (normalized profiles) above a
certain threshold, and a 0 is entered otherwise. The threshold value, called similarity threshold (SimTh), is
determined experimentally. The comparison function is called ModelSim() and is provided as an input to
TrainPathFeasibilityClassifier algorithm shown in Figure 7. The binary transformation of the models is
done only temporarily by ModelSim() in order to compute the Hamming distance.

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 45

Figure 7. Algorithm TrainPathFeasibilityClassifier to train Path Feasibility Classifier.

The TrainPathFeasibilityClassifier algorithm, shown in Figure 7, trains a classifier from models generated
by BuildMarkovModel. The algorithm firstly groups the models of the training instances by their feasibility
labels, then applies the agglomerative hierarchical clustering to the models of the training instances that
have same feasibility label forming a feasibility classifier specific for this label. Here, we will have two
classifiers, one for label 'f' and one for label 'inf'. Finally, it forms the final classifier as the union of the
clustered models from each of these two specific feasibility classifiers.

TrainPathFeasibilityClassifier has three inputs: S, T, and ModelSim(), where S is a set of states that are
used to identify the event transitions when BuildMarkovModel is called; T is a list of triples, each
containing a path in the training paths set, a data structure D as defined in BuildMarkovModel, and a
feasibility label 𝑓𝑓𝑓𝑓 ϵ {"f", "inf"}; ModelSim() takes two Markov models as arguments and returns a real
number that is the computed similarity measure between the two models.

Algorithm TrainPathFeasibilityClassifier(S, T, ModelSim)
Input: S = {s0, s, …, sn-1}, a set of states including a final or exit state,

T = ((pi, Di, 𝑓𝑓𝑓𝑓𝑖𝑖), …), a list of ordered triples, where pi is a path in the training paths set, Di
= ��sfromj , stoj , profilej� : 0 ≤ j < |D|�, a list of the event transitions in pi and their

profiles, 0 ≤ i < |Training Instances|, and feasibility label 𝑓𝑓𝑓𝑓𝑖𝑖 ϵ {"f", "inf"},
ModelSim, a function to compute the similarity of two Markov models

Output: Path feasibility classifier C = {(Mi, Di, 𝑓𝑓𝑓𝑓𝑖𝑖): 𝑓𝑓𝑓𝑓𝑖𝑖 ϵ {"f", "inf"}, 0≤ i< |C|}
Begin
1. C ← ϕ; // initialize the path feasibility classifier
2. For each 𝑓𝑓𝑓𝑓 ϵ {"f", "inf"}
3. 𝐶𝐶𝑓𝑓𝑓𝑓← ϕ; // initialize the classifier for feasibility 𝑓𝑓𝑓𝑓
4. End For
5. For each 𝑓𝑓𝑓𝑓 ϵ {"f", "inf"}
6. For each (pi, Di, 𝑓𝑓𝑓𝑓) ϵ T, 0 ≤ i < |Training Instances with feasibility 𝑓𝑓𝑓𝑓|
7. 𝐶𝐶𝑓𝑓𝑓𝑓 ← 𝐶𝐶𝑓𝑓𝑓𝑓∪ BuildModel(S, Di, 𝑓𝑓𝑓𝑓);
8. End For
9. While |𝐶𝐶𝑓𝑓𝑓𝑓| > 2
10. //agglomerative hierarchical clustering
11. mid = (maxProfile(𝐶𝐶𝑓𝑓𝑓𝑓) + minProfile(𝐶𝐶𝑓𝑓𝑓𝑓)) / 2.0;
12. SimTh = mid; // similarity threshold
13. diff ← ϕ; // an empty set to collect models pair-wise differences
14. For each (Mi, Di, 𝑓𝑓𝑓𝑓) ϵ 𝐶𝐶𝑓𝑓𝑓𝑓, 0 ≤ i < |𝐶𝐶𝑓𝑓𝑓𝑓|
15. For each (Mj ,Dj , 𝑓𝑓𝑓𝑓) ϵ 𝐶𝐶𝑓𝑓𝑓𝑓 , i < j < |𝐶𝐶𝑓𝑓𝑓𝑓|
16. diff ← diff ∪ ModelSim(Mi, Mj, SimTh);
17. End For
18. End For
19. (Mx, My) ← min(diff); // Select the two closest models
20. Dmerged ←Dx ∪ Dy;
21. Mmerged ← BuildModel(S, Dmerged, 𝑓𝑓𝑓𝑓);
22. 𝐶𝐶𝑓𝑓𝑓𝑓 ← (𝐶𝐶𝑓𝑓𝑓𝑓 − Mx − My) ∪ Mmerged;
23. End While
24. C ← C ∪ 𝐶𝐶𝑓𝑓𝑓𝑓; // add feasibility 𝑓𝑓𝑓𝑓’s models to C
25. End For
26 Return C;

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 46

In line 1, an empty path feasibility classifier C is initialized. In lines 2-4, an empty classifier Cfl is initialized
for each path feasibility 𝑓𝑓𝑓𝑓 . Line 5 begins the processing for each 𝑓𝑓𝑓𝑓 . In lines 6-8, the classifier C𝑓𝑓𝑓𝑓 is
populated with models built by applying BuildMarkovModel to each training instance that has feasibility
𝑓𝑓𝑓𝑓. In lines 9-23 the models in each C𝑓𝑓𝑓𝑓 are clustered to reduce their population by merging similar and
redundant models, using ModelSim, as described above. Line 9 establishes the stopping criterion as two
models in each cluster C𝑓𝑓𝑓𝑓 . In Lines 11-12, the similarity threshold (SimTh) is set to the middle value
between the maximum and minimum profile values for all models in C𝑓𝑓𝑓𝑓. Line 13 initializes an empty set
diff to collect models pair-wise differences. In lines 14-18, ModelSim is used to calculate the pair-wise
differences and accumulate them in diff. In lines 19-21, the two closest models, Mx and My, are identified
from diff, then merged, by calling BuildMoekovModel with the union of the corresponding profile sets Dx
and Dy. In line 22, models Mx and My are replaced by the new merged model in C𝑓𝑓𝑓𝑓 . In line 24, the final
clustered models in C𝑓𝑓𝑓𝑓 are added to the classifier C. After the two feasibility groups have been processed,
the final classifier C is returned. This classifier is composed of two groups of Markov models, each
representing a cluster of paths with same feasibility. Note that the models in each cluster are built from
the profiles of all the training instances contributing to the cluster.

3.3 Using the Path Feasibility Classifier
Initially the training paths set includes paths that fulfil some test coverage criteria for the program under
test. Our aim is to augment this initial set with new paths that cover more program components. The
feasibility of these new paths needs to be checked to eliminate infeasible paths among them to reduce
the effort of trying to find test data for them. We can use our classifier to do this job.

Figure 8 depicts the Path Feasibility Classification Module, which uses the trained classifier C to classify
a path p of program P that is not in the training set. As shown in the figure, this module accepts as input
the classifier C and the path to be classified p, and computes its event transitions profiles, then it passes
C and the list of the event transitions in p and their profiles, D, to the algorithm ClassifyPath, shown in
Figure 9, which reports the feasibility label of p.

Figure 8. The Path Feasibility Classification Module.

As shown in Figure 9, in lines 1-9 of the algorithm ClassifyPath, each model in C rates p with a probability
score by applying the algorithm ComputeProbability, shown in Figure 10, and in lines 10-14, the model in

New program
path p

Path feasibility
label

ClassifyPath
Algorithm

Paths
Feasibility

Classifier C

Compute Profiles Event
transitions
profiles D

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 47

C with the highest probability score for p provides the feasibility label for p. Note that, the algorithm
assigns the given path the label "unknown", whenever the calculated probability is below some threshold
TH, which means the classifier has failed to label the given path.

Figure 9. Algorithm ClassifyPath that determines the feasibility label of a given path using the path feasibility
classifier C.

Figure 10. Algorithm ComputeProbability that computes the probability score assigned to a given path by a
Markov model in the classifier C

The algorithm ComputeProbability computes the probability score with which a Markov model M in the
classifier C rates the given path p. The probability score is the probability that the model M could produce
the sequence of event-transitions in path p [10]. To illustrate how ComputeProbability works, consider

Algorithm ClassifyPath(C, D)
Input: C, Path Feasibility Classifier, a set of Markov models:

{(Mi, Di, 𝑓𝑓𝑓𝑓𝑖𝑖): 𝑓𝑓𝑓𝑓𝑖𝑖 ϵ {"f", "inf"}, 0 ≤ i < |C|}
D, list of the event transitions: ��𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗� : 0 ≤ 𝑗𝑗 < |𝐷𝐷|�

in the path p to be classified and their profiles
Output: 𝑓𝑓𝑓𝑓, Feasibility label of p
Begin
1. maxProb = ComputeProbability(M0, D);
2. index = 0;
3. For each (Mi, Di, 𝑓𝑓𝑓𝑓𝑖𝑖) ϵ C, 1 ≤ i < |C|
4. prob = ComputeProbability(Mi, D);
5. If prop > maxProb
6. maxProb = prop;
7. index = i;
8. End If
9. End For
10. If maxProb < TH)
11. 𝑓𝑓𝑓𝑓 = "unknown";
12. Else
13. 𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖;
14. End If
15. return 𝑓𝑓𝑓𝑓;

Algorithm ComputeProbability(M, D)
Input: M, matrix of a Markov model

D, list of the event transitions: ��𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗� : 0 ≤ 𝑗𝑗 < |𝐷𝐷|�
in the path p to be classified and their profiles

Output: ℘, probability score assigned to p by M
Begin
1. ℘= 1;
2. For each �𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗� ∈ D, 0 ≤ 𝑗𝑗 < |𝐷𝐷|
3. If M[𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗] ≠ 0
4. ℘= ℘* M[𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗] ^ 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗 ;
5. End If
6. End For
7. return ℘;
End

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 48

another path p = 1, 2, 4, 5, 6, 5, 6, 5, 7, 8, 9 in the CFG, shown in Figure 3. The algorithm accepts a Markov
model M and the list of the event transitions in p and their profiles D. By passing the Markov model M,
shown in Figure 4, and the list of event transitions (edges) in p:

D = ((1, 2, 1), (2, 4, 1), (4, 5, 1), (5, 6, 2), (6, 5, 2), (5, 7, 1), (7, 8, 1), (8, 9, 1)),

to the algorithm, it calculates the probability score ℘ that M gives to p as follows:

℘ = M[1,2]^1 * M[2,4]^1 * M[4,5]^1 * M[5,6]^2 * M[6,5]^2 * M[5,7]^1

 = 1.0^1 * 1.0^1 * 1.0^1 * 0.667^2 * 1.0^2 * 0.333^1 = 0.148148

Note that M[7,8] and M[8,9] were not included in the calculation, as each of them has a value 0.

3.4 Improving the Classifier
Initially in TrainPathFeasibilityClassifier, we have used the batch-learning technique. In addition to this
technique, there is another effective learning technique for training classifiers, which is active learning
[9]. Active learning techniques employ an interactive or query-based approach that can be used to control
the costs of training classifiers. Bowring et al. [10] have used a type of active learning called bootstrapping.
Their application of bootstrapping first uses the classifier to score new program executions and then
collect only those executions that remain unknown. These unknown executions are considered candidates
that represent new behaviors and therefore each is evaluated, given a behavior label, and identified as a
new training instance for the classifier. The classifier is retrained using the expanded set of training
instances.

Now, we explain how to combine our technique for building path feasibility classifier with the
bootstrapping active learning strategy to extend the scope of training our classifier to be able to succeed
in classifying new paths.

In the bootstrapping process, we select as candidates from the processed set of paths only those paths
that remain unknown to the classifier. The feasibility of these candidates is evaluated by an oracle. The
oracle in our case is a symbolic execution system with inequality solver [21]. The candidates are then used
as new training instances for training C. The classifier C is retrained and refined at certain intervals using
the augmented training instances set. The iteration of the bootstrapping process stops when the rate of
detection of paths with unknown feasibility falls below some threshold.

4 Experiments
This section presents the results of the experiments that we have conducted to evaluate the effectiveness
of the three proposed paths feasibility classifiers: Branches Model, Edges Model, and Def-Use Model,
which are based on edges, branches, and def-uses profiles, respectively.

In the experiments, we have applied the three classifiers to 5 sample programs, and used the accuracy
metric for evaluating the effectiveness of classification results. The accuracy of a classification model on
a test set is defined as:

Accuracy =
Number of correct classifications

Total number of test cases
,

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 49

where a correct classification means that the learned model predicts the same class as the original class
of the test case.

4.1 Experiments with Batch Learning
Firstly, we evaluated the three proposed paths feasibility classifiers using only batch learning. For each of
the 5 sample programs, we repeated the following steps:

o Randomly select training set.
o Build a classifier from the training set.
o Evaluate the classifiers.

In order to study the effect of the size of the training set on the accuracy classification results, we have
conducted the experiments with different percentages of the data set as training data, where each one is
referred to as training data percentage (tdp). For example, tdp = 75% means partitioning the data set into
two sets of 75% for training and 25% for test. The tdp values used in the experiments were 25%, 50%, and
75%.

Also, in order to evaluate the effect of the similarity threshold (SimTh) used in the function ModelSim(),
we initially set SimTh to the middle value (mid) between the maximum and minimum profile values for all
models in a cluster C𝑓𝑓𝑓𝑓, as shown in Figure 7 (Lines 11-12), then we used variations of this value (mid ±
0.2).

Tables 1-3 show the classification accuracy results for the three proposed paths feasibility classifiers with
different tdp and SimTh values. In each row of these tables, the shaded cells indicate the higher accuracies
obtained for each sample program.

Regarding the variations in tdp values, the results indicate that the Branches and Edges models gave
higher accuracy with tdp =75%, but the Def-Use Model gave higher accuracy with tdp =25%. Regarding
the variations in SimTh values, for the Branches and Def-Use Models, the results indicate that the
variations have little effect on the accuracy of the classifiers, but for the Edges Model, they have no effect
at all.

Figures 11(a)-(c), 12(a)-(c), and 13(a)-(c) show comparisons between the classification accuracy results for
the Branches, Edges, and Def-Use Models, respectively, with different tdp values, for each SimTh value
(mid, mid+0.2 and mid-0.2).

Figures 14(a)-(c) show comparisons between the average classification accuracy results for the three
models with different tdp values, for each SimTh value (mid, mid+0.2 and mid-0.2, respectively). These
figures showed that, on average, the Branches Model has the higher accuracy in predicting the feasibility
of program paths, followed by the Edges Model, while the Def-Use Model has the lower accuracy. This
indicates that the control flow profiles, such as branches and edges, are more useful in predicting the
feasibility of program paths than the data flow profiles, such as def-use profiles.

4.2 Experiments with Bootstrapping Active Learning
Secondly, we conducted simple experiment to evaluate the application of bootstrapping to refine the
classifiers built using the batch learning technique. In this experiment, we selected one of the paths that
were classified as "unknown", labeled it, and added it to the training set for the classifier, then retrained
the classifier using the augmented set of training instances. Table 4 shows the improvement rate in the
classifier accuracy after augmenting the training set with just one correctly labeled unknown path. It

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 50

should be noted that, the table shows only the results for Prog#2 and Prog#3 with Def-Use Model, and
Prog#5 with Edges and Def-Use Models, as those the cases where the batch learning classification results
included paths with label "unknown".

5 Conclusion
The aim of this paper is to explore the use of program features, such as edges, branches, and def-uses
profiles, as predictors of path feasibility. To achieve this aim, the paper presented a proposed active-
learning approach to the automatic feasibility classification of program paths. In this approach, program
paths were represented as Markov models, then these models were aggregated into an effective path
feasibility classifier, which is a map from program paths statistics, namely, edge, branch, or def-use
profiles, to a label for the path, “feasible” or “infeasible”. Three paths feasibility classifiers: Branches
Model, Edges Model, and Def-Use Model, were built, based on edges, branches, and def-uses profiles,
respectively. The proposed approach employs the bootstrapping active learning strategy, where each
classifier is trained incrementally on a series of labeled instances to extend its scope of training to be able
to succeed in classifying new paths.

The paper also presented the results of the experiments that were conducted to evaluate the
effectiveness of the three paths feasibility classifiers built by using the proposed approach. In these
experiments, the effect of the training set size and the similarity threshold (SimTh) values on the
classification results were studied by using different training data percentages (tdps) and different SimTh
values, during the training of the proposed paths feasibility classifiers.

Table 1. A comparison between the classification accuracy results for the Branches Model with different tdp and
SimTh values.

Program # No. of Paths

Training data percentage (tdp)
75% 50% 25%

Similarity Threshold (SimTh)
mid mid+0.2 mid-0.2 mid mid+0.2 mid-0.2 mid mid+0.2 mid-0.2

Prog#1 108 100% 85.19% 100% 92.59% 100% 100% 90.12% 90.12% 90.12%
Prog#2 26 83.33% 83.33% 83.33% 76.92% 76.92% 76.92% 68.42% 68.42% 68.42%
Prog#3 43 90.91% 81.82% 63.64% 85.71% 71.43% 71.43% 62.5% 46.88% 46.88%
Prog#4 12 100% 100% 100% 50% 50% 50% 44.44% 44.44% 44.44%
Prog#5 32 75% 75% 87.5% 50% 56.25% 50% 45.38% 62.5% 50%

Table 2. A comparison between the classification accuracy results for the Edges Model with different tdp and
SimTh values.

Program # No. of Paths

Training data percentage (tdp)
75% 50% 25%

Similarity Threshold (SimTh)
mid mid+0.2 mid-0.2 mid mid+0.2 mid-0.2 mid mid+0.2 mid-0.2

Prog#1 108 100% 100% 100% 48.15% 48.15% 48.15% 60.49% 60.49% 60.49%
Prog#2 26 83.33% 83.33% 83.33% 69.23% 69.23% 69.23% 57.89% 57.89% 57.89%
Prog#3 43 90.91% 90.91% 90.91% 85.71% 85.71% 85.71% 50% 50% 50%
Prog#4 12 33.33% 33.33% 33.33% 50% 50% 50% 55.56% 55.56% 55.56%
Prog#5 32 75% 75% 75% 56.25% 56.25% 56.25% 66.67% 66.67% 66.67%

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 51

Table 3. A comparison between the classification accuracy results for the Def-Use Model with different tdp
and SimTh values.

Program # No. of Paths

Training data percentage (tdp)
75% 50% 25%

Similarity Threshold (SimTh)
mid mid+0.2 mid-0.2 mid mid+0.2 mid-0.2 mid mid+0.2 mid-0.2

Prog#1 108 66.67% 66.67% 85.19% 33.3% 33.3% 48.15% 66.67% 66.67% 79.01%
Prog#2 26 83.33% 50% 33.33% 46.15% 46.15% 69.23% 63.16% 63.16% 68.42%
Prog#3 43 72.73% 81.82% 72.73% 90.48% 85.71% 71.43% 53.13% 53.13% 31.25%
Prog#4 12 33.33% 33.33% 33.33% 50% 50% 50% 55.56% 55.56% 55.56%
Prog#5 32 50% 50% 37.5% 50% 50% 43.75% 58.33% 54.17% 66.67%

Figure 11. Comparisons between the classification accuracy results for the Branches Model with 3 different
tdp values, and (a) SimTh = mid, (b) mid+0.2 and (c) mid-0.2

Figure 12. Comparisons between the classification accuracy results for the Edges Model with 3 different tdp
values, and (a) SimTh = mid, (b) mid+0.2 and (c) mid-0.2.

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 52

Figure 13. Comparisons between the classification accuracy results for the Def-Use Model with 3 different

tdp values, and (a) SimTh = mid, (b) mid+0.2 and (c) mid-0.2.

Figure 14. Comparisons between the average accuracy results for the three models with 3 different tdp
values, and (a) SimTh = mid, (b) mid+0.2 and (c) mid-0.2.

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 53

Table 4. A comparison between the classification accuracy results obtained by applying the batch learning
technique, and then bootstrapping.

Program # Model
Accuracy

Improvement rate
Batch Learning Bootstrapping

Prog#2 Def-Use 46.15% 66.67% 44.46%
Prog#3 Def-Use 31.25% 51.62% 65.18%
Prog#5 Edges 56.52% 63.64% 12.6%
Prog#5 Def-Use 47.83% 50% 4.54%

Regarding the variations in tdp values, the results indicated that the Branches and Edges models gave
higher accuracy with large tdps, while the Def-Use Model gave higher accuracy with small tdps. Regarding
the variations in SimTh values, the results indicated that, for the Branches and Def-Use Models, the
variations have little effect on the accuracy of the classifiers, but for the Edges Model, they have no effect
at all.

The experiments showed also that, on average, the Branches model has the higher accuracy in predicting
the feasibility of program paths, followed by the Edges model, while the Def-Use Model has the lower
accuracy. This indicates that the control flow profiles, such as branches and edges, are more useful in
predicting the feasibility of program paths than the data flow profiles, such as def-use profiles.

In addition, we conducted simple experiment to evaluate the potential of bootstrapping to refine the
classifiers built using the batch learning technique. The results of this experiment indicated that
bootstrapping improves the classifier accuracy.

The work presented in this paper demonstrated that modeling certain event transitions as Markov
processes produces effective predictors of paths feasibility that can be automatically clustered into paths
feasibility classifiers. Also, it demonstrated how the bootstrapping active-learning technique can be
employed to incrementally and efficiently improve these classifiers.

In the experiments, we have applied the proposed classifiers to small size programs, as a preliminary
study. We intend to apply them to more realistic size programs. Also, we intend to study the use program
features, other than branches, edges and def-uses, in building paths feasibility classifiers, such as paths of
length two, Decision-to-Decision (DD) paths, and function calls. In addition, we intend to investigate how
to combine these features to build more effective paths feasibility classifiers.

REFERENCES

[1]. Hedley, D., M. A. Hennell, The cause and effects of infeasible paths in computer programs, In the Proceedings
of the 8th International Conference on Software Engineering, London, England, 1985, pp. 259-266.

[2]. Ilgun, K., R. A. Kemmerer, and P. A. Porras, State transition analysis: A rule-based intrusion detection approach,
Software Engineering, 1995, 21(3): p. 181–199.

[3]. Dickinson, W., D. Leon, and A. Podgurski, Finding failures by cluster analysis of execution profiles, In
Proceedings of the 23rd International Conference on Software Engineering (ICSE’01), May 2001 p. 339–348.

[4]. Jha, S., K. Tan, and R. A. Maxion, Markov chains, classifiers, and intrusion detection, In Proceedings of the 14th
IEEE Computer Security Foundations Workshop (CSFW’01), June 2001, p. 206–219.

Moheb R. Girgis, Alaa I. El-Nashar, Asmaa M. Elsify; Automatic Classification of Program Paths Feasibility Using
Active Learning. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 6 December (2018);
pp: 35-55

URL:http://dx.doi.org/10.14738/tmlai.66.5811 54

[5]. Ammons, G., R. Bodik, and J. R. Larus, Mining specifications, In Proceedings of the 2002 ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’02), January 2002, p. 4–16.

[6]. Podgurski, A., D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang, Automated support for classifying
software failure reports, In Proceedings of the 25rd International Conference on Software Engineering
(ICSE’03), May 2003, p. 465–474.

[7]. Gross, K. C., S. McMaster, A. Porter, A. Urmanov, and L. Votta, Proactive system maintenance using software
telemetry, In Proceedings of the 1st International Conference on Remote Analysis and Measurement of
Software Systems (RAMSS’03), May 2003, p. 24–26.

[8]. Brun, Y. and M. D. Ernst, Finding latent code errors via machine learning over program executions, In
Proceedings of the 26th International Conference on Software Engineering, 28 May 2004, Edinburgh, UK.

[9]. Cohn, D. A., L. Atlas, and R. E. Ladner, Improving generalization with active learning, Machine Learning, 1994,
15(2): p. 201–221.

[10]. Bowring, J. F., J. M. Rehg, and M. J. Harrold, Active learning for automatic classification of software behavior,
ACM SIGSOFT Software Engineering Notes, July 2004.

[11]. Whittaker, J. A. and J. H. Poore, Markov analysis of software specifications, ACM Transactions on Software
Engineering and Methodology, January 1996, 2(1):p. 93–106.

[12]. Cook, J. E. and A. L. Wolf, Automating process discovery through event-data analysis, In Proceedings of the
17th International Conference on Software Engineering (ICSE’95), January 1999, p. 73–82,.

[13]. Haran, M., A. Karr, A. Orso, A. Porter, and A. Sanil, Applying Classification Techniques to Remotely Collected
Program Execution Data, Proceedings of the 10th European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Foundations of software engineering, ESEC/FSE-13,
September 5–9, 2005, Lisbon, Portugal, p. 146-155.

[14]. Haran, M., A. Karr, M. Last, A. Orso, A. A. Porter, A. Sanil, and S. Fouche, Techniques for Classifying Executions
of Deployed Software to Support Software Engineering Tasks, IEEE Transactions on Software Engineering, May
2007, 33(5): p. 287-304.

[15]. Lo, D., H. Cheng, J. Han, S. Khoo, and C. Sun, Classification of Software Behaviors for Failure Detection: A
Discriminative Pattern Mining Approach, ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), Research Collection School of Information Systems, 2009.

[16]. Francis, P., D. Leon, M. Minch, A. Podgurski, Tree-Based Methods for Classifying Software Failures, 15th
International Symposium on Software Reliability Engineering (ISSRE 2004), 2-5 Nov. 2004, Saint-Malo,
Bretagne, France.

[17]. Harder, M., J. Mellen, and M. D. Ernst, Improving test suites via operational abstraction, In Proceedings of the
25rd International Conference on Software Engineering (ICSE’03), May 2003, p. 60–71.

[18]. Munson, J. C. and S. Elbaum, Software reliability as a function of user execution patterns, In Proceedings of
the Thirty-second Annual Hawaii International Conference on System Sciences, January 1999.

http://dx.doi.org/10.14738/tmlai.66.5811

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 6, Dec 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 55

[19]. Baskiotis, N., M. Sebag, M. Gaudel, S. Gouraud, A Machine Learning Approach for Statistical Software Testing,
Twentieth International Joint Conference on Artificial Intelligence, Jan 2007, Hyderabad, India.

[20]. Baskiotis, N. and M. Sebag, Structural Statistical Software Testing with Active Learning in a Graph, Proceedings
of the 17th international conference on Inductive logic programming, ILP'07, Corvallis, OR, USA, June 19 - 21,
2007, p. 49-62.

[21]. Girgis, M. R., Using Symbolic Execution and Data Flow Criteria to Aid Test Data Selection, Software Testing,
Verification and Reliability, Vol. 3, p. 101-112, 1993.

[22]. Girgis, M. R., An experimental evaluation of a symbolic execution system, Software Engineering Journal, Vol.
7, No. 4, p. 285-290, 1992.

[23]. Rapps, S. and E. J. Weyuker, Selecting software test data using data flow information, IEEE Transactions on
Software Engineering, 1985, 11(4): p. 367-375.

[24]. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2001, John Wiley and Sons, Inc., New York.

	Automatic Classification of Program Paths Feasibility Using Active Learning
	ABSTRACT
	1 Introduction
	2 Related Work
	3 Building Path Feasibility Classifier
	3.1 Building Markov Model
	3.1.1 Building Markov model from edge profiles
	3.1.2 Building Markov model from branch profiles
	3.1.3 Building Markov model from def-use profiles

	3.2 Training the Path Feasibility Classifier
	3.3 Using the Path Feasibility Classifier
	3.4 Improving the Classifier

	4 Experiments
	4.1 Experiments with Batch Learning
	4.2 Experiments with Bootstrapping Active Learning

	5 Conclusion
	References

