

DOI: 10.14738/tmlai.65.5184
Publication Date: 23rd September, 2018
URL: http://dx.doi.org/10.14738/tmlai.65.5184

TMLAI TRANSACTIONS ON
MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

Volume 6 No. 5
ISSN 2054-7390

SOCIETY FOR SCIENCE AND EDUCATION
UNITED KINGDOM

An Algorithm for Generating Sets of Maximally Different
Alternatives Using Population-Based Metaheuristic Procedures

1 Julian Scott Yeomans
1 OMIS Area, Schulich School of Business, York University, Toronto, ON, M3J 1P3 Canada;

syeomans@schulich.yorku.ca

ABSTRACT

“Real world” problems typically possess complex performance conditions peppered with inconsistent
performance requirements. This situation occurs because multifaceted problems are often riddled with
incompatible performance objectives and contradictory design requirements which can be difficult – if
not impossible – to specify when the requisite decision models are formulated. Thus, it is often desirable
to generate a set of disparate alternatives that provide diverse approaches to the problem. These
dissimilar options should be close-to-optimal with respect to any specified objective(s), but remain
maximally different from all other solutions in the decision space. The approach for creating maximally
different sets of solutions is referred to as modelling-to-generate-alternatives (MGA). This paper outlines
an MGA algorithmic approach that can simultaneously generate a set of maximally different alternatives
using any population-based metaheuristic.

Keywords: Modelling-to-generate-alternatives, Metaheuristics, Population-based algorithms.

1 Introduction
“Real world” decision-making environments involve complex problems containing design specifications
that are frequently difficult to incorporate into underlying mathematical programming formulations and
are often overwhelmed with numerous unquantifiable components [1]-[5]. Whereas “optimal” solutions
can be calculated for the modelled representations, whether these are truly the best solutions to the real
problems can be questionable, as there are always unmodeled components when mathematical models
are constructed [1][2][6]. Generally, it is more desirable to create a discrete number of dissimilar
alternatives that afford contrasting perspectives to the particular problem [3][7]. All of these options
should be close-to-optimal with respect to any specified objective(s), but should be maximally different
from each other within the decision space. Numerous procedures referred to as modelling-to-generate-
alternatives (MGA) have been created to address this multi-solution approach [6]-[8].

The primary impetus behind MGA methods is to produce a set of alternatives that can be considered good
when measured by the specified objective(s), but which are inherently distinct from one another within
the decision domain. The resulting solution set should deliver alternative perspectives that perform
similarly with respect to all modelled objectives, yet very differently with respect to any unmodelled
aspects [5]. Decision-makers must conduct a subsequent assessment of the set of alternatives to
determine which alternative(s) would most nearly achieve their specific requirements. Consequently,

mailto:Syeomans@ssb.yorku.ca

Julian Scott Yeomans; An Algorithm for Generating Sets of Maximally Different Alternatives Using Population-
Based Metaheuristic Procedures, Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 5
October, (2018); pp: 1-9

URL: http://dx.doi.org/10.14738/tmlai.65.5184 2

MGA methods are classified as decision support procedures rather than as solution determination
processes as assumed for explicit optimization.

Earlier MGA methods have employed direct, iterative approaches for alternative generation by
incrementally re-running their algorithms whenever new solutions need be constructed [6]-[10]. These
iterative methods imitate the seminal MGA approach of Brill et al. [8] where, once the initial mathematical
formulation has been optimized, all supplementary alternatives are produced one-at-a-time.
Consequently, these incremental approaches all require n+1 iterations of their respective algorithms –
initially to optimize the original problem, then to produce each of the subsequent n alternatives [7][11]-
[13].

In this study, it is demonstrated how a set of maximally different solution alternatives can be
simultaneously generated using any population-based metaheuristic algorithm by extending several
earlier MGA approaches [12]-[18]. All of the earlier MGA procedures employed the Firefly Algorithm (FA)
for their solution procedure. The FA is a very specific instance of one population-based metaheuristic
procedure that can be used for solving optimization problems. In this paper, a new algorithm is provided
that has been updated and generalized so that now a simultaneous MGA solution process can be achieved
using any population-based mechanism. This new MGA algorithmic approach advances the earlier
concurrent procedures of Imanirad et al. [13][15]-[18] by permitting the simultaneous generation of the
overall best solution together with n distinct alternatives in a single computational run. Stated explicitly,
to generate the n maximally different solution alternatives, the new MGA algorithm would run exactly the
same number of times that a procedure would need to be run for function optimization alone (i.e. once)
irrespective of the value of n [19]-[23]. Furthermore, a new data structure is created that permits
simultaneous alternatives to be constructed in a very novel, highly computationally efficient way. It is the
implementation of this data structure which facilitates the above-mentioned generalization to solution by
all population-based methods. Consequently, this simultaneous MGA algorithmic approach proves to be
extremely computationally efficient.

2 Modelling to Generate Alternatives
Mathematical programming methods appearing in the optimization literature have focused almost
exclusively upon generating single optimal solutions to single-objective formulations or, equivalently,
producing a set of noninferior solutions for multi-objective problems [2][5][8]. While such methods may
establish solutions to the derived complex mathematical models, whether their outputs actually generate
“best” solutions to the real, underlying problems is somewhat less certain [1][2][6][8]. Within most “real
world” decision circumstances, there are countless system requirements and objectives that will never be
explicitly apparent or included in the problem formulation stage [1][5]. Furthermore, it may not be
possible to explicitly convey all of the subjective requirements as there are frequently numerous
incompatible, design components and adversarial stakeholders involved. Therefore, most subjective
aspects remain unavoidably unmodelled and unquantified in the constructed decision models. This
commonly occurs where final decisions are constructed based not only upon modelled objectives, but
also upon more subjective stakeholder preferences and socio-political-economic goals [7]. Numerous
“real world” illustrations of such incongruent modelling dualities are discussed in [6][8]-[10].

http://dx.doi.org/10.14738/tmlai.65.5184

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 5, Oct 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 3

When unmodelled issues and unquantified objectives exist, non-conventional methods are needed to not
only search the decision region for noninferior sets of solutions, but to also explore the decision region
for alternatives that are obviously sub-optimal for the problem modelled. Specifically, any search for
alternatives to problems suspected or known to contain unmodelled components needs to focus not only
on a non-inferior set of solutions, but necessarily also on an unambiguous exploration of the problem’s
inferior solution space.

To demonstrate the consequences of an unmodelled objective in a decision search, assume that the
quantifiably optimal solution for a single-objective, maximization problem is X* with a corresponding
objective value Z1*. Now suppose that a second, unmodelled, maximization objective Z2 exists that
subjectively incorporates some unquantifiable “politically acceptable” component. Now assume that
some solution, Xa, belonging to the 2-objective noninferior set, exists that represents a potentially best
compromise solution for the decision-maker if both objectives had somehow been simultaneously
evaluated. While Xa could reasonably be considered as the best compromise solution for the real problem,
in the quantified mathematical model it would appear inferior to solution X*, since it must be the case
that Z1a ≤ Z1*. Therefore, when unmodelled components are incorporated into a decision-making
process, mathematically inferior options to the modelled problem could actually be optimal for the real
underlying problem. Consequently, when unmodelled issues and unquantified objectives potentially exist,
alternative solution procedures are needed to not only explore the decision region for noninferior sets of
solutions, but also to concurrently search the decision region for inferior solutions to the problem
modelled. Population-based algorithms permit concurrent searches throughout a decision space and
prove to be particularly proficient solution methods.

The principal drive for MGA is to create a manageably small set of alternatives that are as different from
each other as possible within the solution space, yet are quantifiably good with respect to all modelled
objectives. By achieving this, the resultant set of solution alternatives is able to supply truly different
choices that perform similarly with respect to the known modelled objective(s) yet very differently with
respect to any unmodelled issues. By generating such good-but-different solutions, the decision-makers
are able to examine potentially desirable qualities within the alternatives that might satisfactorily be able
to address the unmodelled objectives to varying degrees of stakeholder acceptability.

In order to motivate the MGA search process, it becomes necessary to apply a more formal mathematical
definition to the goals of MGA [6], [7]. Assume that the optimal solution to an original mathematical
model is X* with corresponding objective value Z* = F(X*). The ensuing difference model can then be
solved to produce an alternative solution, X, that is maximally different from X*:

Maximize ∆ (X, X*) =
i∑ (Xi - Xi*)2 (1)

Subject to: X ∈ D (2)

 | F(X) - Z* | ≤ T (3)

where ∆ represents an appropriate difference function (for clarity, shown as a quadratic difference in
this instance) and T is a specified targeted tolerance limit relative to the original optimal objective value
Z*. T is user-supplied and quantifies what proportion of the inferior region must be explored in the
solution search for acceptable alternatives. This difference function concept can be extended into a
difference measure between any set of alternatives by replacing X* in the objective of the maximal

Julian Scott Yeomans; An Algorithm for Generating Sets of Maximally Different Alternatives Using Population-
Based Metaheuristic Procedures, Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 5
October, (2018); pp: 1-9

URL: http://dx.doi.org/10.14738/tmlai.65.5184 4

difference model and calculating the overall sum (or some other function) of the differences of the
pairwise comparisons between each pair of alternatives – subject to the condition that each alternative is
feasible and falls within the specified tolerance constraint.

The population-based MGA procedure to be introduced is designed to generate a pre-determined small
number of close-to-optimal, but maximally different alternatives, by adjusting the value of T and solving
the corresponding maximal difference problem instance by exploiting the population structure of the
metaheuristic. The survival of solutions depends upon how well the solutions perform with respect to the
problem’s originally modelled objective(s) and simultaneously by how far away they are from all of the
other alternatives generated in the decision space.

3 Population-based Simultaneous MGA Computational Algorithm
In this section, a novel data structure is introduced that permits alternatives to be simultaneously
constructed in a computationally efficient way that also enables an algorithmic generalization to solution
by any population-based procedure. Suppose that it is desired to be able to produce P alternatives that
each possess n decision variables and that the population algorithm is to possess K solutions in total. That
is, each solution is to contain one possible set of P maximally different alternatives. In this representation,
let Yk, k = 1,…, K, represent the kth solution which is made up of one complete set of P different alternatives.
Namely, if Xkp is the pth alternative, p = 1,…, P, of solution k, k = 1,…, K, then Yk can be represented as

Yk = [Xk1, Xk2,…, XkP] . (4)

If Xkjq, q = 1,…, n, is the qth variable in the jth alternative of solution k, then

Xkj = (Xkj1, Xkj2,…, Xkjn) . (5)

Consequently, an entire population, Y, consisting of K different sets of P alternatives can be written in
vectorized form as,

Y’ = [Y1, Y2,…, YK] . (6)

The following population-based MGA method produces a pre-determined number of close-to-optimal,
but maximally different alternatives, by modifying the value of the bound T in the maximal difference
model and using any population-based metaheuristic to solve the corresponding, maximal difference
problem. Each solution within the population contains one potential set of p different alternatives. By
exploiting the co-evolutionary solution structure within the metaheuristic, the algorithm collectively
evolves each solution toward sets of different local optima within the solution space. In this process, each
desired solution alternative undergoes the common search procedure of the metaheuristic. However, the
survival of solutions depends both upon how well the solutions perform with respect to the modelled
objective(s) and by how far away they are from all of the other alternatives generated in the decision
space.

A straightforward process for generating alternatives would be to iteratively solve the maximum
difference model by incrementally updating the target T whenever a new alternative needs to be
produced and then re-running the algorithm. This iterative approach would parallel the original Hop, Skip,
and Jump (HSJ) MGA algorithm of Brill et al. [8] in which, once an initial problem formulation has been
optimized, supplementary alternatives are systematically created one-by-one through an incremental

http://dx.doi.org/10.14738/tmlai.65.5184

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 5, Oct 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 5

adjustment of the target constraint to force the sequential generation of the suboptimal solutions. While
this approach is straightforward, it requires a repeated execution of the optimization algorithm
[7][12][13].

To improve upon the stepwise alternative approach of the HSJ algorithm, a concurrent MGA technique
was subsequently designed based upon the concept of co-evolution Imanirad et al. [13][15][17]. In a co-
evolutionary approach, pre-specified stratified subpopulation ranges within an algorithm’s overall
population were established that collectively evolved the search toward the creation of the specified
number of maximally different alternatives. Each desired solution alternative is represented by each
respective subpopulation and each subpopulation undergoes the common processing operations of the
procedure. The survival of solutions in each subpopulation depends simultaneously upon how well the
solutions perform with respect to the modelled objective(s) and by how far away they are from all of the
other alternatives. Consequently, the evolution of solutions in each subpopulation toward local optima is
directly influenced by those solutions contained in all of the other subpopulations, which forces the
concurrent co-evolution of each subpopulation towards good but maximally distant regions within the
decision space according to the maximal difference model [7].

By employing this co-evolutionary concept, it becomes possible to implement an MGA procedure that
concurrently produces alternatives which possess objective function bounds that are somewhat
analogous to those created by the sequential, iterative HSJ-styled solution generation approach. While
each alternative produced by an HSJ procedure is maximally different only from the overall optimal
solution (together with its bound on the objective value which is at least x% different from the best
objective (i.e. x = 1%, 2%, etc.)), a concurrent procedure is able to generate alternatives that are no more
than x% different from the overall optimal solution but with each one of these solutions being as
maximally different as possible from every other generated alternative that was produced. Co-evolution
is also much more efficient than a sequential HSJ-style approach in that it exploits the inherent population-
based searches to concurrently generate the entire set of maximally different solutions using only a single
population [12][17].

While a concurrent approach can exploit population-based solution approaches, the co-evolution process
can only occur within each of the stratified subpopulations. Consequently, the maximal differences
between solutions in different subpopulations can only be based upon aggregate subpopulation
measures. Conversely, in the following simultaneous MGA algorithm, each solution in the population
contains exactly one entire set of alternatives and the maximal difference is calculated only for that
particular solution (i.e. the specific alternative set contained within that solution in the population).
Hence, by the evolutionary nature of the population-based search procedure, in the subsequent
approach, the maximal difference is simultaneously calculated for the specific set of alternatives
considered within each specific solution – and the need for concurrent subpopulation aggregation
measures is circumvented.

Using the terminology introduced above, the steps in the co-evolutionary population-based MGA
procedure are as follows ([14][19]-[23]:

Preliminary Step. In this initialization step, solve the original optimization problem to determine the
optimal solution, X*. As with prior solution approaches Imanirad et al. [13][15]-[18]) and without loss of
generality, it is entirely possible to forego this step and construct the algorithm to find X* as part of its

Julian Scott Yeomans; An Algorithm for Generating Sets of Maximally Different Alternatives Using Population-
Based Metaheuristic Procedures, Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 5
October, (2018); pp: 1-9

URL: http://dx.doi.org/10.14738/tmlai.65.5184 6

solution processing. However, such a requirement increases the number of computational iterations of
the overall procedure and the initial stages of the processing focus upon finding X* while the other
elements of each population solution remain essentially “computational overhead”. Based upon the
objective value F(X*), establish P target values. P represents the desired number of maximally different
alternatives to be generated within prescribed target deviations from the X*. Note: The value for P has to
have been set a priori by the decision-maker.

Step 1. Create the initial population of size K in which each solution is divided into P equally-sized
partitions. The size of each partition corresponds to the number of variables for the original optimization
problem. Xkp represents the pth alternative, p = 1,…,P, in solution Yk, k = 1,…,K.

Step 2. In each of the K solutions, evaluate each Xkp, p = 1,…,P, with respect to the modelled objective.
Alternatives meeting their target constraint and all other problem constraints are designated as feasible,
while all other alternatives are designated as infeasible. A solution can only be designated as feasible if all
of the alternatives contained within it are feasible.

Step 3. Apply an appropriate elitism operator to each solution to rank order the best individuals in the
population. The best solution is the feasible solution containing the most distant set of alternatives in the
decision space (the distance measure is defined in Step 5). Note: Because the best solution to date is
always retained in the population throughout each iteration, at least one solution will always be feasible.
A feasible solution for the first step can always consists of P repetitions of X*.

Step 4. Stop the algorithm if the termination criteria (such as maximum number of iterations or some
measure of solution convergence) are met. Otherwise, proceed to Step 5.

Step 5. For each solution Yk, k = 1,…, K, calculate Dk, a distance measure between all of the alternatives
contained within the solution.

As an illustrative example for determining a distance measure, calculate

Dk = ∆ (Xka, Xkb) =
1a toP=∑ 1b toP=∑ 1...q n=∑ (Xkaq – Xkbq)2. (7)

This represents the total quadratic distance between all of the alternatives contained within solution k.
Alternatively, the distance measure could be calculated by some other appropriately defined function

Step 6. Rank the solutions according to the distance measure Dk objective – appropriately adjusted to
incorporate any constraint violation penalties for infeasible solutions. The goal of maximal difference is to
force alternatives to be as far apart as possible in the decision space from the alternatives of each of the
partitions within each solution. This step orders the specific solutions by those solutions which contain
the set of alternatives which are most distant from each other.

Step 7. Apply appropriate metaheuristic “change operations” to the each of the solutions within the
population and return to Step 2.

It should be apparent that the stratification approach outlined in this algorithm can be easily modified to
accommodate any population-based solution procedure.

http://dx.doi.org/10.14738/tmlai.65.5184

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 5, Oct 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 7

4 Conclusion
“Real world” decision-making situations inherently involve complicated performance components that
are further confounded by incongruent requirements and unquantifiable performance objectives. These
decision environments frequently contain incompatible design specifications that are problematic – if not
impossible – to incorporate when ancillary decision support models are constructed. Invariably, there are
unmodelled elements, not apparent during model formulation, that can significantly affect the adequacy
of its solutions. These confounding features require the decision-makers to integrate numerous
uncertainties into their solution process before an ultimate solution can be determined. Faced with such
incongruencies, it is unlikely that any single solution can simultaneously satisfy all ambiguous system
requirements without significant compromises. Therefore, any decision support approach must somehow
address these complicating facets in some way, while simultaneously being flexible enough to condense
the potential effects within the intrinsic planning incongruities.

This study has provided an updated computational procedure, a new data structure, and a significant
solution-approach generalization to what has appeared previously in the literature. This new
computationally efficient MGA procedure demonstrates how population-based metaheuristics can
simultaneously construct entire sets of close-to-optimal, maximally different alternatives by exploiting the
evolutionary characteristics of any population-based solution approach. In this MGA role, the
simultaneous algorithm efficiently generates the requisite set of disparate alternatives, with each solution
generated outlining a completely different perspective to the problem. Since population-based methods
can be applied to a diverse spectrum of problem types, the efficacy of this new simultaneous MGA
algorithm can be extended to wide range of “real world” applications. These extensions will become the
topic of future studies.

[1]. REFERENCES

[1] Brugnach, M., A. Tagg, F. Keil, and W.J. De Lange, Uncertainty matters: computer models at the science-
policy interface. Water Resources Management, 2007. 21: p. 1075-1090.

[2] Janssen, J.A.E.B., M.S. Krol, R.M.J. Schielen, and A.Y Hoekstra, The effect of modelling quantified expert
knowledge and uncertainty information on model based decision making. Environmental Science and
Policy, 2010. 13(3): p. 229-238.

[3] Matthies, M., C. Giupponi, and B. Ostendorf, Environmental decision support systems: Current issues,
methods and tools. Environmental Modelling and Software, 2007. 22(2): p. 123-127.

[4] Mowrer, H.T., Uncertainty in natural resource decision support systems: Sources, interpretation, and
importance. Computers and Electronics in Agriculture, 2000. 27(1-3): p. 139-154.

[5] Walker, W.E., P. Harremoes, J. Rotmans, J.P. Van der Sluis, M.B.A. Van Asselt, P. Janssen, and M.P. Krayer
von Krauss, Defining uncertainty – a conceptual basis for uncertainty management in model-based
decision support. Integrated Assessment, 2003. 4(1): p. 5-17.

[6] Loughlin, D.H., S.R. Ranjithan, E.D. Brill, and J.W. Baugh, Genetic algorithm approaches for addressing
unmodelled objectives in optimization problems. Engineering Optimization, 2001. 33(5): p. 549-569.

Julian Scott Yeomans; An Algorithm for Generating Sets of Maximally Different Alternatives Using Population-
Based Metaheuristic Procedures, Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 5
October, (2018); pp: 1-9

URL: http://dx.doi.org/10.14738/tmlai.65.5184 8

[7] Yeomans, J.S., and Y Gunalay, Simulation-Optimization Techniques for Modelling to Generate Alternatives
in Waste Management Planning. Journal of Applied Operational Research, 2011. 3(1): p. 23-35.

[8] Brill, E.D., S.Y. Chang, and L.D Hopkins, Modelling to generate alternatives: the HSJ approach and an
illustration using a problem in land use planning. Management Science. 1982. 28(3): p. 221-235.

[9] Baugh, J.W., S.C. Caldwell, and E.D Brill, A Mathematical Programming Approach for Generating
Alternatives in Discrete Structural Optimization. Engineering Optimization. 1997, 28(1): p. 1-31.

[10] Zechman, E.M., and S.R. Ranjithan, An Evolutionary Algorithm to Generate Alternatives (EAGA) for
Engineering Optimization Problems. Engineering Optimization. 2004, 36(5): p. 539-553.

[11] Gunalay, Y., J.S. Yeomans, and G.H. Huang, Modelling to generate alternative policies in highly uncertain
environments: An application to municipal solid waste management planning. Journal of Environmental
Informatics, 2012. 19(2): p. 58-69.

[12] Imanirad, R., and J.S. Yeomans, Modelling to Generate Alternatives Using Biologically Inspired Algorithms.
in Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, X.S. Yang, Editor 2013.
Amsterdam: Elsevier (Netherlands). p. 313-333.

[13] Imanirad, R., X.S. Yang, and J.S. Yeomans, A Computationally Efficient, Biologically-Inspired Modelling-to-
Generate-Alternatives Method. Journal on Computing. 2012, 2(2): p. 43-47.

[14] Yeomans, J.S., An Efficient Computational Procedure for Simultaneously Generating Alternatives to an
Optimal Solution Using the Firefly Algorithm, in Nature-Inspired Algorithms and Applied Optimization,
Yang, X.S. Editor 2018. Heidelberg (Springer), Germany. p. 261-273.

[15] Imanirad, R., X.S. Yang, and J.S. Yeomans, A Co-evolutionary, Nature-Inspired Algorithm for the Concurrent
Generation of Alternatives. Journal on Computing. 2012, 2(3): p. 101-106.

[16] Imanirad, R., X.S. Yang, and J.S. Yeomans, Modelling-to-Generate-Alternatives Via the Firefly Algorithm.
Journal of Applied Operational Research. 2013. 5(1): p. 14-21.

[17] Imanirad, R., X.S. Yang, and J.S. Yeomans, A Concurrent Modelling to Generate Alternatives Approach
Using the Firefly Algorithm. International Journal of Decision Support System Technology. 2013, 5(2): p.
33-45.

[18] Imanirad, R., X.S. Yang, and J.S. Yeomans, A Biologically-Inspired Metaheuristic Procedure for Modelling-
to-Generate-Alternatives. International Journal of Engineering Research and Applications. 2013, 3(2): p.
1677-1686.

[19] Yeomans, J.S., Simultaneous Computing of Sets of Maximally Different Alternatives to Optimal Solutions.
International Journal of Engineering Research and Applications, 2017. 7(9): p. 21-28.

[20] Yeomans, J.S., An Optimization Algorithm that Simultaneously Calculates Maximally Different
Alternatives. International Journal of Computational Engineering Research, 2017. 7(10): p. 45-50.

http://dx.doi.org/10.14738/tmlai.65.5184

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 5, Oct 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 9

[21] Yeomans, J.S., Computationally Testing the Efficacy of a Modelling-to-Generate-Alternatives Procedure for
Simultaneously Creating Solutions. Journal of Computer Engineering, 2018. 20(1): p. 38-45.

[22] Yeomans, J.S., A Computational Algorithm for Creating Alternatives to Optimal Solutions. Transactions on
Machine Learning and Artificial Intelligence, 2017. 5(5): p. 58-68

[23] Yeomans, J.S., A Simultaneous Modelling-to-Generate-Alternatives Procedure Employing the Firefly
Algorithm, in Technological Innovations in Knowledge Management and Decision Support, Dey, N. Editor,
2019. Hershey, Pennsylvania (IGI Global), USA. p. 19-33

	An Algorithm for Generating Sets of Maximally Different Alternatives Using Population-Based Metaheuristic Procedures
	ABSTRACT
	1 Introduction
	2 Modelling to Generate Alternatives
	3 Population-based Simultaneous MGA Computational Algorithm
	4 Conclusion
	[1]. References

