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ABSTRACT   

One of the challenging problems that faces the automated test data generation for path testing is the 
existence of infeasible paths, where no input data can be found to exercise them. Substantial time and 
effort may be wasted in trying to generate input data to exercise such paths. This paper proposes an 
active-learning approach to the automatic feasibility classification of program paths. This approach is 
based on the hypothesis that certain features of program behavior are stochastic processes that exhibit 
the Markov property, and that the resultant Markov models of individual program paths can be 
automatically clustered into effective predictors of path feasibility. To this end, the paper presents a 
technique that represents program paths as Markov models, and a clustering algorithm for Markov 
models that aggregates them into an effective path feasibility classifier. In this approach, the classifier is 
a map from program path statistics, namely, edge, branch, or definition-use profiles, to a label for the 
path, “feasible” or “infeasible”. The presented technique employs the bootstrapping active learning 
strategy, where the classifier is trained incrementally on a series of labeled instances, to extend its scope 
of training to be able to succeed in classifying new paths. The paper also presented the results of the 
experiments that were conducted to evaluate the effectiveness of the three paths feasibility classifiers 
built by using the proposed technique, and the bootstrapping technique. 

Keywords: Software testing; Infeasible paths detection; Batch learning; Active learning; Paths feasibility 
classifier; Markov model. 

1 Introduction  
Software testing is a practical way of obtaining increased confidence in software. Software testing consists 
of generating test data according to some testing strategy, such as path testing, and then checking the 
output produced by the test data against the expected results. One of the challenging problems that faces 
the automated test data generation for path testing is the existence of infeasible paths, where no input 
data can be found to exercise them. Experimental evidences have shown that a significant amount of 
infeasible paths are present in complicated programs, and the detection of these infeasible paths is an 
undecidable question [1]. Substantial time and effort may be wasted in trying to generate input data to 
exercise such paths. So, timely detecting these infeasible paths cannot only save test resources but also 
improve test efficiency. 
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Machine learning techniques, such as classification, have been successfully applied to software 
engineering problems. Some researchers used the batch learning approach (e.g., [2-8]), in which a fixed 
quantity of manually labeled training data is collected at the start of the learning process. Other 
researchers used the active learning approach (e.g., [9-10]), in which the classifier is trained incrementally 
on a series of labeled data elements. The advantage of active learning is that it can extend the scope of 
the classifier beyond what batch learning would yield, for the same amount of labeling effort [10].  

Any program path has control-flow components, such as branches and edges, and data-flow components, 
such as definition-use (def-use) chains. These components are features for which aggregate statistical 
measures can be collected, such as branch profiles, edge profiles, and def-use profiles. The aim of this 
paper is to explore the use of these features as predictors of path feasibility. In order to achieve this aim, 
the paper proposes an active-learning approach to the automatic feasibility classification of program 
paths. This approach is based on the hypothesis that these program features are stochastic processes that 
exhibit the Markov property, and that the resultant Markov models of individual program paths can be 
automatically clustered into effective predictors of path feasibility.   

The proposed approach includes a technique that represents program paths as Markov models, and a 
clustering algorithm for Markov models that aggregates them into a path feasibility classifier. In this 
approach, the classifier is a map from program path statistics, namely, edge, branch, or def-use profiles, 
to a label for the path, “feasible” or “infeasible”. This is based on the idea that such profiles can reflect 
the patterns that may cause path infeasibility, so the models of two infeasible paths that share these 
profiles can be similar, i.e. belong to the same class. The proposed approach, initially, employs the batch-
learning technique for path feasibility classification, then the technique is combined with the 
bootstrapping active learning strategy [10], where the classifier is trained incrementally on a series of 
labeled instances, to improve it. 

So far as the authors are aware, no other work has been proposed combining the use of Markov models 
and batch/active learning in the classification of paths feasibility. 

The paper is organized as follows: Section 2 presents a review of the related work in using machine 
learning in program behavior classification and paths feasibility classification. Section 3 describes the 
proposed approach for building a path feasibility classifier, which includes modeling program paths using 
Markov models built from edges, branches, and def-use profiles; training the path feasibility classifier; 
using the trained classifier; and improving the classifier by using the bootstrapping active learning 
strategy. Section 4 describes the results of the experiments that have been conducted to evaluate the 
proposed approach. Section 5 presents the conclusion of the work presented in this paper. 

2 Related Work 
As the main concern of this work is the automatic feasibility classification of program paths using active-
learning, this section reviews examples of the related work in using machine learning in program behavior 
classification and paths feasibility classification. 

Several approaches have been proposed for program behavior classification using machine learning. 
Examples of these approaches are reviewed below. 
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Some of the approaches in this area used Markov models to describe the stochastic dynamic behavior of 
program executions. Whittaker and Poore [11] used Markov chains to model software usage from 
specifications prior to implementation. Cook and Wolf [12] used Markov models to represent individual 
executions in their study of automated process discovery from execution traces. They concentrated on 
transforming Markov models into finite state machines as models of process. Jha et al. [4] used Markov 
models of event traces as the basis for intrusion detection. They address the problem of scoring events 
that have not been encountered during training. Bowring et al. [10] proposed an active learning approach 
to build a classifier of program behaviors. Firstly, they model individual program executions as Markov 
models built from the profiles of event transitions such as branches. Then, they build clusters of these 
Markov models, which then together form a classifier tuned to predict specific behavioral characteristics 
of the considered program, such as “pass” or “fail”. 

Another group of approaches focused on failure detection. Dickinson et al. [3] proposed a technique that 
uses cluster analysis of execution profiles to find failures among the executions induced by a set of 
potential test cases. They use many feature profiles (e.g., branch decision, method calls) as the basis for 
cluster formation. Podgurski et al. [6] proposed an approach to fault detection and failure categorization 
that combines clustering with feature selection, and used multidimensional scaling to visualize the 
resulting grouping of executions. In both of these approaches, the clusters are formed once using batch 
learning and then used for subsequent analysis.  Brun and Ernst [8] used dynamic invariant detection to 
extract program properties relevant to revealing faults and then applied batch learning techniques to rank 
and select these properties. Gross et al. [7] proposed the Software Dependability Framework, which 
monitors running programs, collects statistics, and, using multivariate state estimation, automatically 
builds models for use in predicting failures during execution. Their models are built once using batch 
learning. Haran et al. [13-14] proposed techniques for automatically classifying execution data collected 
in the field. They used statistical learning algorithms to build the classification models. Their techniques 
build the models by analyzing executions performed in a controlled environment (e.g., test cases run in-
house) and then use the models to predict whether execution data produced by a fielded instance were 
generated by a passing or failing program execution. Lo et al. [15] proposed a technique to classify 
software behaviors based on past history or runs. With this technique, it is possible to generalize past 
known errors and mistakes to capture failures and anomalies. Francis et al. [16] proposed two tree-based 
techniques for classifying reported software failures in order to facilitate prioritizing them and diagnosing 
their causes. The first technique is based on the use of dendrograms, which are rooted trees used to 
represent the results of hierarchical cluster analysis. The second technique employs a classification tree 
constructed to recognize failed executions.  

The final group of related work used statistical learning methods to analyze program executions. Harder 
et al. [17] automatically classify software behavior using an operational differencing technique.  Their 
method extracts formal operational abstractions from statistical summaries of program executions and 
uses them to automate the augmentation of test suites. Munson and Elbaum [18] postulate that actual 
executions are the final source of reliability measures. They model program executions as transitions 
between program modules, with an additional terminal state to represent failure. They focus on reliability 
estimation by modeling the transition probabilities into the failure state. Ammons et al. [5] proposed a 
mining technique for extracting formal specifications from interaction traces by learning probabilistic 
finite suffix automata models. Their technique recognizes the stochastic nature of executions, but it 
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focuses on extracting invariants of behavior rather than mappings from execution event statistics to 
behavior classes. 

To the best of our knowledge no much work have been done in the area of using machine learning in 
paths feasibility classification. Baskiotis et al. [19] proposed an adaptive feasible paths sampling 
mechanism, called EXIST. It proceeds by iteratively generating candidate paths based on the current 
distribution on the program paths, and updating this distribution after the path has been labelled as 
feasible or infeasible. Baskiotis and Sebag [20] proposed an active learning algorithm, called S4T (for 
Structural Sampling for Statistical Software Testing), which samples new feasible paths using some initially 
available feasible paths. 

3 Building Path Feasibility Classifier 
Our path feasibility classifier employs Markov models for program paths in predicting the path feasibility. 
In order to build such models, we considered subset of the features that profile event transitions in 
program paths. An event transition is a transition from one program entity to another; types of first-order 
event transitions include branches (source statement to destination statement), method calls (caller to 
callee), and definition to use (def-use) chains; one type of second-order event transition is branch-to-
branch [10]. An event-transition profile is the frequency with which an event transition occurs in a 
program path.  

As demonstrated by Bowring et al. [10], such event-transition features describe stochastic processes that 
exhibit the Markov property. So, in this work, the ability of Markov models built from them to predict 
program path feasibility is explored. The Markov property provides that the probability distribution of 
future states of a process depends only upon the current state. Thus, a Markov model captures the time-
independent probability of being in state s1 at time t+1 given that the state at time t was s0. 

The relative frequency of an event transition in a program path provides a measure of its probability. For 
example, an edge in the program control-flow graph (CFG) can be considered as event transition between 
its source and destination nodes. Thus, these nodes represent states in the Markov model. The transition 
probability in the Markov model between the source node and the destination node is the relative 
occurrence frequency, or profile, of the edge in a path. In this work, three event transitions are 
considered: the edge event transition between an edge source node and its destination node, the branch 
event transitions between a predicate node and its two destination nodes, and the def-use event 
transition between a variable definition node and its use node. The frequencies of transitions between 
these events in program paths will be collected for use in building the Markov models representing these 
paths.  

The proposed approach to build a classifier for path feasibility has two stages. First, individual program 
paths are modeled as Markov models built from the profiles of event transitions (edges, branches, or def-
uses) in these paths. Each program path is represented by one model. Then, an automatic clustering 
algorithm is used to build clusters of these Markov models, which together form a classifier tuned to 
predict the feasibility of the paths of the program under test.  
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Figure 1 shows the structure of the Paths Feasibility Classifier Building System, which implements the 
proposed approach. It consists of four modules: Static Analysis Module, Paths Generation Module, 
Training Instances Preparation Module, and Classifier Training Module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The paths feasibility classifier building system. 

Firstly, the program to be tested P is presented to the Static Analysis Module, which produces the CFG 
elements (lists of edges and branches) and list of def-use chains of P. This information is passed to the 
Paths Generation Module, which generates the ZOT subset of program paths, which includes program 
paths that traverse loops zero, one and two times [21]. This subset constitutes the training paths set of P. 
It is passed to the Training Instances Preparation Module, which computes the event-transition 
(branches, edges, or def-uses) profiles for each path in the training paths set, and assigns to it a feasibility 
label using a Symbolic Execution System [22]. The feasibility label can be "f" for feasible or "inf" for 
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infeasible. This module produces the training instances of P, where each training instance consists of a 
path with its event-transition profiles and feasibility label. Finally, the training instances are passed to the 
Classifier Training Module. This module first groups the training instances by the distinct feasibility labels 
f and inf. Then, it converts each training instance in each feasibility group to a Markov model. The module 
initially uses a batch-learning paradigm to train one classifier per feasibility group. Finally, the module 
assembles the two feasibility groups of classifiers, Cf and Cinf to form the classifier C for P.  

The Classifier Training Module implements the algorithm TrainPathFeasibilityClassifier, shown in Figure 
7. Before describing this algorithm, the Markov model building process is explained. 

3.1 Building Markov Model 
The proposed approach depends on using Markov models to encode the event-transition profiles of 
program paths. In this subsection, the mapping from program events to the concept of state, which is 
used in building Markov models, is illustrated for the three types of event-transitions considered in the 
approach, which are program edges, branches, and def-uses.  

The algorithm BuildMarkovModel, shown in Figure 2, is a generic algorithm that constructs a matrix 
representation of a Markov model from event-transition profiles of each edge, branch, or def-use in a 
program path. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Algorithm BuildMarkovModel to build Markov model for a path.  

BuildMarkovModel algorithm takes, for a path p, three inputs: S, D, 𝑓𝑓𝑓𝑓, where S is a set of states used to 
specify the event transitions; D is a list of the event transitions in p and their profiles stored as ordered 
triples, (sfrom, sto, profile), where sfrom and sto are the source and destination nodes of an event transition 

Algorithm BuildMarkovModel(S, D, 𝒇𝒇𝒍𝒍) 
Input: S = {s0, s1, …, sn-1}, a set of states 

D = ��𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗� : 0 ≤ 𝑗𝑗 < |𝐷𝐷|�, a list of ordered triples for 
each event transition and its profile 
𝑓𝑓𝑓𝑓 = a string representing a feasibility label 

Output: (M, D, 𝑓𝑓𝑓𝑓), a Markov model M, D and 𝑓𝑓𝑓𝑓 
Begin 
1. M ← new double array [|s|,|s|] initialized to 0 
2. For each (sfrom, sto, profile) ϵ D where sfrom, sto ϵ S 
3. m[sfrom, sto] ← profile; 
4. End For 
5. For i ← 0 to |s|-1 
6. rowSum = 0; 
7. For j ← 0 to |s|-1 
8. rowSum ← rowSum + m[i,j]; 
9. End For 
10. If rowSum > 0 
11. For j←0 to |s|-1 
12. m[i,j] ← m[i,j] / rowSum; 
13. End For 
14. End If 
15. End For 
16. Return  (M, D, 𝑓𝑓𝑓𝑓); 
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(edge, branch, or def-use), respectively, and profile is the occurrence frequency of the event transition in 
p; and 𝑓𝑓𝑓𝑓 is the feasibility label for the model. The output (M, D, 𝑓𝑓𝑓𝑓) is a triple consisting of the model M, 
the profile data D, and the feasibility label 𝑓𝑓𝑓𝑓 of the path p. In line 1, the matrix M for the model is 
initialized using the cardinality of S. In lines 2-4, each transition in D that involves states in S is recorded in 
M. In lines 5-15, each row in the matrix M is normalized by dividing each element in the row by the sum 
of the elements in the row, unless the sum is zero. 

3.1.1 Building Markov model from edge profiles 

The edges are possible transfers of control flow between the nodes of the CFG, e.g. an edge (i, j) 
corresponds to a possible transfer of control from node i to node j. Each node represents a group of 
consecutive statements which together constitute a basic block. An edge (i, j) is considered as an event 
transition in the CFG between the source node i and the destination node j. 

Consider the path p = 1, 2, 4, 5, 6, 5, 6, 5, 7, 9 in the CFG of the example program, shown in Figure 3. We 
compute the profiles of each edge by counting how many times the edge occurred in the path. For 
example, the profile of edge (5-6) is 2. The Markov model, built from the edges and their profiles in p, is 
shown in Figure 4 as a matrix. It models the program states identified by the source and destination nodes 
of each edge. The transitions are read from row to column. A Markov model built from edge profiles is 
simply the adjacency matrix of the CFG with each entry equals to the row-normalized profile. For example, 
in the row of node 5, as the profile of edge (5-6) is 2 and the profile of edge (5-7) is 1, i.e. 3 in total, there 
are two entries, 2/3 and 1/3, in the cells (5, 6) and (5, 7).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Example program and its CFG. 

As mentioned above, the algorithm BuildMarkovModel, shown in Figure 2, can construct a Markov model 
from edge profiles in a program path. In this case, the input S is the set of CFG nodes; D is a list of the 
edges in p and their profiles stored as ordered triples, (sfrom, sto, profile), where sfrom and sto are the source 
and destination nodes of an edge, respectively, and profile is the occurrence frequency of the edge in p. 
For the example path, p = 1,2,4,5,6,5,6,5,7,9, the inputs to BuildMarkovModel are: 

o S = {1, 2, 3, 4, 5, 6, 7, 8, 9} 
o D = ((1, 2, 1), (2, 4, 1), (4, 5, 1), (5, 6, 2), (6, 5, 2), (5, 7, 1), (7, 9, 1)) 
o 𝑓𝑓𝑓𝑓 = “inf” 
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static void Main(string[] args) { 
1   int x=double.Parse(Console.ReadLine()); 
1   int y=double.Parse(Console.ReadLine()); 
1   int pow; 
1      if(y < 0)  
2         pow = -y; 
3      else 
3         pow = y; 
4      int z = 1; 
5       while (pow != 0) { 
6         z =z * x; 
6         pow = pow – 1; 
6      } 
7      if(y < 0) 
8         z =1/z; 
9      double answer =z + 1; 
9   Console.WriteLine(answer); 
 } 
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In this case, the output component M is the Markov model shown in Figure 4. 

 1 2 3 4 5 6 7 8 9 
1 0 1/1 0 0 0 0 0 0 0 

2 0 0 0 1/1 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 1/1 0 0 0 0 

5 0 0 0 0 0 2/3 1/3 0 0 

6 0 0 0 0 2/2 0 0 0 0 

7 0 0 0 0 0 0 0 0 1/1 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Figure 4.  Markov model for the edge profiles of the example path p = 1,2,4,5,6,5,6,5,7,9. 

3.1.2 Building Markov model from branch profiles 

Next, we illustrate the process of building Markov model from branches profiles. Here, a branch means 
an out edge of a predicate node. A branch (i, j) of a predicate node i is considered as an event transition 
in the CFG between the source node i and the destination node j. 

In the CFG of the example program, shown in Figure 3, there are three predicate nodes, 1, 5, and 7.  Again, 
consider the path p = 1, 2, 4, 5, 6, 5, 6, 5, 7, 9 in this CFG. We compute the profiles of each branch of each 
predicate node by counting how many times the branch has occurred in the path.  For example, the profile 
for branch (1-2) of predicate node 1 is 1. The matrix representation of the Markov model, built from the 
branches and their profiles in p, is shown in Figure 5. It models the program states identified by the source 
and destination nodes of each branch of each predicate node. Each row shows the row-normalized 
profiles of the branches of a predicate node. For example, in the row of predicate node 5, as the profile 
of branch (5-6) is 2 and the profile of branch (5-7) is 1, i.e. 3 in total, there are two entries, 2/3 and 1/3, in 
the cells (5, 6) and (5, 7), respectively.  

The algorithm BuildMarkovModel, shown in Figure 2, can also construct a Markov model from branch 
profiles in a program path. In this case, the input S is the set of predicate nodes in the CFG; D is a list of 
the branches in p and their profiles stored as ordered triples, (sfrom, sto, profile), where sfrom and sto are the 
source and destination nodes of a branch, respectively, and profile is the occurrence frequency of the 
branch in p. For the example path, p = 1,2,4,5,6,5,6,5,7,9, the inputs to BuildMarkovModel are: 

o S = {1, 5, 7} 
o D = ((1, 2, 1), (5, 6, 2), (5, 7, 1), (7, 9, 1)) 
o 𝑓𝑓𝑓𝑓 = “inf” 

In this case, the output component M is the Markov model shown in Figure 5. 

 1 2 3 4 5 6 7 8 9 
1 0 1/1 0 0 0 0 0 0 0 

5 0 0 0 0 0 2/3 1/3 0 0 

7 0 0 0 0 0 0 0 0 1/1 

Figure 5.  Markov model for the branch profiles of the example path p = 1,2,4,5,6,5,6,5,7,9. 
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3.1.3 Building Markov model from def-use profiles 

Finally, we illustrate the process of building Markov model from def-use chain profiles. A def-use chain of 
a variable is a path from the definition to the use of the variable without any intervening redefinitions. 
Here, we consider the def-use chains required to fulfill the all-uses criterion, which is one of the most 
demanding in the family of data flow criteria described by Rapps and Weyuker [23]. A def-use chain <d, 
u> of a variable v is considered as an event transition in the CFG between the source (def) node d and the 
destination (use) node u. 

Table 1 shows the list of def-use chains required to fulfill the all-uses criterion for the example program 
shown in Figure 3. In this list, each def-use chain (path) is represented by: a def-node (a node containing 
a def of a variable); a use-node (a node containing a use of that variable); and the set of nodes that must 
not be included in that path (i.e., nodes containing other defs of that variable). These nodes are called 
killing nodes [21].  The value (-1) is used in the killing node column to indicate that the def-use path has 
no killing nodes. A path is said to cover a def-use chain if it has a subpath that starts at the def-node and 
ends at the use-node of the def-use chain and does not pass through its killing nodes [21]. 

In the example program, there are 8 defs: (x,1), (y,1), (pow,2), (pow,3), (z,4), (z,6), (pow,6), and (z,8). 
Again, consider the path p = 1, 2, 4, 5, 6, 5, 6, 5, 7, 9 in the CFG, shown in Figure 3. We compute the profiles 
of each def-use chain by counting how many times a def-clear subpath from the def-node to the use-node 
in the chain has occurred in the given path.  For example, as the variable y is defined in node 1 and used 
in nodes 2 and 7, the corresponding def-use chains are: <(y,1), 2> and <(y,1), 7>. Both of these two def-
use chains have profile 1, as each occurred once in p. The matrix representation of the Markov model 
built from the def-use chains and their profiles in p is shown in Figure 6. It models the program states 
identified by a def node of each variable as the source and its use node as the destination. Each row shows 
the row-normalized profiles of the def-use chains of a variable def. For example, in the row of def (pow,6), 
as the profile of def-use chain <(pow,6), 5> is 2 and the profile of def-use chain <(pow,6), 6> is 1, i.e. 3 in 
total, there are two entries, 2/3 and 1/3, in the cells ((pow,6), 5) and ((pow,6), 6), respectively.  

Table 1. List of def-use chains of the example program. 

Variable Def-node Use-node Killing Nodes 
Y 1 2 -1 
Y 1 3 -1 
X 1 6 -1 

pow 2 5 3 
pow 2 6 3 
pow 3 5 2 
pow 3 6 2 

Z 4 6 8 
Z 6 6 4, 8 

pow 6 5 2, 3 
pow 6 6 2, 3 

Y 1 7 -1 
Z 4 8 6 
Z 6 8 4 
Z 4 9 6, 8 
Z 6 9 4, 8 
Z 8 9 4, 6 
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The algorithm BuildMarkovModel, shown in Figure 2, can also construct a Markov model from def-use 
chain profiles in a program path. In this case, the input S is the set of variable defs in the program; D is a 
list of the def-use chains in p and their profiles stored as ordered triples, (sfrom, sto, profile), where sfrom and 
sto are the source and destination nodes of a def-use chain, respectively, and profile is the occurrence 
frequency of the def-use chain in p. For the example path, p = 1,2,4,5,6,5,6,5,7,9, the inputs to 
BuildMarkovModel are: 

o S = {(x,1), (y,1), (pow,2), (pow,3), (z,4), (z,6), (pow,6), (z,8)} 
o D = ( ((y,1), 2, 1), ((y,1), 7, 1), ((x,1), 6, 2), ((pow,2), 5, 1), ((pow,2), 6, 1), ((z,4), 6, 1) , ((z,6), 6, 1), ((z,6), 9, 1), 

((pow,6), 5, 2), ((pow,6), 6, 1)  ) 
o 𝑓𝑓𝑓𝑓 = “inf” 

In this case, the output component M is the Markov model shown in Figure 6. 

 1 2 3 4 5 6 7 8 9 
y,1 0 1/2 0 0 0 0 1/2 0 0 

x,1 0 0 0 0 0 2/2 0 0 0 

pow,2 0 0 0 0 1/2 1/2 0 0 0 

pow,3 0 0 0 0 0 0 0 0 0 

z,4 0 0 0 0 0 1/1 0 0 0 

z,6 0 0 0 0 0 1/2 0 0 1/2 

pow,6 0 0 0 0 2/3 1/3 0 0 0 

z,8 0 0 0 0 0 0 0 0 0 

Figure 6.  Markov model for the def-use profiles of the example path p = 1,2,4,5,6,5,6,5,7,9. 

3.2 Training the Path Feasibility Classifier 
Our approach is to train a path feasibility classifier using the Markov models, which are constructed from 
the path profiles of the training paths set, as training instances. We use a training technique that is based 
on an established technique known as agglomerative hierarchical clustering [24]. With this technique, 
initially each training instance is considered to be a cluster of size one. The technique proceeds iteratively 
by finding the two clusters that are nearest to each other according to some similarity function. These 
two clusters are then merged into one, and the technique repeats. The stopping condition is either a 
desired number of clusters or some valuation of the quality of the remaining clusters. Each merged cluster 
is also a Markov model. For example, in the first iteration, the merged model is built by combining the 
path profiles that form the basis for the two models being merged. Then, from this merged profile, 
BuildMarkovModel generates a Markov model that represents the new cluster. 

The specification of the similarity function is typically done heuristically according to the application 
domain. In our approach, we use a simple comparison technique called Hamming distance to compare 
two Markov models, as in [10]. To compute the Hamming distance, each of the Markov models is 
transferred to a binary representation where a 1 is entered for all values (normalized profiles) above a 
certain threshold, and a 0 is entered otherwise. The threshold value, called similarity threshold (SimTh), is 
determined experimentally. The comparison function is called ModelSim() and is provided as an input to 
TrainPathFeasibilityClassifier algorithm shown in Figure 7. The binary transformation of the models is 
done only temporarily by ModelSim() in order to compute the Hamming distance.  
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Figure 7. Algorithm TrainPathFeasibilityClassifier to train Path Feasibility Classifier. 

The TrainPathFeasibilityClassifier algorithm, shown in Figure 7, trains a classifier from models generated 
by BuildMarkovModel. The algorithm firstly groups the models of the training instances by their feasibility 
labels, then applies the agglomerative hierarchical clustering to the models of the training instances that 
have same feasibility label forming a feasibility classifier specific for this label. Here, we will have two 
classifiers, one for label 'f' and one for label 'inf'. Finally, it forms the final classifier as the union of the 
clustered models from each of these two specific feasibility classifiers. 

TrainPathFeasibilityClassifier has three inputs: S, T, and ModelSim(), where S is a set of states that are 
used to identify the event transitions when BuildMarkovModel is called; T is a list of triples, each 
containing a path in the training paths set, a data structure D as defined in BuildMarkovModel, and a 
feasibility label 𝑓𝑓𝑓𝑓 ϵ {"f", "inf"}; ModelSim() takes two Markov models as arguments and returns a real 
number that is the computed similarity measure between the two models. 

Algorithm TrainPathFeasibilityClassifier(S, T, ModelSim) 
Input: S = {s0, s, …, sn-1}, a set of states including a final or exit state, 

T = ((pi, Di, 𝑓𝑓𝑓𝑓𝑖𝑖), …), a list of ordered triples, where pi is a path in the training paths set, Di 
= ��sfromj , stoj , profilej� : 0 ≤ j < |D|�,  a list of the event transitions in pi and their 

profiles, 0 ≤ i < |Training Instances|, and feasibility label  𝑓𝑓𝑓𝑓𝑖𝑖 ϵ {"f", "inf"}, 
ModelSim, a function to compute the similarity of two Markov models 

Output: Path feasibility classifier C = {(Mi, Di, 𝑓𝑓𝑓𝑓𝑖𝑖): 𝑓𝑓𝑓𝑓𝑖𝑖 ϵ {"f", "inf"}, 0≤ i< |C|} 
Begin 
1. C ← ϕ;   // initialize the path feasibility classifier 
2. For each 𝑓𝑓𝑓𝑓 ϵ {"f", "inf"} 
3.  𝐶𝐶𝑓𝑓𝑓𝑓← ϕ;  // initialize the classifier for feasibility 𝑓𝑓𝑓𝑓 
4. End For 
5. For each 𝑓𝑓𝑓𝑓 ϵ {"f", "inf"}  
6. For each (pi, Di, 𝑓𝑓𝑓𝑓) ϵ T, 0 ≤ i < |Training Instances with feasibility 𝑓𝑓𝑓𝑓| 
7. 𝐶𝐶𝑓𝑓𝑓𝑓  ← 𝐶𝐶𝑓𝑓𝑓𝑓∪ BuildModel(S, Di, 𝑓𝑓𝑓𝑓); 
8. End For 
9. While |𝐶𝐶𝑓𝑓𝑓𝑓| > 2 
10. //agglomerative hierarchical clustering 
11. mid = (maxProfile(𝐶𝐶𝑓𝑓𝑓𝑓) + minProfile(𝐶𝐶𝑓𝑓𝑓𝑓)) / 2.0; 
12. SimTh = mid;  // similarity threshold 
13. diff ← ϕ;   // an empty set to collect models pair-wise differences 
14. For each (Mi, Di, 𝑓𝑓𝑓𝑓) ϵ 𝐶𝐶𝑓𝑓𝑓𝑓, 0 ≤ i < |𝐶𝐶𝑓𝑓𝑓𝑓|  
15. For each (Mj ,Dj , 𝑓𝑓𝑓𝑓) ϵ 𝐶𝐶𝑓𝑓𝑓𝑓  , i < j < |𝐶𝐶𝑓𝑓𝑓𝑓| 
16. diff ← diff ∪ ModelSim(Mi, Mj, SimTh); 
17. End For 
18. End For 
19. (Mx, My) ← min(diff);   // Select the two closest models 
20. Dmerged   ←Dx ∪ Dy; 
21. Mmerged ← BuildModel(S, Dmerged, 𝑓𝑓𝑓𝑓); 
22. 𝐶𝐶𝑓𝑓𝑓𝑓   ← (𝐶𝐶𝑓𝑓𝑓𝑓  − Mx − My) ∪ Mmerged; 
23. End While 
24. C ← C ∪ 𝐶𝐶𝑓𝑓𝑓𝑓;  // add feasibility 𝑓𝑓𝑓𝑓’s models to C 
25. End For 
26  Return C; 
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In line 1, an empty path feasibility classifier C is initialized. In lines 2-4, an empty classifier Cfl is initialized 
for each path feasibility 𝑓𝑓𝑓𝑓 . Line 5 begins the processing for each 𝑓𝑓𝑓𝑓 . In lines 6-8, the classifier C𝑓𝑓𝑓𝑓  is 
populated with models built by applying BuildMarkovModel to each training instance that has feasibility 
𝑓𝑓𝑓𝑓. In lines 9-23 the models in each C𝑓𝑓𝑓𝑓  are clustered to reduce their population by merging similar and 
redundant models, using ModelSim, as described above. Line 9 establishes the stopping criterion as two 
models in each cluster C𝑓𝑓𝑓𝑓 . In Lines 11-12, the similarity threshold (SimTh) is set to the middle value 
between the maximum and minimum profile values for all models in C𝑓𝑓𝑓𝑓. Line 13 initializes an empty set 
diff to collect models pair-wise differences. In lines 14-18, ModelSim is used to calculate the pair-wise 
differences and accumulate them in diff. In lines 19-21, the two closest models, Mx and My, are identified 
from diff, then merged, by calling BuildMoekovModel with the union of the corresponding profile sets Dx 
and Dy. In line 22, models Mx and My are replaced by the new merged model in C𝑓𝑓𝑓𝑓 .  In line 24, the final 
clustered models in C𝑓𝑓𝑓𝑓  are added to the classifier C. After the two feasibility groups have been processed, 
the final classifier C is returned. This classifier is composed of two groups of Markov models, each 
representing a cluster of paths with same feasibility. Note that the models in each cluster are built from 
the profiles of all the training instances contributing to the cluster. 

3.3 Using the Path Feasibility Classifier 
Initially the training paths set includes paths that fulfil some test coverage criteria for the program under 
test. Our aim is to augment this initial set with new paths that cover more program components. The 
feasibility of these new paths needs to be checked to eliminate infeasible paths among them to reduce 
the effort of trying to find test data for them.  We can use our classifier to do this job. 

Figure 8 depicts the Path Feasibility Classification Module, which uses the trained classifier C to classify 
a path p of program P that is not in the training set. As shown in the figure, this module accepts as input 
the classifier C and the path to be classified p, and computes its event transitions profiles, then it passes 
C and the list of the event transitions in p and their profiles, D, to the algorithm ClassifyPath, shown in 
Figure 9, which reports the feasibility label of p. 

 

 

 

 

 

 

 

 

Figure 8. The Path Feasibility Classification Module. 

 

As shown in Figure 9, in lines 1-9 of the algorithm ClassifyPath, each model in C rates p with a probability 
score by applying the algorithm ComputeProbability, shown in Figure 10, and in lines 10-14, the model in 
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C with the highest probability score for p provides the feasibility label for p. Note that, the algorithm 
assigns the given path the label "unknown", whenever the calculated probability is below some threshold 
TH, which means the classifier has failed to label the given path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Algorithm ClassifyPath that determines the feasibility label of a given path using the path feasibility 
classifier C. 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Algorithm ComputeProbability that computes the probability score assigned to a given path by a 
Markov model in the classifier C 

The algorithm ComputeProbability computes the probability score with which a Markov model M in the 
classifier C rates the given path p. The probability score is the probability that the model M could produce 
the sequence of event-transitions in path p [10]. To illustrate how ComputeProbability works, consider 

Algorithm ClassifyPath(C, D)  
Input:  C, Path Feasibility Classifier, a set of Markov models:  

{(Mi, Di, 𝑓𝑓𝑓𝑓𝑖𝑖): 𝑓𝑓𝑓𝑓𝑖𝑖  ϵ {"f", "inf"}, 0 ≤ i < |C|}  
D, list of the event transitions: ��𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗� : 0 ≤ 𝑗𝑗 < |𝐷𝐷|�  

in the path p to be classified and their profiles 
Output: 𝑓𝑓𝑓𝑓, Feasibility label of p 
Begin 
1. maxProb = ComputeProbability(M0, D); 
2. index = 0; 
3. For each (Mi, Di, 𝑓𝑓𝑓𝑓𝑖𝑖) ϵ C, 1 ≤ i < |C| 
4. prob = ComputeProbability(Mi, D); 
5. If prop > maxProb 
6. maxProb = prop; 
7. index = i; 
8. End If 
9. End For                 
10. If maxProb < TH) 
11. 𝑓𝑓𝑓𝑓 = "unknown"; 
12. Else 
13. 𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 
14. End If                 
15. return 𝑓𝑓𝑓𝑓; 

 

Algorithm ComputeProbability(M, D) 
Input:  M, matrix of a Markov model  

D, list of the event transitions: ��𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗� : 0 ≤ 𝑗𝑗 < |𝐷𝐷|�  
in the path p to be classified and their profiles  

Output: ℘, probability score assigned to p by M 
Begin 
1. ℘= 1; 
2. For each �𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 , 𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗� ∈ D, 0 ≤ 𝑗𝑗 < |𝐷𝐷| 
3. If M[𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 ,  𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗] ≠ 0 
4. ℘= ℘* M[𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 ,  𝑠𝑠𝑡𝑡𝑓𝑓𝑗𝑗] ^  𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑗𝑗 ; 
5. End If 
6. End For 
7. return ℘; 
End  
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another path p = 1, 2, 4, 5, 6, 5, 6, 5, 7, 8, 9 in the CFG, shown in Figure 3. The algorithm accepts a Markov 
model M and the list of the event transitions in p and their profiles D. By passing the Markov model M, 
shown in Figure 4, and the list of event transitions (edges) in p: 

D = ((1, 2, 1), (2, 4, 1), (4, 5, 1), (5, 6, 2), (6, 5, 2), (5, 7, 1), (7, 8, 1), (8, 9, 1)), 

to the algorithm, it calculates the probability score ℘ that M gives to p as follows:    

℘ = M[1,2]^1 * M[2,4]^1 * M[4,5]^1 * M[5,6]^2 * M[6,5]^2 * M[5,7]^1 

     = 1.0^1 * 1.0^1 * 1.0^1 * 0.667^2 * 1.0^2 * 0.333^1 = 0.148148  

Note that M[7,8] and M[8,9] were not included in the calculation, as each of them has a value 0. 

3.4 Improving the Classifier 
Initially in TrainPathFeasibilityClassifier, we have used the batch-learning technique. In addition to this 
technique, there is another effective learning technique for training classifiers, which is active learning 
[9]. Active learning techniques employ an interactive or query-based approach that can be used to control 
the costs of training classifiers. Bowring et al. [10] have used a type of active learning called bootstrapping. 
Their application of bootstrapping first uses the classifier to score new program executions and then 
collect only those executions that remain unknown. These unknown executions are considered candidates 
that represent new behaviors and therefore each is evaluated, given a behavior label, and identified as a 
new training instance for the classifier. The classifier is retrained using the expanded set of training 
instances. 

Now, we explain how to combine our technique for building path feasibility classifier with the 
bootstrapping active learning strategy to extend the scope of training our classifier to be able to succeed 
in classifying new paths. 

In the bootstrapping process, we select as candidates from the processed set of paths only those paths 
that remain unknown to the classifier. The feasibility of these candidates is evaluated by an oracle.  The 
oracle in our case is a symbolic execution system with inequality solver [21]. The candidates are then used 
as new training instances for training C. The classifier C is retrained and refined at certain intervals using 
the augmented training instances set. The iteration of the bootstrapping process stops when the rate of 
detection of paths with unknown feasibility falls below some threshold. 

4 Experiments  
This section presents the results of the experiments that we have conducted to evaluate the effectiveness 
of the three proposed paths feasibility classifiers: Branches Model, Edges Model, and Def-Use Model, 
which are based on edges, branches, and def-uses profiles, respectively. 

In the experiments, we have applied the three classifiers to 5 sample programs, and used the accuracy 
metric for evaluating the effectiveness of classification results. The accuracy of a classification model on 
a test set is defined as: 

Accuracy =  
Number of correct classifications

Total number of test cases
,   
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where a correct classification means that the learned model predicts the same class as the original class 
of the test case. 

4.1 Experiments with Batch Learning 
Firstly, we evaluated the three proposed paths feasibility classifiers using only batch learning. For each of 
the 5 sample programs, we repeated the following steps: 

o Randomly select training set. 
o Build a classifier from the training set. 
o Evaluate the classifiers. 

In order to study the effect of the size of the training set on the accuracy classification results, we have 
conducted the experiments with different percentages of the data set as training data, where each one is 
referred to as training data percentage (tdp). For example, tdp = 75% means partitioning the data set into 
two sets of 75% for training and 25% for test. The tdp values used in the experiments were 25%, 50%, and 
75%.  

Also, in order to evaluate the effect of the similarity threshold (SimTh) used in the function ModelSim(), 
we initially set SimTh to the middle value (mid) between the maximum and minimum profile values for all 
models in a cluster C𝑓𝑓𝑓𝑓, as shown in Figure 7 (Lines 11-12), then we used variations of this value (mid ±
0.2). 

Tables 1-3 show the classification accuracy results for the three proposed paths feasibility classifiers with 
different tdp and SimTh values. In each row of these tables, the shaded cells indicate the higher accuracies 
obtained for each sample program.  

Regarding the variations in tdp values, the results indicate that the Branches and Edges models gave 
higher accuracy with tdp =75%, but the Def-Use Model gave higher accuracy with tdp =25%. Regarding 
the variations in SimTh values, for the Branches and Def-Use Models, the results indicate that the 
variations have little effect on the accuracy of the classifiers, but for the Edges Model, they have no effect 
at all. 

Figures 11(a)-(c), 12(a)-(c), and 13(a)-(c) show comparisons between the classification accuracy results for 
the Branches, Edges, and Def-Use Models, respectively, with different tdp values, for each SimTh value 
(mid, mid+0.2 and mid-0.2). 

Figures 14(a)-(c) show comparisons between the average classification accuracy results for the three 
models with different tdp values, for each SimTh value (mid, mid+0.2 and mid-0.2, respectively). These 
figures showed that, on average, the Branches Model has the higher accuracy in predicting the feasibility 
of program paths, followed by the Edges Model, while the Def-Use Model has the lower accuracy.  This 
indicates that the control flow profiles, such as branches and edges, are more useful in predicting the 
feasibility of program paths than the data flow profiles, such as def-use profiles.  

4.2 Experiments with Bootstrapping Active Learning 
Secondly, we conducted simple experiment to evaluate the application of bootstrapping to refine the 
classifiers built using the batch learning technique. In this experiment, we selected one of the paths that 
were classified as "unknown", labeled it, and added it to the training set for the classifier, then retrained 
the classifier using the augmented set of training instances. Table 4 shows the improvement rate in the 
classifier accuracy after augmenting the training set with just one correctly labeled unknown path. It 
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should be noted that, the table shows only the results for Prog#2 and Prog#3 with Def-Use Model, and 
Prog#5 with Edges and Def-Use Models, as those the cases where the batch learning classification results 
included paths with label "unknown".  

5 Conclusion 
The aim of this paper is to explore the use of program features, such as edges, branches, and def-uses 
profiles, as predictors of path feasibility. To achieve this aim, the paper presented a proposed active-
learning approach to the automatic feasibility classification of program paths. In this approach, program 
paths were represented as Markov models, then these models were aggregated into an effective path 
feasibility classifier, which is a map from program paths statistics, namely, edge, branch, or def-use 
profiles, to a label for the path, “feasible” or “infeasible”. Three paths feasibility classifiers: Branches 
Model, Edges Model, and Def-Use Model, were built, based on edges, branches, and def-uses profiles, 
respectively. The proposed approach employs the bootstrapping active learning strategy, where each 
classifier is trained incrementally on a series of labeled instances to extend its scope of training to be able 
to succeed in classifying new paths.  

The paper also presented the results of the experiments that were conducted to evaluate the 
effectiveness of the three paths feasibility classifiers built by using the proposed approach. In these 
experiments, the effect of the training set size and the similarity threshold (SimTh) values on the 
classification results were studied by using different training data percentages (tdps) and different SimTh 
values, during the training of the proposed paths feasibility classifiers.  

Table 1. A comparison between the classification accuracy results for the Branches Model with different tdp and 
SimTh values. 

Program # No. of Paths 

Training data percentage (tdp) 
75% 50% 25% 

Similarity Threshold (SimTh) 
mid mid+0.2   mid-0.2   mid mid+0.2   mid-0.2   mid mid+0.2   mid-0.2   

Prog#1 108 100% 85.19% 100% 92.59% 100% 100% 90.12% 90.12% 90.12% 
Prog#2 26 83.33% 83.33% 83.33% 76.92% 76.92% 76.92% 68.42% 68.42% 68.42% 
Prog#3 43 90.91% 81.82% 63.64% 85.71% 71.43% 71.43% 62.5% 46.88% 46.88% 
Prog#4 12 100% 100% 100% 50% 50% 50% 44.44% 44.44% 44.44% 
Prog#5 32 75% 75% 87.5% 50% 56.25% 50% 45.38% 62.5% 50% 

Table 2. A comparison between the classification accuracy results for the Edges Model with different tdp and 
SimTh values. 

Program # No. of Paths 

Training data percentage (tdp) 
75% 50% 25% 

Similarity Threshold (SimTh) 
mid mid+0.2   mid-0.2   mid mid+0.2   mid-0.2   mid mid+0.2   mid-0.2   

Prog#1 108 100% 100% 100% 48.15% 48.15% 48.15% 60.49% 60.49% 60.49% 
Prog#2 26 83.33% 83.33% 83.33% 69.23% 69.23% 69.23% 57.89% 57.89% 57.89% 
Prog#3 43 90.91% 90.91% 90.91% 85.71% 85.71% 85.71% 50% 50% 50% 
Prog#4 12 33.33% 33.33% 33.33% 50% 50% 50% 55.56% 55.56% 55.56% 
Prog#5 32 75% 75% 75% 56.25% 56.25% 56.25% 66.67% 66.67% 66.67% 
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Table 3. A comparison between the classification accuracy results for the Def-Use Model with different tdp 
and SimTh values.  

Program # No. of Paths 

Training data percentage (tdp) 
75% 50% 25% 

Similarity Threshold (SimTh) 
mid mid+0.2   mid-0.2   mid mid+0.2   mid-0.2   mid mid+0.2   mid-0.2   

Prog#1 108 66.67% 66.67% 85.19% 33.3% 33.3% 48.15% 66.67% 66.67% 79.01% 
Prog#2 26 83.33% 50% 33.33% 46.15% 46.15% 69.23% 63.16% 63.16% 68.42% 
Prog#3 43 72.73% 81.82% 72.73% 90.48% 85.71% 71.43% 53.13% 53.13% 31.25% 
Prog#4 12 33.33% 33.33% 33.33% 50% 50% 50% 55.56% 55.56% 55.56% 
Prog#5 32 50% 50% 37.5% 50% 50% 43.75% 58.33% 54.17% 66.67% 

 

Figure 11. Comparisons between the classification accuracy results for the Branches Model with 3 different 
tdp values, and (a) SimTh = mid, (b) mid+0.2 and (c) mid-0.2 

 

Figure 12. Comparisons between the classification accuracy results for the Edges Model with 3 different tdp 
values, and (a) SimTh = mid, (b) mid+0.2 and (c) mid-0.2. 
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Figure 13. Comparisons between the classification accuracy results for the Def-Use Model with 3 different 

tdp values, and (a) SimTh = mid, (b) mid+0.2 and (c) mid-0.2. 

 

Figure 14. Comparisons between the average accuracy results for the three models with 3 different tdp 
values, and (a) SimTh = mid, (b) mid+0.2 and (c) mid-0.2. 
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Table 4. A comparison between the classification accuracy results obtained by applying the batch learning 
technique, and then bootstrapping. 

Program # Model 
Accuracy 

Improvement rate  
Batch Learning Bootstrapping 

Prog#2 Def-Use  46.15% 66.67% 44.46% 
Prog#3  Def-Use  31.25% 51.62% 65.18% 
Prog#5  Edges  56.52% 63.64% 12.6% 
Prog#5  Def-Use  47.83% 50% 4.54% 

Regarding the variations in tdp values, the results indicated that the Branches and Edges models gave 
higher accuracy with large tdps, while the Def-Use Model gave higher accuracy with small tdps. Regarding 
the variations in SimTh values, the results indicated that, for the Branches and Def-Use Models, the 
variations have little effect on the accuracy of the classifiers, but for the Edges Model, they have no effect 
at all. 

The experiments showed also that, on average, the Branches model has the higher accuracy in predicting 
the feasibility of program paths, followed by the Edges model, while the Def-Use Model has the lower 
accuracy. This indicates that the control flow profiles, such as branches and edges, are more useful in 
predicting the feasibility of program paths than the data flow profiles, such as def-use profiles. 

In addition, we conducted simple experiment to evaluate the potential of bootstrapping to refine the 
classifiers built using the batch learning technique. The results of this experiment indicated that 
bootstrapping improves the classifier accuracy. 

The work presented in this paper demonstrated that modeling certain event transitions as Markov 
processes produces effective predictors of paths feasibility that can be automatically clustered into paths 
feasibility classifiers. Also, it demonstrated how the bootstrapping active-learning technique can be 
employed to incrementally and efficiently improve these classifiers. 

In the experiments, we have applied the proposed classifiers to small size programs, as a preliminary 
study. We intend to apply them to more realistic size programs. Also, we intend to study the use program 
features, other than branches, edges and def-uses, in building paths feasibility classifiers, such as paths of 
length two, Decision-to-Decision (DD) paths, and function calls. In addition, we intend to investigate how 
to combine these features to build more effective paths feasibility classifiers. 
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