

Neural Networks Trained by Randomized Algorithms

Qin Qin1, Qing-Guo Wang2, Shuzhi Sam Ge3 and Chao Yu4

Department of Electrical and Computer Engineering, National University of Singapore,
Singapore, 117576.

 g0800434@nus.edu.sg1, elewqg@nus.edu.sg2, samge@nus.edu.sg3, yuchao@nus.edu.sg4

ABSTRACT

In this paper, a new model framework is proposed where a group of neural networks are
trained with randomized algorithms. By incorporating randomization of random forests into a
training algorithm of a neural network, the repeated running of such a revised training
algorithm yields multiple independent neural networks. This group of multiple models jointly
may outperform individual models. Simulation studies are conducted on various examples
including practical ones such as stock markets and show that the proposed model group overall
performs better than single neural network and a random forest. When there is significant
noise in the data set, the performance of the former drops relatively less than the latter. In
particular, the former produces much lower deviation of the performance and higher mean
performance compared with the latter. Therefore, the proposed method has strong ability to
classify the noisy data and perform robustly.

Keywords: Neural networks, Random forests, Classification, Complex systems, modeling.

1. INTRODUCTION

Neural network [1, 2] is well known in the area of machine learning and used in a wide
range of applications for modeling complex systems. It was used as a basic tool to model the
activities of the human brain, and learning mechanisms were designed to acquire knowledge.
The process of learning for a neural network consists of adjusting the weights of its nodes to
minimize a chosen cost functional [3, 4]. Since the nature of the neural network of biology is
nonlinear, the neural network is a technique that can be used to handle nonlinear problems. In
applications, the neural network is often utilized to recognize the patterns hidden in the input
data and output data by exploring the complicated relationships between them. In [5], Sneak
Circuit data were modeled with a neural network on back propagation algorithm with the
prediction accuracy rate of up to 60%, which is high in the field of Sneak Circuit prediction. The
neural network was combined with Bayesian algorithm in [6] to predict the skewed data. A

DOI: 10.14738/tmlai.21.39
Publication Date:10th February 2014
URL: http://dx.doi.org/10.14738/tmlai.21.39

mailto:g0800434@nus.edu.sg
mailto:elewqg@nus.edu.sg
mailto:samge@nus.edu.sg
mailto:yuchao@nus.edu.sg

Qin Qin, Qing-Guo Wang, Shuzhi Sam Ge and Chao Yu; Neural Networks Trained by Randomized Algorithms, Transactions on Machine
Learning and Artificial Intelligence, Volume 2 No 1 (2014); pp 01-17

novel neural network was proposed in [7] with multiple prior knowledge, where its structure
consists of three layers with hybrid feed forward modes and it is trained by sequential
quadratic programming with experimental results in the industrial processes. In [8], the optimal
selection was made from sigmoid, radial basis and polynomial functions. An ensemble
algorithm was presented in [9] for neural networks for the prediction of wind power, which
shows that the prediction accuracy is enhanced compared with the one produced by single
neural network. The k-mean algorithm was incorporated into neural networks to form an
ensemble framework in dealing with the classification problem on digital mammograms [10],
which shows improved accuracy rate compared with existing framework. The random neural
network proposed by Gelenbe [11] has an interconnected network of neurons which exchanges
spiking signals and involves complicated feedback loops.

A decision tree [12, 13] is a very different model from a neural network. Its model structure
mimics a human decision making process, but not a human brain. Its learning process is also
different and carried out in stages by separating a data set into branch-like segments with
splitting rules. In a tree, the original node contains the entire data. The terminal nodes are
called the leaves, and used for predictions. A random forest [14, 15] is a group of multiple
decision trees. These trees in a forest are obtained independently through randomized splitting
rules. Each tree grows with a random vector which is sampled independently from a
distribution. The sampling for all the trees in the random forest is performed under the same
distribution. When the size of the random forest increases, the generalization error of the
random forest can converge to a limit, which makes the random forest predictions robust to
noise. It is shown [16] that a random forest is able to prevent over-fitting. Random forests have
found applications in stock markets [17], where both technical indicators and financial news are
used in the model and a higher return rate is obtained than the buy-and-hold strategy. In [18],
the direction of the Indian stock market index was predicted using random forest, neural
network and support vector machine. Random forests also have many applications in the field
of classification problem. Yi et al. [19] use the random forest to classify the stellar spectral data
and the experiment results show the random forest can have better classification efficiency and
produce lower root mean square errors compared with neural network. In [20], random forest
is used to classify the high-dimensional data that reflects patient response to drugs, a
comparison experiment is conducted, and the results show that random forest has a stronger
power in classifying such high-dimension data. It is shown [21] that better accuracy rates can be
obtained by random forest in locating the desired region in segmenting an image.

It is noted that when a neural network model is employed as a single model, it may lack
robustness, while a random forest usually adopts the majority rule from its various decision
trees, which may enhance robustness but have poor predictions from individual trees, causing
performance limitations for the entire forest. It would be desirable to combine the strengths of
both techniques, that is, a group of models with the individual models similar to a neural

URL: http://dx.doi.org/10.14738/tmlai.21.39 2

http://dx.doi.org/10.14738/tmlai.21.39

T R A N S A C T I O N S O N M A C H I N E L E A R N I N G A N D A R T I F I C I A L I N T E L L I G E N C E V O L U M E 2 , I S S U E 1 , (2 1 0 4)

network with good prediction expectation and its group similar to a random forest with
prediction robustness, or reduction of variance of prediction errors.

In the view of the above observations, this paper aims to develop a group of neural
networks by incorporating randomization during their learning process so as to outperform a
neural network and a random forest. Our idea of randomization was motivated by the essence
of random forests. However, when attempting to apply the idea of random forests to neural
networks, one realizes that two models’ structures and their learning techniques are extremely
different: the former is actually locally trained in the sense that the training process works on a
smaller subset of the data at each stage of learning using a subset of inputs (actually a small
subset of the entire inputs), whereas the latter is always globally trained with the full data set
at each stage of learning using the complete set of inputs. The extension of random forests to
neural networks is not reported in the literature, to our best knowledge, and deserves a careful
technical development, which is presented in this paper. It turns out that our new technique
can enhance performance compared with either of random forest and neural network when
the data is difficult to learn. This should be valuable for modeling of noisy data. For ease of
exposition, we consider classification problems in this paper, since the regression problem can
be treated similarly with no technical differences or difficulties. It should be also pointed out
that the neural network group devised in this paper is different from the standard neural
network ensembles in the literature, where either some averaging is used to produce an
ensemble from individual neural networks or individual neural networks act on different
subsets of the data. Our model works like a random forest, where trees are replaced by neural
networks.

The rest of this chapter is organized as follows. The neural network and the random forest
are reviewed briefly in Sections 2 and 3, respectively. The proposed method is developed in
Section 4. An illustrative example, popular examples and practical examples are presented in
Sections 5, 6 and 7, respectively. The paper is concluded in Section 8.

2. NEURAL NETWORKS

A simple neural network is shown in Figure 1. The neural network modeling deals with the
following:

1) The function that computes the output from the input based on the weights.

2) The training process that updates the weights between the neurons of different layers.

The function ()f x of a neuron network can be a combination of other functions ()ih x ,

which can also be the combinations of others functions. The nonlinear weighted sum is a widely
adopted form that is utilized in neural network, and it can be described by:

() (())ii
f x Q w h x= ∑ , (1)

where Q is the function that is predefined, for example, the hyperbolic tangent.

C o p y r i g h t © S O C I E T Y F O R S C I E N C E A N D E D U C A T I O N U N I T E D K I N G D O M 3

Qin Qin, Qing-Guo Wang, Shuzhi Sam Ge and Chao Yu; Neural Networks Trained by Randomized Algorithms, Transactions on Machine
Learning and Artificial Intelligence, Volume 2 No 1 (2014); pp 01-17

Input

Hidden

Output

Figure 1 Structure of a simple neural network.

For training, one defines a cost function : J F R→ , and then find the optimal *f such that
*() () , J f J f f F≤ ∀ ∈ . For example, we have the data of (, y)x , where x represents the

input and y the output. We define the cost function:

2[(())]J E f x y= − . (2)

The task is to find optimal *f that minimizes the cost function:

* 2 2[(())] [(())], .E f x y E f x y f F− ≤ − ∀ ∈ (3)

3. RANDOM FORESTS

Random forest is an ensemble of many decision trees. The decision tree is a branch-like
graph for the process of decision making. A simple decision tree is depicted in Figure 2. The
decision tree splits the data set into subsets according to the splitting criterions. This splitting
process is repeated on each subset recursively.

URL: http://dx.doi.org/10.14738/tmlai.21.39 4

http://dx.doi.org/10.14738/tmlai.21.39

T R A N S A C T I O N S O N M A C H I N E L E A R N I N G A N D A R T I F I C I A L I N T E L L I G E N C E V O L U M E 2 , I S S U E 1 , (2 1 0 4)

Figure 2 Structure of a simple decision tree.

For a tree, the output is obtained from the input along the way from the root node to the
corresponding leaf node.

Let the number of input variables be Q . A random forest is formed by growing each
decision tree as follows:

1) Randomly select q variables from Q variables and conduct the splitting at each node;

2) Let the tree grows fully with no pruning;

until the number of trees reaches the desired N . With a random forest, for a test data
point, one obtains from each decision tree, its classification label which is called “vote”, and
decide the final classification label with the highest votes.

4. THE PROPOSED MODEL

We view a neural network like a decision tree and try to design some randomized algorithm
to find a set of neural networks independently. Note that a neural network is trained at each
stage of iterative learning with the full data set (this discussion has nothing to do with cross-
validation or bootstrap et al, which uses a subset of the data) based on the full set of inputs,
and its structure (the layers and neurons) is fixed before and during the training. This is very
different from a tree for which its branches and nodes are produced gradually during the
training. Due to the above essential difference, it does not look feasible to mimic construction
of a random forest by training a neural network with different combinations of inputs, and/or
from different subsets of data at different stages. Further, if one chooses different structures
(layers and neurons) for different neural networks, there seems no good rational to make such
a choice (even for single neural network). As a result, we suppose that N neural networks to be
trained have the same structure. Then, the question is how to generate multiple neural

C o p y r i g h t © S O C I E T Y F O R S C I E N C E A N D E D U C A T I O N U N I T E D K I N G D O M 5

Qin Qin, Qing-Guo Wang, Shuzhi Sam Ge and Chao Yu; Neural Networks Trained by Randomized Algorithms, Transactions on Machine
Learning and Artificial Intelligence, Volume 2 No 1 (2014); pp 01-17

networks independently, givens the same structure for all N models and the same set of date
and inputs at each training stage? Note that when the structure is fixed, a particular neural
network is determined by its weights. Different weights give different neural networks. This led
us to devising the changes to the training algorithms so as to randomize certain aspects of a
chosen training algorithm to find N neural networks independently. Then, each neural network
acts like a decision tree and the resulting neural network group looks like a random forest. It is
expected that a single neural network may perform better than a single decision tree.
Hopefully, with the same degree of randomization and independence of the individual models
as the trees, the resulting neural network group performs better than a random forest.

In the view of the above observations, we look at some training algorithm to introduce
randomization. The back propagation algorithm of neural networks is widely used and thus
taken for our study and illustration. The other algorithms can be chosen as well and the similar
development as below can be done easily. Suppose that the training set is given as

() () (){ }1 1 2 2, , , ,...... ,n nx y x y x y , where ix , 1,2,..., ,i n= are the input vectors, and iy ,

1,2,..., ,i n= are the corresponding outputs. Let the predicted outputs from a neural network is

iy
∧

, 1,2,...,i n= . The backpropagation algorithm seeks to minimize the following error function:

2

1

1
2

n

i i
i

E y y
∧

=

= −∑ . (4)

One chooses the initial weights, 0
iw , 1,2,...,i m= , and update the weights as follows:

1 ,k k
i i

i

Ew w
w

α+ ∂
= −

∂
 1,2,...,i m= , (5)

where α is a learning constant. This updating carries on recursively till 0E∇ = holds
approximately.

Note that the above back propagation algorithm updates all the weights together at each
iteration. We now introduce its randomization: randomly choose p weights from the total m
weights to update with (5) while the remaining weights are kept unchanged, at each iteration,
and carry on till 0E∇ = holds approximately. As a result, a neural network has been obtained.
Next, choose a new set of initial weights randomly and repeat the above iterations to find the
second neural network, and so on till N neural networks are all obtained.

The proposed method is summarized as follow:

1) Set up N identical neural networks architectures.

2) For each neural network: set the initial weights randomly; and adopt the back
propagation algorithm with the following change: at each iteration, choose randomly p weights
only to implement the updates while keeping the remaining (m-p) weights unchanged.

URL: http://dx.doi.org/10.14738/tmlai.21.39 6

http://dx.doi.org/10.14738/tmlai.21.39

T R A N S A C T I O N S O N M A C H I N E L E A R N I N G A N D A R T I F I C I A L I N T E L L I G E N C E V O L U M E 2 , I S S U E 1 , (2 1 0 4)

3) Assign the output to the label which has the most votes from N trained neural networks.

Breinman [15] recommends that for a random forest, the number of trees in a forest should
be a large number, and the number of randomly selected features at each splitting should be
equal to the root square of the number of all features. In this paper, we follow Breinman’s
above recommendations with some adaptation. In particular, suggest that the number of
neural networks in the proposed framework be 50, and the number of randomly selected
weights be the root square of the number of all weights by comparing the input number in

random forest to the number of weights in our framework, that is, 50N = and p m= .

5. ILLUSTRATIVE EXAMPLE

From this section onwards, we conduct comparative simulation studies of three modeling
methods: a single neural network (SNN), a random forest (RF) and the proposed group of
multiple neural networks with randomized algorithms (MNN). Throughout these sections, we

set 50N = and p m= . This implies that a RF consists of 50 decision trees and an MNN group
consists of 50 individual neural networks. We make ten random runs for each of RF, SNN and
MNN, from which, the best and worst performance as well as the average performance are
evaluated on the test data, respectively, for comparison.

For a start, this section presents an illustrative example. We randomly select 4000 data
points in the square formed by the four points: [-1 -1], [-1 1], [1 1] and [1 -1]. Choose this simple
function:

2 0.25y x= − , (6)

to divide the square into two areas. It happens that 2297 data points are above the function
curve and we assign their labels as 1, while 1703 data points are below the function curve and
are assigned with the label of 0. All the 4000 data points are used as the training data for the
experiment. The test data are generated by additional randomly-drawn 400 data points in the
same square. Once again, the resulting 211 data points above the function curve are labeled as
1, while others as 0. This is of course a separable case. Later we introduce noise in the data to
make the data worse and worse, and thus classification more and more difficult.

Test results are presented in Table 1, where P1 means predicted 1, P0 predicted 0, T1 is true
1, and T0 true 0. To find the accuracy rate from the table, take the average case of SNN for
consideration. Since the number of data points with true 1 and predicted 1 is 210 while the
number of data points with true 0 and predicted 0 is 186.1, the total number of correct
predictions is (210+186.1), which is divided by the total number of test points, 400, to give the
classification accuracy rate of 99.03%. In the same manner, the average accuracy rates for RF
and MNN are obtained as 98.83% and 98.65%, respectively. The best accuracy rates for them
are 99.75%, 99.25% and 99.00%, respectively, whereas the worst accuracy rates are 98.00%,

C o p y r i g h t © S O C I E T Y F O R S C I E N C E A N D E D U C A T I O N U N I T E D K I N G D O M 7

Qin Qin, Qing-Guo Wang, Shuzhi Sam Ge and Chao Yu; Neural Networks Trained by Randomized Algorithms, Transactions on Machine
Learning and Artificial Intelligence, Volume 2 No 1 (2014); pp 01-17

98.75% and 98.00%, respectively. It follows that the performance of MNN is not better than
that of RF and SNN when the data set is easy to classify.

Table 1 Classification for illustrative data (0% noise level).

 SNN RF MNN
P1 P0 P1 P0 P1 P0

Average 210 1 210.1 0.9 209.3 1.7 T1
2.9 186.1 3.8 185.2 3.7 185.3 T0

Best 211 0 211 0 210 1 T1
1 188 3 186 3 186 T0

Worst 208 3 210 1 209 2 T1
5 184 4 185 6 183 T0

In order to check the performance on the noisy data, we randomly select 10% of data points
from in both training and testing data sets of the first group with label of 1 (above the function
curve) and change their labels to 0, and also select 10% of data points in both training and
testing data sets from the second group (below the function curve) with label of 0 and change
their labels to 1. Then, we re-run the simulation on the changed data. The results are shown in
Table 2. The average accuracy rates for SNN, RF and MNN become 99.00%, 95.86% and 98.70%,
respectively. The best accuracy rates for them are 99.75%, 96.50% and 98.75%, respectively,
whereas the worst accuracy rates are 98.00%, 95.25% and 98.50%, respectively. Thus, the
performance of MNN has improved a lot relatively to other two methods and is better than RF
now when the data set is added with 10% noise.

Table 2 Classification for illustrative data (10% noise level)

 SNN RF MNN
P1 P0 P1 P0 P1 P0

Average 210.1 0.9 201.9 9.1 209 2 T1
3.1 185.9 7.4 181.6 3.2 185.8 T0

Best 210 1 204 7 209 2 T1
0 189 7 182 3 186 T0

Worst 206 5 201 10 209 2 T1
3 186 9 180 4 185 T0

To see the performance on the data set with higher noise levels, we conduct simulation for
the noise levels of 20%, 30%, 40% and 50%, respectively. The classification accuracies at all the
noise levels are summarized in Table 3. It is seen from Table 3 that

when the data set has no noise or small noise (10% noise level), three methods perform
similarly and all achieve the high accuracy rates.

when the data set has significant noises (20%, 30%, 40% and 50% noise levels), SNN and
MNN perform much better than RF. Note that MNN produces a much stable performance
(much lower performance deviation between the best and worst). In particular, the worst

URL: http://dx.doi.org/10.14738/tmlai.21.39 8

http://dx.doi.org/10.14738/tmlai.21.39

T R A N S A C T I O N S O N M A C H I N E L E A R N I N G A N D A R T I F I C I A L I N T E L L I G E N C E V O L U M E 2 , I S S U E 1 , (2 1 0 4)

performance of MNN is much better than SNN, and the average performance of MNN is better
than SNN in most cases as well.

The results indicate that the proposed method has more power than SNN and RF in
classifying the noisy data set.

Table 3 Classification accuracy relative to noise level (illustrative data).

 Noise
level

Method Average Best Worst

No noise SNN 99.03% 99.75% 98.00%.
RF 98.83% 99.25% 98.75%
MNN 98.65% 99.00% 98.00%

10% noise SNN 99.00% 99.75% 98.00%
RF 95.86% 96.50% 95.25%
MNN 98.70% 98.75% 98.50%

20% noise SNN 98.30% 99.50% 97.00%
RF 89.78% 90.75% 88.50%
MNN 98.25% 98.50% 98.00%

30% noise SNN 96.45% 98.25% 92.50%
RF 82.05% 84.25% 80.50%
MNN 96.95% 97.50% 96.25%

40% noise SNN 90.78% 93.00% 85.75%
RF 66.48% 68.50% 63.75%
MNN 92.73% 93.50% 92.00%

50% noise SNN 54.30% 66.25% 47.75%
RF 50.08% 53.00% 47.25%
MNN 61.03% 64.75% 56.50%

6. POPULAR EXAMPLES

6.1 Fisher’s Iris data

This data is included in the Matlab software, where its description is available from Matlab
helps and cited as follows: “Fisher's iris data consists of measurements on the sepal length,
sepal width, petal length, and petal width of 150 iris specimens. There are 50 specimens from
each of three species.” In this data set, three species are “setosa”, “versicolor” and “virginica”.
Each species consist of 50 specimens. We take 120 data points (40 data points of “setosa”, 40
data points of “versicolor” and 40 data points of “virginica” to maintain class ratios same as
those in the raw data) as our training set and the remaining 30 data points (10 data points of
“setosa”, 10 data points of “versicolor” and 10 data points of “virginica”) as the testing set.

 The simulation results are shown in Table 4, where P2 means predicted “setosa”, P1
means predicted “versicolor”, P0 means predicted “virginica”; T2 means true “setosa”, T1
means true “versicolor”, T0 means true “virginica”. From Table 4, we can find the average
accuracy rates for SNN, RF and MNN as 95.00%, 91.67% and 96.00%, respectively. The best
accuracy rates for these three methods are 100.00%, 93.33% and 96.67%, respectively. The
worst accuracy rates for the three methods are 90.00%, 90.00% and 93.33%, respectively. It
follows that averagely MNN produces the best results when the data set has no noise. Although

C o p y r i g h t © S O C I E T Y F O R S C I E N C E A N D E D U C A T I O N U N I T E D K I N G D O M 9

Qin Qin, Qing-Guo Wang, Shuzhi Sam Ge and Chao Yu; Neural Networks Trained by Randomized Algorithms, Transactions on Machine
Learning and Artificial Intelligence, Volume 2 No 1 (2014); pp 01-17

the best accuracy rate of SNN is 100%, MNN gives the highest accuracy rate on worst
performance. RF gives poor accuracy rates.

Table 4 Classification for fisher’s iris data (0% noise level)

 SNN RF MNN
P2 P1 P0 P2 P1 P0 P2 P1 P0

Average 10 0 0 10 0 0 10 0 0 T2
0 10 0 0 10 0 0 10 0 T1
0 1.5 8.5 0 2.5 7.5 0 1.2 8.8 T0

Best 10 0 0 10 0 0 10 0 0 T2
0 10 0 0 10 0 0 10 0 T1
0 0 10 0 2 8 0 1 9 T0

Worst 10 0 0 10 0 0 10 0 0 T2
0 10 0 0 10 0 0 10 0 T1
0 3 7 0 3 7 0 2 8 T0

In order to check the performance on noisy data, we randomly select 30% data points that
is labeled as “setosa” and change their labels to “versicolor”, then we randomly select 30% data
points that is labeled as “versicolor” and change their labels to “virginica”, finally we randomly
select 30% data points that is labeled as “virginica” and change their labels to “setosa”. The
resulting simulation is exhibited in Table 5. From Table 5, we can determine the average
accuracy rates for SNN, RF and MNN as 76.67%, 60.00% and 81.00%, respectively. The best
accuracy rates are 86.67%, 73.33% and 83.33%, respectively. The worst accuracy rates are
56.67%, 56.67% and 76.67%, respectively. From the accuracy results, we find that averagely
MNN yields the best results when the data set is added with 30% noise. RF still gives poor
accuracy rates which decrease obviously. Although the best accuracy rate of SNN is 86.67%,
MNN gives a much higher accuracy rate on worst performance than SNN whose accuracy rate is
only 56.67%.

Table 5 Classification for fisher’s iris data (30% noise level).

 SNN RF MNN
P2 P1 P0 P2 P1 P0 P2 P1 P0

Average 7.8 2.2 0 5.6 4.4 0 8 2 0 T2
1.8 7.6 0.6 0 8.1 1.9 1.8 8.2 0 T1
0.9 1.5 7.6 2.5 3.2 4.3 0 1.9 8.1 T0

Best 8 2 0 7 3 0 9 1 0 T2
0 10 0 2 7 1 2 8 0 T1
0 2 8 0 2 8 0 2 8 T0

Worst 3 7 0 5 5 0 8 2 0 T2
3 6 1 0 7 3 3 7 0 T1
0 2 8 0 5 5 0 2 8 T0

In summary, we put the accuracy rates of two cases together in Table 6 for easy
comparison. From Table 6, we can see that MNN averagely produces the best results both with

URL: http://dx.doi.org/10.14738/tmlai.21.39 10

http://dx.doi.org/10.14738/tmlai.21.39

T R A N S A C T I O N S O N M A C H I N E L E A R N I N G A N D A R T I F I C I A L I N T E L L I G E N C E V O L U M E 2 , I S S U E 1 , (2 1 0 4)

and without added noise. RF gives the poorest accuracy rates. The performance of RF decreases
apparently when the data set is added with noise.

In the case of 30% noise added, although SNN can achieve 86.67% classification accuracy
rate in its best results, its worst accuracy rate is very low (56.67%). On the contrary, MNN
achieves 83.33% classification accuracy rate in its best results, while its worst accuracy rate
remains high (76.67%). The results demonstrate that MNN has more power in classifying noisy
data than SNN and RF.

Table 6 Classification accuracy relative to noise level (fisher’s iris data)

Noise level Method Average Best Worst
No noise SNN 95.00% 100.00% 90.00%

RF 91.67% 93.33% 90.00%
MNN 96.00% 96.67% 93.33%

30% noise SNN 76.67% 86.67% 56.67%
RF 60.00% 73.33% 56.67%
MNN 81.00% 83.33% 76.67%

6.2 Crabs classification data

This data is included in the Matlab software, where its description is available from Matlab
helps and cited as follows: “In this demo we attempt to build a classifier that can identify the
sex of a crab from its physical measurements. Six physical characteristics of a crab are
considered: species, frontal lip, rear width, length, width and depth. The problem on hand is to
identify the sex of a crab given the observed values for each of these 6 physical characteristics.”
In this data set, we randomly select 160 data points as the training set and take the remaining
40 data points as the testing set.

The simulation results are shown in Table 7, where P1 means predicted “Male”, P0 means
predicted “Female”; T1 means true “Male”, T0 means true “Female”. From Table 7, we obtain
the average accuracy rates for SNN, RF and MNN as 88.00%, 80.50% and 87.75%, respectively.
The best accuracy rates are 95.00%, 85.00% and 90.00%, respectively. The worst accuracy rates
are 77.50%, 77.50% and 85.00%, respectively. Thus, RF gives the poorest accuracy rates. SNN
and MNN are similar in terms of average performance. The former is better with best
performance while the latter is better with worst performance when these two methods are
compared with each other.

Table 7 Classification for crabs classification data (0% noise level).

 SNN RF MNN
P1 P0 P1 P0 P1 P0

Average 19.8 2.2 16.3 5.7 19 3 T1
2.6 15.4 2.1 15.9 1.9 16.1 T0

Best 22 0 18 4 20 2 T1
2 16 2 16 2 16 T0

Worst 19 3 16 6 18 4 T1
6 12 3 15 2 16 T0

C o p y r i g h t © S O C I E T Y F O R S C I E N C E A N D E D U C A T I O N U N I T E D K I N G D O M 11

Qin Qin, Qing-Guo Wang, Shuzhi Sam Ge and Chao Yu; Neural Networks Trained by Randomized Algorithms, Transactions on Machine
Learning and Artificial Intelligence, Volume 2 No 1 (2014); pp 01-17

In order to check the performance on noisy data, we randomly select 30% data points that
is labeled as “Male” and change their labels to “Female”, also we randomly select 30% data
points that is labeled as “Female” and change their labels to “Male”. The resulting simulation is
exhibited in Table 8. From Table 8, we calculate the average accuracy rates for SNN, RF and
MNN as 67.50%, 56.25% and 80.00%, respectively. The best accuracy rates are 82.50%, 62.50%
and 82.50%, respectively. The worst accuracy rates are 47.50%, 52.50% and 75.00%,
respectively. From the accuracy results, we find that averagely the method of MNN gives the
best results when the data set is added with 30% noise. RF still produces poorest accuracy
rates. Although the best accuracy rate of SNN is the same with that of MNN, SNN gives a much
lower accuracy rate on worst performance than MNN.

Table 8 Classification for crabs classification data (30% noise level).

 SNN RF MNN
P1 P0 P1 P0 P1 P0

Average 14.5 7.5 12.7 9.3 18.7 3.3 T1
5.5 12.5 8.2 9.8 4.7 13.3 T0

Best 19 3 15 7 19 3 T1
4 14 8 10 4 14 T0

Worst 4 18 11 11 18 4 T1
3 15 8 10 6 12 T0

In summary, we put the accuracy rates of two cases together in Table 9 for easy
comparison. From the table, we can see that RF produces the worst results both with and
without added noise. The performance of MNN is almost the same with the performance of
SNN when the data set has no noise. When the 30% noise is added, the accuracy rates of SNN
and RF decrease sharply, while the performance of MNN is still good (80.00%). What is more
important, the worst accuracy rate of MNN remains high in the case of 30% noise added, which
results in a low deviation of the performance.

The results show that MNN has strong power in classifying noisy data set. It also
demonstrates that the proposed method is more robust than the other two methods.

Table 9 Classification accuracy relative to noise level (crabs classification data)

Noise level Method Average Best Worst
No noise SNN 88.00% 95.00% 77.50%

RF 80.50% 85.00% 77.50%
MNN 87.75% 90.00% 85.00%

30% noise SNN 67.50% 82.50% 47.50%
RF 56.25% 62.50% 52.50%
MNN 80.00% 82.50% 75.00%

URL: http://dx.doi.org/10.14738/tmlai.21.39 12

http://dx.doi.org/10.14738/tmlai.21.39

T R A N S A C T I O N S O N M A C H I N E L E A R N I N G A N D A R T I F I C I A L I N T E L L I G E N C E V O L U M E 2 , I S S U E 1 , (2 1 0 4)

7. PRACTICAL EXAMPLES

7.1 Stock data

The stock data is always difficult to classify. In this experiment, we use the data from China
stock market. To be concrete, we screen all the stocks over ten years (01.01.2001-31.12.2009)
to pick up the cases for classification, using the following rule: today return rate (based on close
prices) is above or equal to the band about its center line of the last p-day moving average of
return rates, for which for illustration p is set as 20 and the band at 1.8 times the standard
deviation of the return rates.

For each of these screened cases, we form its input vector ix with:

• today’s return rate
• yesterday’s return rate
• the day before yesterday’s return rate
• today’s volume/(average volume of last 3 days)
• yesterday’s volume/(average volume of last 3 days)
• the day before yesterday’s volume/(average volume of last 3 days)

After input vectors are obtained, we design a trading rule in order to see its outcomes and
define the output label iy . We trade each screened case as follows:

Buy: today’s close price;

Exit: 1.044 times the entry price in any of the following 3 days, or close price of the third
day;

Stop: none.

From each round trade, there is an exit price. We then assign output label iy to each case

as follows:

y=1, if selling price >= 1.01 times buying price

y=0; if selling price < 1.01 times buying price

In the end, we have compiled a pair []i ix y for each case. Totally, there are 40,120 cases or

data points. We randomly select 1600 points for classification experiment, of which 1200 points
are assigned as the training data and the remaining 400 as the testing data.

With such a stock data set, the simulation results are shown in Tables 10 and 11. They
indicate that;

• The performance of MNN is the best in all the methods,
• The accuracy rates of MNN are slightly better than the accuracy rates of SNN,
• RF gives the poorest performance.

C o p y r i g h t © S O C I E T Y F O R S C I E N C E A N D E D U C A T I O N U N I T E D K I N G D O M 13

Qin Qin, Qing-Guo Wang, Shuzhi Sam Ge and Chao Yu; Neural Networks Trained by Randomized Algorithms, Transactions on Machine
Learning and Artificial Intelligence, Volume 2 No 1 (2014); pp 01-17

Since the raw data are already very difficult to model, addition of artificial noise is not
required. This experiment implies that our proposed method can work in such a real and very
difficult application.

Table 10 Classification for stock data

 SNN RF MNN
P1 P0 P1 P0 P1 P0

Average 10.7 141.3 24.7 127.3 8.1 143.9 T1
14.4 233.6 42.2 205.8 9.6 238.4 T0

Best 13 139 25 127 10 142 T1
12 236 36 212 9 239 T0

Worst 15 137 21 131 9 143 T1
23 225 46 202 14 234 T0

Table 11 Accuracy rates of classification for stock data

Method Average Best Worst
SNN 61.08% 62.25% 60.00%.
RF 57.63% 59.25% 55.75%
MNN 61.63% 62.25% 60.75%

7.2 MAGIC gamma telescope data 2004

We download the data from the website of Machine Learning Repository at
http://archive.ics.uci.edu/ml/index.html. For completeness, we cite the data description from
the website as follows:

“The data are MC generated (see below) to simulate registration of high energy gamma
particles in a ground-based atmospheric Cherenkov gamma telescope using the imaging
technique. Cherenkov gamma telescope observes high energy gamma rays, taking advantage of
the radiation emitted by charged particles produced inside the electromagnetic showers
initiated by the gammas, and developing in the atmosphere. This Cherenkov radiation (of visible
to UV wavelengths) leaks through the atmosphere and gets recorded in the detector, allowing
reconstruction of the shower parameters. The available information consists of pulses left by the
incoming Cherenkov photons on the photomultiplier tubes, arranged in a plane, the camera.
Depending on the energy of the primary gamma, a total of few hundreds to some 10000
Cherenkov photons get collected, in patterns (called the shower image), allowing to discriminate
statistically those caused by primary gammas (signal) from the images of hadronic showers
initiated by cosmic rays in the upper atmosphere (background).

Typically, the image of a shower after some pre-processing is an elongated cluster. Its long
axis is oriented towards the camera center if the shower axis is parallel to the telescope's optical
axis, i.e. if the telescope axis is directed towards a point source. A principal component analysis
is performed in the camera plane, which results in a correlation axis and defines an ellipse. If the
depositions were distributed as a bivariate Gaussian, this would be an equidensity ellipse. The

URL: http://dx.doi.org/10.14738/tmlai.21.39 14

http://dx.doi.org/10.14738/tmlai.21.39

T R A N S A C T I O N S O N M A C H I N E L E A R N I N G A N D A R T I F I C I A L I N T E L L I G E N C E V O L U M E 2 , I S S U E 1 , (2 1 0 4)

characteristic parameters of this ellipse (often called Hillas parameters) are among the image
parameters that can be used for discrimination. The energy depositions are typically asymmetric
along the major axis, and this asymmetry can also be used in discrimination. There are, in
addition, further discriminating characteristics, like the extent of the cluster in the image plane,
or the total sum of depositions.”

In this data set, we randomly select 1400 data points as a training set and other 400 data
points as a testing set. The simulation results are shown in Tables 12 and 13.

Table 12 Classification for MAGIC gamma telescope data 2004.

 SNN RF MNN
P1 P0 P1 P0 P1 P0

Average 80.2 119.8 102.6 97.4 77.8 122.2 T1
20.4 179.6 40.5 159.5 2.9 197.1 T0

Best 79 121 112 88 87 113 T1
2 198 40 160 3 197 T0

Worst 35 165 101 99 71 129 T1
2 198 47 153 3 197 T0

Table 13 Accuracy rates of classification for MAGIC gamma telescope data 2004.

Method Average Best Worst
SNN 64.95% 69.25% 58.25%
RF 65.53% 68.00% 63.50%
MNN 68.73% 71.00% 67.00%

From the tables, we can see

• The performance of MNN is the best in all the methods,
• SNN gives the poorest performance.

8. CONCLUSIONS

In this paper, we have proposed a new modeling tool – a group of multiple neural networks
trained with randomized algorithms – for modeling complex data. It incorporates the
randomization idea of random forests into a training algorithm of a neural network and the
repeated running of such a revised training algorithm yields multiple independent neural
networks. Such a group of models jointly may outperform individual models. Its effectiveness is
demonstrated with a variety of examples including practical ones such as stock markets. It
works particularly well for the data difficult to learn or model with the exiting methods.

Our simulation shows that the proposed method overall performs better than single neural
networks and a random forest. When there is significant noise in the data set, the performance
of the former drops relatively less fast than the latter. In particular, the former produces much
lower deviation of the performance and high mean performance compared with the latter.
Therefore, the proposed method has strong ability to classify the noisy data and perform
robustly.

C o p y r i g h t © S O C I E T Y F O R S C I E N C E A N D E D U C A T I O N U N I T E D K I N G D O M 15

Qin Qin, Qing-Guo Wang, Shuzhi Sam Ge and Chao Yu; Neural Networks Trained by Randomized Algorithms, Transactions on Machine
Learning and Artificial Intelligence, Volume 2 No 1 (2014); pp 01-17

REFERENCES

[1]. Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning, Springer New
York, 2011.

[2]. Ben Krose, Patrick van der Smagt, An introduction to Neural Networks, 1996.

[3]. Hadzibeganovic, Tarik & Cannas, Sergio A., A Tsallis' statistics based neural network model for novel word
learning, Physica A: Statistical Mechanics and its Applications 388 (5): 732–
746. DOI:10.1016/j.physa.2008.10.042, 2009.

[4]. Van den Bergh, F. Engelbrecht, AP., Cooperative Learning in Neural Networks using Particle Swarm
Optimizers, CIRG, 2000.

[5]. Zou Liping, Zou Tao, The application of neural network for Sneak Circuit Analysis on the aircraft electrical
system, Prognostics and System Health Management Conference (PHM-Shenzhen), Page(s): 1-5, 2011.

[6]. Arsene. C.T.C., Lisboa. P.J., Bayesian Neural Network with and without compensation for competing risks,
Neural Networks (IJCNN), The International Joint Conference, Page(s): 1-8, 2012.

[7]. Lou Haichuan, Su Hongye, Xie Lei, Gu Yong, Rong Gang, Multiple-prior-knowledge neural network for
industrial processes, Automation and Logistics (ICAL), IEEE International Conference, Page(s): 385-390, 2010.

[8]. Kondo. T., Ueno. J., Nonlinear system identification by feedback GMDH-type neural network with
architecture self-selecting function, Intelligent Control (ISIC), IEEE International Symposium, Page(s): 1521-
1526, September 2010.

[9]. Shuang Han, Yongqian Liu, Jie Yan, Neural Network Ensemble Method Study for Wind Power Prediction,
Power and Energy Engineering Conference (APPEEC), Asia-Pacific, Page(s): 1-4, March 2011.

[10]. McLeod. P., Verma. B., Clustered ensemble neural network for breast mass classification in digital
mammography, Neural Networks (IJCNN), The International Joint Conference, Page(s): 1-6, June 2012.

[11]. E. Gelenbe, Random neural networks with negative and positive signals and product form solution, Neural
Computation, vol. 1, no. 4, pp. 502–511, 1989.

[12]. Safavian S.R. and Landgrebe D., A survey of decision tree classifier methodology, Systems, Man and
Cybernetics, IEEE Transactions on, volume: 21, pages: 660-674, 1991.

[13]. Anthony,J.M, Robert, N.F,Yang, L.,Nathaniel, A.W and Steven, D.B., An introduction to decision tree
modeling, Journal of Chemometrics, 18: 275–285, 2004.

[14]. Yu. L. Pavlov., Random Forests, Utrecht, VSP, 2000.

[15]. Breiman, L., Random Forests. Machine Learning Journal 45, 532, 2001.

[16]. V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan and B. P. Feuston, Random forest: a classification
and regression tool for compound classification and QSAR modeling, Journal of chemical information and
computer sciences, volume: 43, pages: 1947--1958, 2003.

URL: http://dx.doi.org/10.14738/tmlai.21.39 16

http://dx.doi.org/10.14738/tmlai.21.39

T R A N S A C T I O N S O N M A C H I N E L E A R N I N G A N D A R T I F I C I A L I N T E L L I G E N C E V O L U M E 2 , I S S U E 1 , (2 1 0 4)

[17]. Maragoudakis, M and Serpanos, D., towards stock market data mining using enriched random forests from
textual resources and technical indicators. AIAI, IFIP AICT 339, pp. 278–286, 2010.

[18]. Manish Kumar, Thenmozhi M., Forecasting Stock Index Movement: A Comparison of Support Vector
Machines and Random Forest, Indian Institute of Capital Markets 9th Capital Markets Conference, January
2006.

[19]. Zhenping Yi, Jingchang Pan, Application of random forest to stellar spectral classification, Image and Signal
Processing (CISP), 3rd International Congress, Volume: 7, Page(s): 3129-3232, 2010.

[20]. Dittman. D., Khoshgoftaar. T.M., Wald. R., Napolitano. A., Random forest: A reliable tool for patient
response prediction, Bioinformatics and Biomedicine Workshops (BIBMW), IEEE International Conference,
Page(s): 289-296, 2011.

[21]. Moschidis. E., Graham. J., Automatic differential segmentation of the prostate in 3-D MRI using Random
Forest classification and graph-cuts optimization, Biomedical Imaging (ISBI), 9th IEEE International
Symposium, Page(s): 1727-1730, 2012.

[22]. Breiman, L., Random Forests. Machine Learning Journal 45, 532, 2001.

C o p y r i g h t © S O C I E T Y F O R S C I E N C E A N D E D U C A T I O N U N I T E D K I N G D O M 17

	Neural Networks Trained by Randomized Algorithms
	Abstract
	1. Introduction
	2. Neural networks
	3. Random forests
	4. The proposed model
	5. Illustrative example
	6. Popular examples
	6.1 Fisher’s Iris data
	6.2 Crabs classification data

	7. Practical examples
	7.1 Stock data
	7.2 MAGIC gamma telescope data 2004

	8. Conclusions
	References

