

DOI: 10.14738/tmlai.62.4428
Publication Date: 27th April, 2018
URL: http://dx.doi.org/10.14738/tmlai.62.4428

TRANSACTIONS ON
MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

Volume 6 No. 2
ISSN 2054-7390

SOCIETY FOR SCIENCE AND EDUCATION
UNITED KINGDOM

A Tool to Create Assurance Case through Models
1Hiroyuki Utsunomiya, 2Nobuhide Kobayashi, 1Shuji Morisaki, 1Shuichiro Yamamoto

1Nagoya University Graduate School of Information Science, Nagoya, Japan.;
2DENSO CREATE INC., Nagoya, Japan.;

utsunomiya.hiroyuki@k.mbox.nagoya-u.ac.jp; nobuhide@dcinc.co.jp;
morisaki@i.nagoya-u.ac.jp; yamamotosui@icts.nagoya-u.ac.jp

ABSTRACT

In this paper, an assurance case development tool is proposed to derive the argument decomposition
structure from generic model definitions. The method solves O-DA issues for assuring business,
application, and technology architecture of TOGAF. An example case study using the proposed tool is also
shown for the system configuration model of the tool itself.

Discussions based on the case study showed the effectiveness and appropriateness of the proposed
methods.

Future work includes the formalization of assurance case derivation process from ArchiMate, UML, and
SysML models.

Keywords: dependability, architecture models, Enterprise Architecture, experimental tool evaluation, O-
DA

1 Introduction
The Open Group Real Time & Embedded Systems Forum focuses on standards for high assurance, secure
dependable and complete systems. The Open Group announced the publication of the Dependability
through Assuredness™ Standard(O-DA) published by The Open Group Real-Time & Embedded Systems
Forum[1]. At the heart of this O-DA(Open Dependability through Assuredness) standard, there is the
concept of modeling dependencies, building assurance cases, and achieving agreement on accountability
in the event of actual or potential failures. Dependability cases are necessary to assure dependable
systems[2]. The DEOS process was proposed to manage dependability of complex systems by using
dependability cases[3]-[5]. The dependability concept is able to define by quality properties[6].

Complex systems, especially where the boundaries of operation or ownership are unclear, are often
subject to change: objectives change, new demands are made, regulations change, business partners are
added, etc. So when the failure of the system can have a significant impact on lives, income or reputation,
it is critical that a process is in place to identify these changes and to update the architecture by using the
assurance cases and the agreements on accountability. It is also critical that a process is in place to detect
anomalies or failures, to understand the causes, and to prevent them from impacting the system in the
future.

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 2, Apr i l 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 47

The O-DA standard outlines the criteria for mitigating risk associated with dependability of complex
interoperable systems. It also outlines individual accountability. O-DA will benefit organizations relying on
complex systems to avoid or mitigate the impact of failure of those systems. O-DA includes the DEOS
process mentioned before. The Change Accommodation Cycle and the Failure Response Cycle that
together provide a framework for these critical processes. O-DA brings together and builds on The Open
Group vision of Boundaryless Information Flow. These concepts include O-DM(Open Dependency
Modeling) and Risk Taxonomy of The Open Group Security Forum, and Enterprise Architecture(EA) models
of The Open Group ArchiMate® Forum[7],[8]. However, the relationship between O-DA and ArchiMate
concepts has not yet been clear. ArchiMate models include strategy, business, application, technology,
and physical architecture as well as motivation of architecture. UML[27] only focusses to model software
systems. SysML[28] extends UML by adding requirements and parametric diagrams for modeling systems
engineering artifacts. Both UML and SysML are not able to model EA.

In this paper, an assurance case generation tool is proposed to argue the assuredness for these three
kinds of architectures models. Section 2 describes related work on argument pattern approaches for
assurance cases. Section 3 describes an assurance case creation tool which is proposed to generate the
argument decomposition structure from various architecture models. In section 4, an example case study
using the tool is presented. Discussions on the effectiveness of the tool are shown in section 5. Our
conclusions are presented in section 6.

2 Related work
The safety case, the assurance case, and the dependability case are currently the focus of considerable
attention for the purpose of providing assurance and confidence that systems are safe. Methods have
thus been proposed for representing these using Goal Structuring Notation(GSN)[9]-[13]. GSN patterns
were originally proposed by Kelly and McDermid[11]. In the absence of any clearly organized guidelines
concerning the approach to be taken in decomposing claims using strategies and the decomposition
sequence, engineers have often not known how to develop their arguments. It is against this backdrop
that the aforementioned approaches to argument decomposition patterns —architecture, functional,
attribute, infinite set, complete(set of risks and requirements), monotonic, and concretion—were
identified by Bloomfield and Bishop[14]. When applying the architecture decomposition pattern, claims
of the system are also satisfied for each constituent part of the system based on system architecture.
Despotou and Kelly[15] proposed a modular approach to improving clarity of safety case arguments.
Hauge and Stolen[16] described a pattern based safety case approach for the Nuclear Power control
domain. Wardzinski[17] proposed safety assurance strategies for the autonomous domain. An
experimental result of argument patterns was reported by Yamamoto and Matsuno[18]. Argument
pattern catalogue was proposed based on the format of design patterns by Alexander, Kelly, Kurd and
McDermid[19]. In their paper, Alexander and others showed a safe argument pattern based on failure
mode analysis. Graydon and Kelly[20] observed that argument patterns capture a way to argue about
interference management. Ruiz, Habli and Espinoza[21] proposed an assurance case reuse system using
a case repository.

Hawkins, Habli, Kolovos, Paige and Kelly proposed a Model-Based Assurance Case development approach
by weaving reference information models and GSN argument patterns[22]. They used a script language
to define precise weaving procedures. These approaches assume specific adaptation mechanisms to
generate assurance cases for reusing GSN patterns.

Hiroyuki Utsunomiya, Nobuhide Kobayashi, Shuji Morisaki, Shuichiro Yamamoto; A Tool to Create Assurance Case
through Models. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 2 April (2018);
pp: 46-55

URL:http://dx.doi.org/10.14738/tmlai.62.4428 48

Although Yamamoto and others proposed the method to create assurance cases based on ArchiMate
models[23],[24], the tool to automate the method was not mentioned. This paper proposed a tool based
on the method.

3 Assurance case creation tool

3.1 Overview
The configuration of the tool named as UC2CT(Unified Context to Claim Tool) is shown in Fig.1. The tool
reads architecture model, quality property, and risk measure definitions written in XML. UC2CT can
decompose claims by using these three types of definitions. The generated assurance cases are
represented in the SACM(Structured Assurance Case Metamodel) v1.0 XMI schema definition.

Figure.1 Configuration of the assurance case tool.

The generated XMI information is used to develop graphical structures of the assurance cases by using
assurance case editors which support the XMI import facility. The tool was implemented by using Excel.
These three xml definitions are used as input to decompose a top goal claim in table format. UC2CT is
developed by extending the Microsoft Excel. The example screen is shown in Fig.2.

Figure.2 Display example of the assurance case tool.

Work screen

External
store space

Model
information

Dialogue
manager

GSN
generator

Model
analyzer

GSN
information

Data
manager

By Architecture
By Quality
By Risk

Decompose

Update Risk

Delete

Risk Def.

XMI

Tool

New
Open

Save
Save as

file home

project

http://dx.doi.org/10.14738/tmlai.62.4428

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 2, Apr i l 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 49

The extended new menu commands are, “New,” “Open,” “Decompose,” “Risk Definition,” and “Tool.”
“Decompose” menu consists of “By Architecture,” “By Quality,” “By Risk” sub menus. “Risk Definition”
menu consists of “Update” and “Delete” risk sub menus. Tool menu command provides XMI export
function to generate the assurance case information developed on UC2CT. As shown in the table, there
are weight and total columns in the tool table. These are attributes of nodes and relationships of
assurance cases proposed in [25]. The attributes are used to reduce numbers of assurance case nodes and
conflicts among quality claims, such as safety and security.

3.2 Model definitions
In general, every model is defined by using nodes and their relationships. Therefor models can be defined
by the following XML template.

-<modelDefinition>

-<model name=“ModelName”>

-<types>

-<nodes>Node Name Definition Part </nodes>

-<relations>Relation Name Definition Part </relations>

</types>

-<instances>

-<nodes>Node instance definition Part </nodes>

-<relations>Relation instance definition Part</relations>

</instances>

</model>

</modelDefinition>

Node Name Definition Part includes a list of the following statement.

<node> Name Of Node </node>

Relation Name Definition Part includes a list of the following statement.

<relation> Name Of Relation </relation>

Node instance definition Part includes a list of the following statement.

<node id=“Id” type=“NameOfNode”>

NodeInstanceName

</node>

Relation instance definition Part includes a list of the following statement.

<relation id=“Id” type=“NameOfRelation” target=“Id” source=“Id” />

Hiroyuki Utsunomiya, Nobuhide Kobayashi, Shuji Morisaki, Shuichiro Yamamoto; A Tool to Create Assurance Case
through Models. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 2 April (2018);
pp: 46-55

URL:http://dx.doi.org/10.14738/tmlai.62.4428 50

The quality properties and risk measures are also defined by using XML in the same way. The XML notation
can universally be applied to describe any models that has nodes and relationships among nodes.

3.3 Pattern of created assurance case
The tool is based on the structure of assurance case proposed in [22] as shown in the following table.

Table 1. Assurance case pattern.

Hierarchy Description

Root goal The root goal states that the model shall satisfy dependability principles

Node and relationships Root goal is decomposed by nodes and relationship of the model

Types of nodes and relationships
Second level goals are decomposed by the types of nodes and relationships
of the model

Instances of nodes and relationships
Third level goals are decomposed by instances of nodes and relationships
of the model

Risk mitigation for instance risks Fourth level goals are decomposed by risks for the corresponding instances
Evidence Evidence supports to mitigate all the risks

The first level sub-goal claims state that concept elements and relationships of the model satisfy
dependability principles. The second level sub-goal claim states that category of elements and their
relationships among the model satisfy dependability principles. The third level goals are decomposed by
instances of concepts and relationships of the models. The fourth level goals are decomposed by risks for
the corresponding instances and are supported by the evidence to mitigate risks. Therefore, the fifth level
of the assurance case consists of evidences for the fourth level goals.

4 Case Study
The example study was conducted to evaluate the effectiveness of the proposed assurance case creation
tool for assuring the dependability of the tool itself.

4.1 Target system
The target system of the case study is the assurance case creation tool proposed in this paper. The model
of the tool was defined described below in the form of the model definition in the previous section. In
Fig.1, there are module and data. Therefore, node types in the definition are Module and Data. Module-
Module and Module-Data are two types of relationships.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<modelDefinition>

<model name="assurance case creation tool">

<types>

<nodes>

<node>Module</node>

<node>Data</node>

http://dx.doi.org/10.14738/tmlai.62.4428

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 2, Apr i l 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 51

</nodes>

<relations>

<relation>Module_Module</relation>

<relation>Module_Data</relation>

</relations>

</types>

<instances>

<nodes>

<node id="in-001" type="Module">Model Analyzer</node>

<node id="in-002" type="Module">Dialogue manager</node>

<node id="in-003" type="Module">GSN generator</node>

<node id="in-004" type="Module">Data manager</node>

<node id="in-005" type="Module">Work screen</node>

<node id="in-006" type="Data">Model information</node>

<node id="in-007" type="Data">External store space</node>

<node id="in-008" type="Data">GSN information</node>

</nodes>

<relations>

<relation id="ir-011" type="Module_Module" source="in-001" target="in-004" />

<relation id="ir-012" type="Module_Module" source="in-001" target="in-005" />

<relation id="ir-013" type="Module_Module" source="in-002" target="in-004" />

<relation id="ir-014" type="Module_Module" source="in-004" target="in-005" />

<relation id="ir-015" type="Module_Module" source="in-004" target="in-003" />

<relation id="ir-016" type="Module_Module" source="in-005" target="in-002" />

<relation id="ir-017" type="Module_Data" source="in-006" target="in-001" />

<relation id="ir-018" type="Module_Data" source="in-007" target="in-004" />

<relation id="ir-019" type="Module_Data" source="in-004" target="in-007" />

<relation id="ir-020" type="Module_Data" source="in-003" target="in-008" />

</relations>

</instances>

</model>

Hiroyuki Utsunomiya, Nobuhide Kobayashi, Shuji Morisaki, Shuichiro Yamamoto; A Tool to Create Assurance Case
through Models. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 2 April (2018);
pp: 46-55

URL:http://dx.doi.org/10.14738/tmlai.62.4428 52

</modelDefinition>

The dependability properties consist of availability, reliability, safety, integrity, consistency, and
maintainability are also defined in XML. In addition, risks are defined for each nodes and relations in XML.

The XML model definition is loaded by the tool to create the assurance case based on the model. Then
the following XMI information was generated to create the assurance case.

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<ARM:Argumentation content="" description="" id="assurance case creation tool" xmi:id="38888871"
xmlns:ARM=http://schema.omg.org/SACM/1.0/Argumentation xmlns:xmi=http://www.omg.org/XMI
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance xsi:version="2.0">

<argumentElement content="assurance case creation tool satisfies dependability requirement."
description="" id="G0" xmi:id="9a9aeeb6-1eb2-4b2f-a07b-1b3797cf389b" toBeSupported=""
assumed="" xsi:type="ARM:Claim" />

…………… omitted for the limitation of space ……………

</ARM:Argumentation>

Fig. 3 shows the top level view of the created assurance case with a GSN editor by importing the above
xmi file.

Figure.3 Example of created assurance case.

The created assurance case consists of 218 claim nodes, 53 strategy nodes, 47 context nodes and 165
evidence. The assurance case for the tool was also developed by human with the same method proposed
in [22]. The both human maid and tool made assurance cases have the same nodes.

http://dx.doi.org/10.14738/tmlai.62.4428

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 2, Apr i l 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 53

4.2 Comparison of development time
The assurance case development time for using the tool contains the model definition time and the tool
operation time. Table.2 shows the comparison for developing the assurance case for the case study and
the model checker. The time to create the assurance case for the case study was 275 min. In contrast, by
using the tool it was only 47 min. Except for the model definition, it was 19 min. to create the assurance
case. Node development productivity was 5.84 sec. per node, because 483 nodes are developed in 47 min.

Model checker is a tool to confirm the validity of software model shown in [26]. It took 110 min. to create
an assurance case that confirms the completeness of error handling of the tool. However, with the tool,
it was possible to create an assurance case in only 13 minutes, 7.72 sec. per node.

The comparison shoed that the assurance case tool can improve the development time to create
assurance case.

Table 2. Comparison of the assurance case development time.

method Work time of Case Study Work time of Model Checker

Without Tool 275 min. 110 min.

XML definition 28 min. 8 min.
Tool 19 min. 5 min.

5 Discussion

5.1 Effectiveness
The case study on the assurance case creation tool was executed to evaluate the effectiveness of the tool
proposed. The result showed the derivation from the model of the tool in XML to assurance case is easy
and traceable. This showed the effectiveness of the creation method. Although the creation was only
described for the tool, it is clear the same results can be derived for other models.

The XML model template is designed so that designers can describe models in the unified manner.

Moreover, if the XML model definitions was generated by modelling tools, the model definition time can
be eliminated. For the case study, approximately 93% of the assurance case development time was
reduced. This shows the tool has the capability to improve the assurance case productivity largely.

The table size of UC2CT can be extended to the limit of Excel. This shows UC2CT can be used to develop
large scale assurance cases. As UC2CT exhaustively decompose assurance cases by architectures and
quality properties, it may necessary to reduce the number of nodes. In this case, quantitative attributes
are available to reduce unimportant claims by assigning low numbers.

5.2 Applicability
The applicability of the assurance creation tool to ArchiMate is clear by the above discussions. The BA, AA,
and TA described in ArchiMate models can be easily defined in the form of XML template proposed by
this paper. Any architecture models in ArchiMate contain nodes and relationships among nodes.
Therefore, the decomposition hierarchy defined by Table 1 can be applied to any models consists of nodes
and relationships.

Hiroyuki Utsunomiya, Nobuhide Kobayashi, Shuji Morisaki, Shuichiro Yamamoto; A Tool to Create Assurance Case
through Models. Transactions on Machine Learning and Artificial Intelligence, Volume 6 No 2 April (2018);
pp: 46-55

URL:http://dx.doi.org/10.14738/tmlai.62.4428 54

In addition, every graph G can be represented by nodes and relationships among nodes. Nodes and their
relationships may have categories. It is necessary to validate every instance of nodes and relationships
according to the sort of categories, if we validate the G. Therefore, the proposed approach can be
applicable for any models to assure the dependability properties.

5.3 Limitation
This paper only examines the effectiveness of the proposed method for two example architecture. More
evaluations are necessary to generalize the effectiveness of the proposed tool and the method.

ACKNOWLEDGMENT

This work has been conducted as a part of "Research Initiative on Advanced Software Engineering in 2015"
supported by Software Reliability Enhancement Center(SEC), Information Technology Promotion Agency
Japan(IPA).

REFERENCES

[1] Real-Time and Embedded Systems, “Dependability through Assuredness™ (O-DA) Framework,” Open
Group Standard, 2013.

[2] D. Jackson, "Software for dependable systems– sufficient evidence?," NATIONAL RESEARCH COUNCIL,
2008.

[3] DEOS project, http://www.crest-os.jst.go.jp, 2013.

[4] DEOS project, JST White Paper DEOS-FY2011-WP-03J, www.dependable-
os.net/ja/topics/file/White_Paper_V3.0J.pdf , 2011.

[5] M. Tokoro, eds., "Open Systems Dependability, Dependability Engineering for Ever-Changing Systems,"
CRC Press, 2012.

[6] Avizienis, Laprie, J., Randell, B., Landwehr, C., "Basic concepts and taxonomy of dependable and secure
computing," IEEE Transactions on Dependable and Secure Computing, vol.1. No.1, pp.11-33, 2004.

[7] Josely, A., "TOGAF® Version 9.1 A Pocket Guide," 2011.

[8] Josely, "ArchiMate®3.0, A Pocket Guide," The Open Group, Van Haren8 Publishing, 2016.

[9] T. Kelly, "A Six-Step Method for the Development of Goal Structures," York Software Engineering, 1997.

[10] T. Kelly, J. McDermid, "Safety Case Construction and Reuse using Patterns," University of York, 1997.

[11] T. Kelly, "Arguing Safety, a Systematic Approach to Managing Safety Cases," PhD Thesis, Department of
Computer Science, University of York, 1998.

http://dx.doi.org/10.14738/tmlai.62.4428

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 6 , Issue 2, Apr i l 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 55

[12] J. McDermid, "Software safety: where's the evidence?, " in SCS '01: Proceedings of the Sixth Australian
workshop on Safety critical systems and software, pp. 1-6, Darlinghurst, Australia, Australian Computer
Society, Inc., 2001.

[13] T. Kelly, and R. Weaver, "The Goal Structuring Notation – A Safety Argument Notation," Proceedings of
the Dependable Systems and Networks 2004 Workshop on Assurance Cases, 2004.

[14] R. Bloomfield, and P. Bishop, "Safety and Assurance Cases: Past, Present and Possible Future," Safety
Critical Systems Symposium, Bristol, UK, 2010.

[15] G. Despotou, and T. Kelly, "Extending the Concept of Safety Cases to Address Dependability," in
proceedings of the 22nd International System Safety Conference (ISSC), Providence, RI USA, 2004.

[16] Hauge, and K. Stolen, "A Pattern-Based Method for Safe Control Systems Exemplified within Nuclear
Power Production," SAFECOMP 2012, LNCS 7612, pp.13-24, 2012.

[17] Wardzinski, "Safety Assurance Strategies for Autonomous Vehicles, "SAFECOMP 2008, LNCS 5219, pp.277-
290, 2008.

[18] S. Yamamoto, and Y. Matsuno, "An evaluation of argument patterns to reduce pitfalls of applying
Assurance Case," Assure2013.

[19] R. Alexander, T. Kelly, Z. Kurd, and J. McDermid, "Safety Cases for Advanced Control Software: Safety Case
Patterns," Technical report, University of York, 2007.

[20] P. Graydon, and T. Kelly, "Assessing Software Interference Management When Modifying Safety-Related
Software," in Proceedings of the Next Generation of System Assurance Approaches for Safety-Critical
Systems (SASSUR) Workshop, SAFECOMP 2012, Springer, 2012.

[21] Ruiz, I. Habli, and H. Espinoza, "Towards a Case-Based Reasoning Approach for Safety Assurance Reuse,"
SAFECOMP 2012 Workshops, LNCS 7613, pp. 22–35, 2012.

[22] R. Hawkins, I. Habli, I., D. Kolovos, R. Paige, and T. Kelly, "Weaving an Assurance Case from Design: A
Model-Based Approach," HASE15, pp.110-117, 2015.

[23] S. Yamamoto, "An approach to assure Dependability through ArchiMate," SAFECOMP 2015 Workshops,
LNCS 9338, PP.50-61, Assure 2015, DOI: 10.1007/978-3-319-24249-1_5.

[24] Shuichiro Yamamoto and Nobuhide Kobayashi, Mobile Security Assurance through ArchiMate, Vol. 4, No.
3 of IT Convergence Practice, pp.1-8, (INPRA), 2017, http://inpra.yolasite.com/vol4no3.php

[25] Shuichiro Yamamoto, Assuring Security through Attribute GSN, ICITCS 2015, 5th International Conference
on IT Convergence and Security (ICITCS), pp.1-5, 2015

[26] Nobuhide Kobayashi, Assurance case development method using SPRME on software review, ER2016,
2016.

[27] OMG, UML, http://www.uml.org/

[28] OMG, SysML, http://www.omgsysml.org/

	A Tool to Create Assurance Case through Models
	ABSTRACT
	1 Introduction
	2 Related work
	3 Assurance case creation tool
	3.1 Overview
	3.2 Model definitions
	3.3 Pattern of created assurance case

	4 Case Study
	4.1 Target system
	4.2 Comparison of development time

	5 Discussion
	5.1 Effectiveness
	5.2 Applicability
	5.3 Limitation

	Acknowledgment
	References

