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ABSTRACT   

“Real world” problems typically possess complex performance conditions peppered with inconsistent 
performance requirements. This situation occurs because multifaceted problems are often riddled with 
incompatible performance objectives and contradictory design requirements which can be difficult – if 
not impossible – to specify when the requisite decision models are formulated. Thus, it is often desirable 
to generate a set of disparate alternatives that provide diverse approaches to the problem. These 
dissimilar options should be close-to-optimal with respect to any specified objective(s), but remain 
maximally different from all other solutions in the decision space. The approach for creating maximally 
different sets of solutions is referred to as modelling-to-generate-alternatives (MGA). This paper outlines 
an MGA algorithmic approach that can simultaneously generate a set of maximally different alternatives 
using any population-based metaheuristic. 

Keywords: Modelling-to-generate-alternatives, Metaheuristics, Population-based algorithms. 

1 Introduction  
“Real world” decision-making environments involve complex problems containing design specifications 
that are frequently difficult to incorporate into underlying mathematical programming formulations and 
are often overwhelmed with numerous unquantifiable components [1]-[5]. Whereas “optimal” solutions 
can be calculated for the modelled representations, whether these are truly the best solutions to the real 
problems can be questionable, as there are always unmodeled components when mathematical models 
are constructed [1][2][6]. Generally, it is more desirable to create a discrete number of dissimilar 
alternatives that afford contrasting perspectives to the particular problem [3][7]. All of these options 
should be close-to-optimal with respect to any specified objective(s), but should be maximally different 
from each other within the decision space. Numerous procedures referred to as modelling-to-generate-
alternatives (MGA) have been created to address this multi-solution approach [6]-[8].  

The primary impetus behind MGA methods is to produce a set of alternatives that can be considered good 
when measured by the specified objective(s), but which are inherently distinct from one another within 
the decision domain. The resulting solution set should deliver alternative perspectives that perform 
similarly with respect to all modelled objectives, yet very differently with respect to any unmodelled 
aspects [5]. Decision-makers must conduct a subsequent assessment of the set of alternatives to 
determine which alternative(s) would most nearly achieve their specific requirements. Consequently, 
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MGA methods are classified as decision support procedures rather than as solution determination 
processes as assumed for explicit optimization. 

Earlier MGA methods have employed direct, iterative approaches for alternative generation by 
incrementally re-running their algorithms whenever new solutions need be constructed [6]-[10]. These 
iterative methods imitate the seminal MGA approach of Brill et al. [8] where, once the initial mathematical 
formulation has been optimized, all supplementary alternatives are produced one-at-a-time. 
Consequently, these incremental approaches all require n+1 iterations of their respective algorithms – 
initially to optimize the original problem, then to produce each of the subsequent n alternatives [7][11]-
[13]. 

In this study, it is demonstrated how a set of maximally different solution alternatives can be 
simultaneously generated using any population-based metaheuristic algorithm by extending several 
earlier MGA approaches [12]-[18]. All of the earlier MGA procedures employed the Firefly Algorithm (FA) 
for their solution procedure. The FA is a very specific instance of one population-based metaheuristic 
procedure that can be used for solving optimization problems. In this paper, a new algorithm is provided 
that has been updated and generalized so that now a simultaneous MGA solution process can be achieved 
using any population-based mechanism. This new MGA algorithmic approach advances the earlier 
concurrent procedures of Imanirad et al. [13][15]-[18] by permitting the simultaneous generation of the 
overall best solution together with n distinct alternatives in a single computational run. Stated explicitly, 
to generate the n maximally different solution alternatives, the new MGA algorithm would run exactly the 
same number of times that a procedure would need to be run for function optimization alone (i.e. once) 
irrespective of the value of n [19]-[23]. Furthermore, a new data structure is created that permits 
simultaneous alternatives to be constructed in a very novel, highly computationally efficient way. It is the 
implementation of this data structure which facilitates the above-mentioned generalization to solution by 
all population-based methods. Consequently, this simultaneous MGA algorithmic approach proves to be 
extremely computationally efficient. 

2 Modelling to Generate Alternatives 
Mathematical programming methods appearing in the optimization literature have focused almost 
exclusively upon generating single optimal solutions to single-objective formulations or, equivalently, 
producing a set of noninferior solutions for multi-objective problems [2][5][8]. While such methods may 
establish solutions to the derived complex mathematical models, whether their outputs actually generate 
“best” solutions to the real, underlying problems is somewhat less certain [1][2][6][8]. Within most “real 
world” decision circumstances, there are countless system requirements and objectives that will never be 
explicitly apparent or included in the problem formulation stage [1][5]. Furthermore, it may not be 
possible to explicitly convey all of the subjective requirements as there are frequently numerous 
incompatible, design components and adversarial stakeholders involved. Therefore, most subjective 
aspects remain unavoidably unmodelled and unquantified in the constructed decision models. This 
commonly occurs where final decisions are constructed based not only upon modelled objectives, but 
also upon more subjective stakeholder preferences and socio-political-economic goals [7]. Numerous 
“real world” illustrations of such incongruent modelling dualities are discussed in [6][8]-[10]. 
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When unmodelled issues and unquantified objectives exist, non-conventional methods are needed to not 
only search the decision region for noninferior sets of solutions, but to also explore the decision region 
for alternatives that are obviously sub-optimal for the problem modelled. Specifically, any search for 
alternatives to problems suspected or known to contain unmodelled components needs to focus not only 
on a non-inferior set of solutions, but necessarily also on an unambiguous exploration of the problem’s 
inferior solution space. 

To demonstrate the consequences of an unmodelled objective in a decision search, assume that the 
quantifiably optimal solution for a single-objective, maximization problem is X* with a corresponding 
objective value Z1*. Now suppose that a second, unmodelled, maximization objective Z2 exists that 
subjectively incorporates some unquantifiable “politically acceptable” component. Now assume that 
some solution, Xa, belonging to the 2-objective noninferior set, exists that represents a potentially best 
compromise solution for the decision-maker if both objectives had somehow been simultaneously 
evaluated. While Xa could reasonably be considered as the best compromise solution for the real problem, 
in the quantified mathematical model it would appear inferior to solution X*, since it must be the case 
that Z1a ≤  Z1*. Therefore, when unmodelled components are incorporated into a decision-making 
process, mathematically inferior options to the modelled problem could actually be optimal for the real 
underlying problem. Consequently, when unmodelled issues and unquantified objectives potentially exist, 
alternative solution procedures are needed to not only explore the decision region for noninferior sets of 
solutions, but also to concurrently search the decision region for inferior solutions to the problem 
modelled. Population-based algorithms permit concurrent searches throughout a decision space and 
prove to be particularly proficient solution methods. 

The principal drive for MGA is to create a manageably small set of alternatives that are as different from 
each other as possible within the solution space, yet are quantifiably good with respect to all modelled 
objectives. By achieving this, the resultant set of solution alternatives is able to supply truly different 
choices that perform similarly with respect to the known modelled objective(s) yet very differently with 
respect to any unmodelled issues. By generating such good-but-different solutions, the decision-makers 
are able to examine potentially desirable qualities within the alternatives that might satisfactorily be able 
to address the unmodelled objectives to varying degrees of stakeholder acceptability. 

In order to motivate the MGA search process, it becomes necessary to apply a more formal mathematical 
definition to the goals of MGA [6], [7].  Assume that the optimal solution to an original mathematical 
model is X* with corresponding objective value Z* = F(X*).  The ensuing difference model can then be 
solved to produce an alternative solution, X, that is maximally different from X*: 

Maximize  ∆ (X, X*) = 
i∑ ( Xi - Xi* )2    (1) 

Subject to:  X ∈  D      (2) 

          | F(X) - Z* | ≤  T     (3) 

where ∆  represents an appropriate difference function (for clarity, shown as a quadratic difference in 
this instance) and T is a specified targeted tolerance limit relative to the original optimal objective value 
Z*. T is user-supplied and quantifies what proportion of the inferior region must be explored in the 
solution search for acceptable alternatives. This difference function concept can be extended into a 
difference measure between any set of alternatives by replacing X* in the objective of the maximal 
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difference model and calculating the overall sum (or some other function) of the differences of the 
pairwise comparisons between each pair of alternatives – subject to the condition that each alternative is 
feasible and falls within the specified tolerance constraint. 

The population-based MGA procedure to be introduced is designed to generate a pre-determined small 
number of close-to-optimal, but maximally different alternatives, by adjusting the value of T and solving 
the corresponding maximal difference problem instance by exploiting the population structure of the 
metaheuristic. The survival of solutions depends upon how well the solutions perform with respect to the 
problem’s originally modelled objective(s) and simultaneously by how far away they are from all of the 
other alternatives generated in the decision space. 

3 Population-based Simultaneous MGA Computational Algorithm 
In this section, a novel data structure is introduced that permits alternatives to be simultaneously 
constructed in a computationally efficient way that also enables an algorithmic generalization to solution 
by any population-based procedure. Suppose that it is desired to be able to produce P alternatives that 
each possess n decision variables and that the population algorithm is to possess K solutions in total. That 
is, each solution is to contain one possible set of P maximally different alternatives. In this representation, 
let Yk, k = 1,…, K, represent the kth solution which is made up of one complete set of P different alternatives. 
Namely, if Xkp is the pth alternative, p = 1,…, P, of solution k, k = 1,…, K, then Yk can be represented as 

Yk = [Xk1, Xk2,…, XkP] .      (4) 

If Xkjq, q = 1,…, n, is the qth variable in the jth alternative of solution k, then 

Xkj = (Xkj1, Xkj2,…, Xkjn) .      (5) 

Consequently, an entire population, Y, consisting of K different sets of P alternatives can be written in 
vectorized form as, 

Y’ = [Y1, Y2,…, YK] .      (6) 

The following population-based MGA method produces a pre-determined number of close-to-optimal, 
but maximally different alternatives, by modifying the value of the bound T in the maximal difference 
model and using any population-based metaheuristic to solve the corresponding, maximal difference 
problem. Each solution within the population contains one potential set of p different alternatives. By 
exploiting the co-evolutionary solution structure within the metaheuristic, the algorithm collectively 
evolves each solution toward sets of different local optima within the solution space. In this process, each 
desired solution alternative undergoes the common search procedure of the metaheuristic. However, the 
survival of solutions depends both upon how well the solutions perform with respect to the modelled 
objective(s) and by how far away they are from all of the other alternatives generated in the decision 
space. 

A straightforward process for generating alternatives would be to iteratively solve the maximum 
difference model by incrementally updating the target T whenever a new alternative needs to be 
produced and then re-running the algorithm. This iterative approach would parallel the original Hop, Skip, 
and Jump (HSJ) MGA algorithm of Brill et al. [8] in which, once an initial problem formulation has been 
optimized, supplementary alternatives are systematically created one-by-one through an incremental 
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adjustment of the target constraint to force the sequential generation of the suboptimal solutions. While 
this approach is straightforward, it requires a repeated execution of the optimization algorithm 
[7][12][13].  

To improve upon the stepwise alternative approach of the HSJ algorithm, a concurrent MGA technique 
was subsequently designed based upon the concept of co-evolution Imanirad et al. [13][15][17]. In a co-
evolutionary approach, pre-specified stratified subpopulation ranges within an algorithm’s overall 
population were established that collectively evolved the search toward the creation of the specified 
number of maximally different alternatives. Each desired solution alternative is represented by each 
respective subpopulation and each subpopulation undergoes the common processing operations of the 
procedure. The survival of solutions in each subpopulation depends simultaneously upon how well the 
solutions perform with respect to the modelled objective(s) and by how far away they are from all of the 
other alternatives. Consequently, the evolution of solutions in each subpopulation toward local optima is 
directly influenced by those solutions contained in all of the other subpopulations, which forces the 
concurrent co-evolution of each subpopulation towards good but maximally distant regions within the 
decision space according to the maximal difference model [7]. 

By employing this co-evolutionary concept, it becomes possible to implement an MGA procedure that 
concurrently produces alternatives which possess objective function bounds that are somewhat 
analogous to those created by the sequential, iterative HSJ-styled solution generation approach. While 
each alternative produced by an HSJ procedure is maximally different only from the overall optimal 
solution (together with its bound on the objective value which is at least x% different from the best 
objective (i.e. x = 1%, 2%, etc.)), a concurrent procedure is able to generate alternatives that are no more 
than x% different from the overall optimal solution but with each one of these solutions being as 
maximally different as possible from every other generated alternative that was produced. Co-evolution 
is also much more efficient than a sequential HSJ-style approach in that it exploits the inherent population-
based searches to concurrently generate the entire set of maximally different solutions using only a single 
population [12][17]. 

While a concurrent approach can exploit population-based solution approaches, the co-evolution process 
can only occur within each of the stratified subpopulations. Consequently, the maximal differences 
between solutions in different subpopulations can only be based upon aggregate subpopulation 
measures. Conversely, in the following simultaneous MGA algorithm, each solution in the population 
contains exactly one entire set of alternatives and the maximal difference is calculated only for that 
particular solution (i.e. the specific alternative set contained within that solution in the population). 
Hence, by the evolutionary nature of the population-based search procedure, in the subsequent 
approach, the maximal difference is simultaneously calculated for the specific set of alternatives 
considered within each specific solution – and the need for concurrent subpopulation aggregation 
measures is circumvented. 

Using the terminology introduced above, the steps in the co-evolutionary population-based MGA 
procedure are as follows ([14][19]-[23]: 

Preliminary Step. In this initialization step, solve the original optimization problem to determine the 
optimal solution, X*. As with prior solution approaches Imanirad et al. [13][15]-[18]) and without loss of 
generality, it is entirely possible to forego this step and construct the algorithm to find X* as part of its 



Julian Scott Yeomans; An Algorithm for Generating Sets of Maximally Different Alternatives Using Population-
Based Metaheuristic Procedures, Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 5 
October, (2018); pp: 1-9 

 

URL: http://dx.doi.org/10.14738/tmlai.65.5184  6 
 

solution processing. However, such a requirement increases the number of computational iterations of 
the overall procedure and the initial stages of the processing focus upon finding X* while the other 
elements of each population solution remain essentially “computational overhead”. Based upon the 
objective value F(X*), establish P target values. P represents the desired number of maximally different 
alternatives to be generated within prescribed target deviations from the X*. Note: The value for P has to 
have been set a priori by the decision-maker. 

Step 1. Create the initial population of size K in which each solution is divided into P equally-sized 
partitions. The size of each partition corresponds to the number of variables for the original optimization 
problem. Xkp represents the pth alternative, p = 1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each Xkp, p = 1,…,P, with respect to the modelled objective. 
Alternatives meeting their target constraint and all other problem constraints are designated as feasible, 
while all other alternatives are designated as infeasible. A solution can only be designated as feasible if all 
of the alternatives contained within it are feasible. 

Step 3. Apply an appropriate elitism operator to each solution to rank order the best individuals in the 
population. The best solution is the feasible solution containing the most distant set of alternatives in the 
decision space (the distance measure is defined in Step 5). Note: Because the best solution to date is 
always retained in the population throughout each iteration, at least one solution will always be feasible. 
A feasible solution for the first step can always consists of P repetitions of X*. 

Step 4. Stop the algorithm if the termination criteria (such as maximum number of iterations or some 
measure of solution convergence) are met. Otherwise, proceed to Step 5. 

Step 5. For each solution Yk, k = 1,…, K, calculate Dk, a distance measure between all of the alternatives 
contained within the solution. 

As an illustrative example for determining a distance measure, calculate 

Dk = ∆ ( Xka, Xkb) = 
1a toP=∑ 1b toP=∑ 1...q n=∑ ( Xkaq – Xkbq )2.    (7) 

This represents the total quadratic distance between all of the alternatives contained within solution k. 
Alternatively, the distance measure could be calculated by some other appropriately defined function 

Step 6. Rank the solutions according to the distance measure Dk objective – appropriately adjusted to 
incorporate any constraint violation penalties for infeasible solutions. The goal of maximal difference is to 
force alternatives to be as far apart as possible in the decision space from the alternatives of each of the 
partitions within each solution. This step orders the specific solutions by those solutions which contain 
the set of alternatives which are most distant from each other. 

Step 7. Apply appropriate metaheuristic “change operations” to the each of the solutions within the 
population and return to Step 2. 

It should be apparent that the stratification approach outlined in this algorithm can be easily modified to 
accommodate any population-based solution procedure. 
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4 Conclusion 
“Real world” decision-making situations inherently involve complicated performance components that 
are further confounded by incongruent requirements and unquantifiable performance objectives. These 
decision environments frequently contain incompatible design specifications that are problematic – if not 
impossible – to incorporate when ancillary decision support models are constructed. Invariably, there are 
unmodelled elements, not apparent during model formulation, that can significantly affect the adequacy 
of its solutions. These confounding features require the decision-makers to integrate numerous 
uncertainties into their solution process before an ultimate solution can be determined. Faced with such 
incongruencies, it is unlikely that any single solution can simultaneously satisfy all ambiguous system 
requirements without significant compromises. Therefore, any decision support approach must somehow 
address these complicating facets in some way, while simultaneously being flexible enough to condense 
the potential effects within the intrinsic planning incongruities. 

This study has provided an updated computational procedure, a new data structure, and a significant 
solution-approach generalization to what has appeared previously in the literature. This new 
computationally efficient MGA procedure demonstrates how population-based metaheuristics can 
simultaneously construct entire sets of close-to-optimal, maximally different alternatives by exploiting the 
evolutionary characteristics of any population-based solution approach. In this MGA role, the 
simultaneous algorithm efficiently generates the requisite set of disparate alternatives, with each solution 
generated outlining a completely different perspective to the problem. Since population-based methods 
can be applied to a diverse spectrum of problem types, the efficacy of this new simultaneous MGA 
algorithm can be extended to wide range of “real world” applications. These extensions will become the 
topic of future studies. 
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