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ABSTRACT   

 Although the Poisson distribution and two well-known Poisson mixtures (the negative 
binomial and K-mixture distributions) have been utilized as tools for modeling texts for over last 
15 years, the application of these distributions to build generative probabilistic text classifiers 
has been rarely reported and therefore the available information on applying such models to 
classification remains fragmentary and even contradictory. In this study, we construct 
generative probabilistic text classifiers with these three distributions and perform classification 
experiments on three standard datasets in a uniform manner to examine the performance of 
the classifiers. The results show that the performance is much better than that of the standard 
multinomial naive Bayes classifier if the normalization of document length is appropriately 
taken into account. Furthermore, the results show that, in contrast to our intuitive expectation, 
the classifier with the Poisson distribution performs best among all the examined classifiers, 
even though the Poisson model gives a cruder description of term occurrences in real texts than 
the K-mixture and negative binomial models do. A possible interpretation of the superiority of 
the Poisson model is given in terms of a trade-off between fit and model complexity.  

Keywords: Poisson distribution, Negative binomial distribution, K-mixture distribution, Text 
classification, Akaike’s information criterion, Bayesian information criterion 

1 INTRODUCTION  
The Poisson distribution is one of the most fundamental discrete distributions for describing 

the probability of count data (the probability of a given number of events) occurring in a fixed 
interval of time or space. For text modeling, the Poisson distribution is appropriate for 
describing the number of occurrences of a certain word in documents of fixed length when the 
assumption that each word occurs independently holds in an approximate sense. It has been 
well established, however, that the Poisson model does not fit observation data [1]. The reason 
for the failure of the Poisson model is that, for most words, the predicted variance, which is 
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equal to the Poisson mean (the expected number of occurrences during the given interval), 
systematically underestimates the actual variance. Although this imperfect description of word 
distributions by the Poisson model can be used for keyword selection in information retrieval 
[2] and for feature selection in text categorization [3-5], improvement of the Poisson model will 
inevitably be needed in various fields where word distributions are analyzed quantitatively. 

As proposed by Church and Gale [1], the description by the usual Poisson distribution can 
be improved by extension to Poisson mixtures. Here, a Poisson mixture is a probability mass 
function that is expressed as a sum of finite or infinite Poisson distributions using a certain 
weighting function. Indeed, the K-mixture [6] and the negative binomial distributions [1], both 
of which are Poisson mixtures in the sense that they are expressed in the form of infinite 
superposition of the Poisson distribution, have been found to give a better description of the 
observed variance in actual documents than that of the usual Poisson, and these Poisson 
mixtures have been successfully utilized during the last 15 years [7-13]. 

In spite of the clear success of the K-mixture and negative binomial models for describing 
word distributions in real texts, attempts to utilize these models to construct generative 
probabilistic classifiers, however, have rarely been reported. To the best of our knowledge, the 
main studies on text classifiers using the usual Poisson model and the K-mixture and negative 
binomial models can be summarized as follows. 

• Kim et al. [14, 15] used the Poisson distribution to build a text classifier and showed that 
their classifier performs much better than the multinomial naive Bayes classifier. 
However, since their proposed method is a sophisticated one in which additional 
parameter tuning is required, their classifier is not fully suitable for easy use. 

•  Eyheramendy et al. [16] compared the performance of four probabilistic models in text 
classification: the Poisson, Bernoulli, multinomial, and negative binomial models. They 
found that the multinomial model performs best in terms of the micro-F1 measure, and 
also that the Poisson and Bernoulli models are very similar in performance and are the 
second-best choices; the negative binomial model was found to be the worst. In short, 
their result showed that the usual Poisson and negative binomial models do not 
outperform the multinomial naive Bayes classifier. 

•  Airoldi et al. [17, 18] presented statistical models based on the Poisson and negative 
binomial distributions for text and showed that their models perform better than the 
widely used multinomial naive Bayes classifier in text classification tasks. The overall 
behavior of their classifiers indicated that the negative binomial performs best; the 
Poisson, the second best; and the multinomial, the worst. However, the difference in 
classification accuracy among the three classifiers examined was sometimes too small to 
judge which is the best and which is the second best, and therefore was not sufficient to 
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make a convincing argument that the Poisson and the negative binomial are superior to 
the multinomial. 

The point emerging from this review of the literature is that the information on the 
application of the Poisson and negative binomial distributions for building generative 
probabilistic classifiers is still fragmentary and even contradictory. Furthermore, the application 
of the K-mixture model to text classifiers, which is a widely used Poisson mixture along with the 
negative binomial distribution, has not yet been reported. 

The question motivating this study is whether the multinomial distribution embedded in the 
most widely used naive Bayes classifiers can be replaced with the usual Poisson, the negative 
binomial, or the K-mixture. The purpose of this work is therefore to show that these three 
models are useful tools for describing word distributions in real texts and to show the extent to 
which the models can be appropriately used in text classification. To determine whether these 
three models are useful in classification tasks, the accuracy of the proposed classifiers with the 
three models are examined using three standard datasets. The results lead us to conclude that 
these classifiers perform much better than the multinomial naive Bayes classifier does, if we 
construct the three classifiers with appropriate consideration of document length 
normalization. Another important finding is that, among the three examined classifiers, the 
classifier with the usual Poisson model performs best, contrary to our intuitive expectation 
based on the Poisson model giving a cruder description of word distributions in real texts than 
do the negative binomial and the K-mixture models. The origin of this better performance of 
the Poisson can be explained in terms of a trade-off between fit and model complexity, as will 
be presented later. 

The rest of this paper is organized as follows. In the next section, we will describe the 
frameworks of the three models, (i.e., the Poisson, negative binomial, and K-mixture models) 
for texts, and how to construct classifiers by using these frameworks. Two different methods 
for normalizing document length are also described in the next section. In Section 3, we 
summarize our experiments on automatic text classification. Section 4 presents the results of 
the experiments, and in Section 5, the observed characteristics of the proposed classifiers are 
discussed. In Section 6, we give our conclusions and suggest directions for future investigation. 

2 FORMULATION OF CLASSIFIERS  

2.1 Multinomial naive Bayes 
First, we briefly review the multinomial naive Bayes and some notation and symbols that 

will be used later. The framework described here is a standard one [19, chapter 6] and thus we 
use it as a reference classifier in our experiments. 

The multinomial naive Bayes classifier is widely used in text categorization because it can 
achieve good performance in various tasks and because it is simple enough to be practically 
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implemented even when the number of features is large. The simplicity is due primarily to the 
following two assumptions. First, an individual document is assumed to be represented as a 
vector of word counts (bag-of-words representation). Since this representation greatly 
simplifies further processing, all three of the generic probabilistic classifiers investigated in this 
work inherit this first assumption. Next, documents are assumed to be generated by repeatedly 
drawing words from a fixed multinomial distribution for a given class, and word emissions are 
thus independent. 

From the first assumption, documents can be represented as vectors of count-valued 
random variables. The 𝑖th document in a considered class 𝑐 is then expressed as 

𝑑𝑐𝑖 = �𝑥𝑖1, 𝑥𝑖2,⋯ , 𝑥𝑖𝑗 ,⋯ , 𝑥𝑖∣𝑉∣�, (1) 

where 𝑥𝑖𝑗 is the count of the 𝑗th word 𝑡𝑗 in the 𝑖th document belonging to class 𝑐 and |𝑉| is 
vocabulary size; in other words, we have assumed here that the vocabulary of the considered 
dataset is given by 𝑉 = {𝑡1, 𝑡2,⋯ , 𝑡∣𝑉∣} where 𝑡𝑗 is the 𝑗th word in the vocabulary. From the 
second assumption, the probability of the document 𝑑𝑐𝑖 given by vector (1) is 

𝑝(𝑑𝑐𝑖 ∣ 𝜃𝑐) =
�∑ 𝑥𝑖𝑗∣𝑉∣

𝑗=1 �!
∏ �𝑥𝑖𝑗!�∣𝑉∣
𝑗=1

�𝜃𝑐𝑗
𝑥𝑖𝑗

∣𝑉∣

𝑗=1

, (2) 

where 𝜃𝑐𝑗 is the probability for the emission of 𝑡𝑗 and is subject to the constraints ∑ 𝜃𝑐𝑗∣𝑉∣
𝑗=1 = 1. 

Note that for text classification, the parameters 𝜃𝑐𝑗 must be evaluated for each possible class 𝑐. 
We use the estimator for 𝜃𝑐𝑗 given by 

𝜃�𝑐𝑗 =
1 + ∑ 𝑥𝑖𝑗

∣𝐷𝑐∣
𝑖=1

∣ 𝑉 ∣ +∑ ∑ 𝑥𝑖𝑗∣𝑉∣
𝑗=1

∣𝐷𝑐∣
𝑖=1

, (3) 

where |𝐷𝑐| is the number of training documents belonging to the considered class 𝑐. To classify 
a new document with a given feature vector 𝑑 = (𝑥1,𝑥2,⋯ , 𝑥∣𝑉∣), the multinomial naive Bayes 
classifier calculates a class specific probability for class 𝑐 as 

𝑝(𝑐|𝑑) ∝ 𝑝(𝑐)𝑝(𝑑|𝜃𝑐) = 𝑝(𝑐)
�∑ 𝑥𝑗∣𝑉∣

𝑗=1 �!
∏ �𝑥𝑗!�∣𝑉∣
𝑗=1

�𝜃𝑐𝑗
𝑥𝑗

∣𝑉∣

𝑗=1

. (4) 

Here, 𝑝(𝑐) is the prior probability of class 𝑐  which is estimated from a training set by 
𝑝(𝑐) = |𝐷𝑐|/|𝐷| where |𝐷| is the total number of training documents in the used dataset. We 
estimate 𝜃𝑐𝑗 in eq. (4) by using eq. (3) for each specified class 𝑐. The document is assigned to 
the class with highest probability 𝑝(𝑐|𝑑). Taking the logarithm of eq. (4) and neglecting class-
independent quantities, we obtain the decision function of the multinomial naive Bayes 
classifier: 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 51 
 



Hiroshi Ogura, Hiromi Amano and Masato Kondo; Classifying Documents with Poisson Mixtures; Transactions on 
Machine Learning and Artificial Intelligence,  Volume 2 No 4, Aug (2014); pp: 48-76 
 

𝑤(𝑐|𝑑) = log𝑝(𝑐) + �𝑥𝑗

∣𝑉∣

𝑗=1

log 𝜃𝑐𝑗 . (5) 

The criterion is to assign 𝑑 to the class 𝑐 such that eq. (5) is maximized. 

2.2 Poisson classifier 
A well-known approach to obtaining high-performance generative probabilistic classifiers is 

to construct classifiers in a hierarchical manner by using conjugate prior/likelihood 
combinations. Studies following this approach have already been reported for the 
Dirichlet/multinomial [20], gamma/negative binomial [21], beta/binomial [22], and 
gamma/Poisson [23] combinations. We have reported that the beta/binomial and 
gamma/Poisson pairs give classification performance similar to that of support vector machines 
and clearly surpass that of multinomial naive Bayes classifier [23]. Here, however, we do not 
deal with such sophisticated hierarchical models and focus our attention toward building 
simpler classifiers which allow easy and effective implementation similarly to the multinomial 
naive Bayes classifier. For this reason, we do not employ the formulation of Kim et al.  [14, 15] 
and instead use a simpler formulation that is basically the same as the formulation of 
Eyheramendy et al. [16] for our Poisson classifier. 

Assumptions used to build the Poisson classifier are very similar to those of the multinomial 
naive Bayes: 

1. An individual document is assumed to be represented as a vector of word counts. 

2. The probability of the occurrence of a document 𝑑 is a product of independent terms, 
each of which represents the probability of the number of emissions (i.e., the count) of an 
individual word. 

3. The probability of the number of emissions is given by the usual Poisson distribution. 

From the third assumption, the probability that there are 𝑥𝑖𝑗 occurrences of word 𝑡𝑗 in the 
𝑖th document belonging to class 𝑐 is given by the usual Poisson distribution in the following 
form: 

𝑝�𝑥𝑖𝑗�𝑐� =
𝑒−𝜆𝑐𝑗𝜆𝑐𝑗

𝑥𝑖𝑗

𝑥𝑖𝑗!
. (6) 

Here, 𝜆𝑐𝑗 is the expected number of occurrences of 𝑡𝑗 in a document belonging to class 𝑐 and is 
estimated by 

𝜆̂𝑐𝑗 =
𝐶1 + ∑ 𝑥𝑖𝑗

∣𝐷𝑐∣
𝑖=1

𝐶2 + |𝐷𝑐| , (7) 
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where 𝐶1 and 𝐶2  are smoothing parameters to prevent  𝜆̂𝑐𝑗  from being zero, and |𝐷𝑐| the 
number of training documents belonging to class 𝑐. Note that the smoothing used in eq. (7) is 
similar to the Laplace smoothing used in eq. (3). Following [16], we set 𝐶1 = 0.001 and 𝐶2 = 1. 

Combining the second assumption with eq. (6), the conditional probability of the 
occurrence of a document 𝑑 = (𝑥1,𝑥2,⋯ , 𝑥∣𝑉∣) given class 𝑐 is expressed as 

 

𝑝(𝑑|𝑐) = �
𝜆𝑐𝑗
𝑥𝑗exp(−𝜆𝑐𝑗)

𝑥𝑗!

∣𝑉∣

𝑗=1

∝�𝜆𝑐𝑗
𝑥𝑗

∣𝑉∣

𝑗=1

exp(−𝜆𝑐𝑗), (8) 

and thus a class specific probability for class 𝑐 and the decision function, corresponding to eqs. 
(4) and (5) of the multinomial case, respectively, are given by 

𝑝(𝑐|𝑑) = 𝑝(𝑐)𝑝(𝑑|𝑐) = 𝑝(𝑐)�
𝜆𝑐𝑗
𝑥𝑗 exp�−𝜆𝑐𝑗�

𝑥𝑗!

∣𝑉∣

𝑗=1

, (9) 

𝑤(𝑐|𝑑) = log𝑝(𝑐) + �(
∣𝑉∣

𝑗=1

𝑥𝑗log 𝜆𝑐𝑗 − 𝜆𝑐𝑗), (10) 

for the Poisson classifier. In the training phase, the parameters of the Poisson distributions are 
evaluated through the estimator, eq. (7), for each possible class and then in the test phase, the 
classifier assigns the class 𝑐 that has the highest value of the decision function, eq. (10), to a 
test document. 

2.3 K-mixture classifier 
For the K-mixture classifier, the third assumption of the Poisson classifier described above is 

replaced with the following assumption: “The probability of the number of emissions is given by 
the K-mixture distribution.” The other two assumptions remain in their original forms. The new 
assumption leads us to the expression of the probability of 𝑥𝑖𝑗 occurrences of word 𝑡𝑗 in the 𝑖th 
document belonging to class 𝑐 as 

𝑝�𝑥𝑖𝑗�𝑐� = (1 − 𝛼𝑐𝑗)𝛿𝑥𝑖𝑗,0 +
𝛼𝑐𝑗

𝛽𝑐𝑗 + 1
�

𝛽𝑐𝑗
𝛽𝑐𝑗 + 1

�
𝑥𝑖𝑗

, (11) 

where 𝛼𝑐𝑗  and 𝛽𝑐𝑗  are parameters of the K-mixture distribution satisfying 0 < 𝛼𝑐𝑗 < 1 and 
0 < 𝛽𝑐𝑗, respectively, and the 𝛿𝑥𝑖𝑗,0 is Kronecker’s delta [1, 6]. Since we used the method of 

moments to estimate the parameters, the estimators of 𝛼𝑐𝑗 and 𝛽𝑐𝑗 are given by 

𝛽̂𝑐𝑗 =
1
2
�
𝜎�𝑐𝑗2

𝜆̂𝑐𝑗
+ 𝜆̂𝑐𝑗 − 1�, (12) 
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𝛼�𝑐𝑗 =
𝜆̂𝑐𝑗
𝛽𝑐𝑗

, (13) 

where 𝜆̂𝑐𝑗 is the smoothed sample mean given by eq. (7) and 𝜎�𝑐𝑗2  is the sample variance defined 
as 

𝜎�𝑐𝑗2 =
1

|𝐷𝑐| − 1
��𝑥𝑖𝑗 − 𝜆̂𝑐𝑗�

2
∣𝐷𝑐∣

𝑖=1

. (14) 

Equations (12) and (13) can be derived by solving the expressions of mean and variance of the 
K-mixture given by  Church and Gale [1] for 𝛼 and 𝛽. 

The second assumption with eq. (11) yields the conditional probability of document 
𝑑 = (𝑥1, 𝑥2,⋯ , 𝑥∣𝑉∣) given class 𝑐 in the following form: 

𝑝(𝑑|𝑐) = �𝑝�𝑥𝑗�𝑐�
∣𝑉∣

𝑗=1

= ��(1 − 𝛼𝑐𝑗)𝛿𝑥𝑗,0 +
𝛼𝑐𝑗

𝛽𝑐𝑗 + 1
�

𝛽𝑐𝑗
𝛽𝑐𝑗 + 1

�
𝑥𝑗
�

∣𝑉∣

𝑗=1

. (15) 

Thus we arrive at the decision function: 

𝑤(𝑐|𝑑) = log𝑝(𝑐) + � log�1 − 𝛼𝑐𝑗 +
𝛼𝑐𝑗

𝛽𝑐𝑗 + 1
�

�𝑗�𝑥𝑗=0�

 

+ � �log𝛼𝑐𝑗 − �1 + 𝑥𝑗� log�𝛽𝑐𝑗 + 1� + 𝑥𝑗 log𝛽𝑐𝑗 �
{𝑗|𝑥𝑗 >0}

 
(16) 

The decision of the K-mixture classifier is to assign document 𝑑 to class c such that eq. (16) is 
maximized. 

2.4 Negative binomial classifier 
For the negative binomial classifier, we replace the third assumption with the following 

statement: “The probability of the number of emissions is given by the negative binomial 
distribution.” The probability of 𝑥𝑖𝑗 occurrences of word 𝑡𝑗 in the 𝑖th document belonging to 
class 𝑐 can be expressed as 

𝑃�𝑥𝑖𝑗�𝑐� = �
𝑁𝑐𝑗 + 𝑥𝑖𝑗 − 1

𝑥𝑖𝑗
� 𝑝𝑐𝑗

𝑥𝑖𝑗�1 + 𝑝𝑐𝑗�
−𝑁𝑐𝑗−𝑥𝑖𝑗, (17) 

where 𝑁𝑐𝑗 > 0 and 𝑝𝑐𝑗 > 0 are parameters of the negative binomial distribution [1]. As in the 
K-mixture classifier, we used the method of moments to estimate the parameters 𝑁𝑐𝑗 and 𝑝𝑐𝑗, 
which results in the estimators being expressed in the form: 

𝑝̂𝑐𝑗 =
𝜎�𝑐𝑗
2

𝜆�𝑐𝑗
− 1, (18) 
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𝑁�𝑐𝑗 =
𝜆̂𝑐𝑗
𝑝̂𝑐𝑗

, (19) 

where 𝜆̂𝑐𝑗 is the smoothed sample mean given by eq. (7) and 𝜎�𝑐𝑗2  is the sample variance given 

by eq. (14). Here, Equations (18) and (19) are obtained by solving the expressions of mean and 
variance of the negative binomial given by  [1] for the parameters. 

 The probability of the document 𝑑 belonging to class 𝑐 is thus calculated by 

𝑃(𝑑|𝑐) = �𝑝�𝑥𝑗�𝑐� = ���
𝑁𝑐𝑗 + 𝑥𝑗 − 1

𝑥𝑗
� 𝑝𝑐𝑗

𝑥𝑗�1 + 𝑝𝑐𝑗�
−𝑁𝑐𝑗−𝑥𝑗� ,

|𝑉|

𝑗=1

|𝑉|

𝑗=1

 (20) 

which is modified to give the decision function of the negative binomial classifier: 

𝑤(𝑐|𝑑) = log 𝑝(𝑐)

+ ��log Γ�𝑁𝑐𝑗 + 𝑥𝑗�
|𝑉|

𝑗=1

− log Γ�𝑁𝑐𝑗� + 𝑥𝑗 log𝑝𝑐𝑗 − (𝑁𝑐𝑗 + 𝑥𝑗)log (1 + 𝑝𝑐𝑗)�. 

(21) 

Note that we have substituted factorials with Gamma functions through the relation 
𝛤(𝑛) = (𝑛 − 1)! and have omitted the term log𝛤(𝑥𝑗 + 1) that is independent of class label 𝑐 
and thus not necessary for classification purposes. The substitution of factorials with a gamma 
function is needed when 𝑥𝑗  takes a real, non-integer value, which occurs through the 
procedures of document length normalization described in the next subsection. The decision of 
the negative binomial classifier is to assign 𝑑 to the class 𝑐 such that eq. (21) is maximized. 

2.5 Normalization of document length 
Thus far we have neglected the fact that the document lengths in the considered dataset 

differ from one another. In other words, we have assumed that each document in the dataset 
has the same length in terms of total word count. Of course, this is not necessarily true. Since 
the usual Poisson, K-mixture, and negative binomial distributions express the probability of a 
number of events occurring in a fixed interval, it is obvious that some normalization of 
document length is necessary when we try to apply these models to document classification. To 
normalize all the different lengths of training documents to be a predefined standard value, we 
used two different methods: 𝐿1 normalization and pseudo-document normalization. 

2.5.1 𝑳𝟏 normalization 

We consider the 𝑖th training document in class 𝑐: 𝑑𝑐𝑖 = (𝑥𝑖1, 𝑥𝑖2,⋯ , 𝑥𝑖∣𝑉∣). The document 
length of 𝑑𝑐𝑖 in an 𝐿1 sense is simply given by the total number of occurrences of all terms: 
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𝑙𝑖 = �𝑥𝑖𝑗

∣𝑉∣

𝑗=1

. (22) 

 

The normalization of the 𝐿1 norm of document vector 𝑑𝑐𝑖 to be a predefined standard value of 
𝑙0, can be achieved through the conversion of each word count in 𝑑𝑐𝑖 by using 

𝑥0𝑖𝑗 = 𝑤𝑖𝑥𝑖𝑗 , (23) 

where 𝑤𝑖 is the ratio of the actual length 𝑙𝑖 to the normalized length 𝑙0; that is, 

𝑤𝑖 =
𝑙𝑖
𝑙0

. (24) 

To obtain the parameters of the usual Poisson, K-mixture, and negative binomial models for a 
normalized dataset in which each length of all the training documents is normalized to be 
exactly 𝑙0, we use following procedure. 

• The smoothed sample mean, eq. (7), is estimated from 𝑥0𝑖𝑗 given by eq. (23) 
instead of using the original count value, 𝑥𝑖𝑗. We use the notation 𝜆̂0𝑐𝑗 for the sample 
mean obtained in this manner, which expresses the sample mean of word occurrences of 
𝑡𝑗 over all the training documents in class 𝑐 for the normalized dataset. 

• The sample variance, eq. (14), is replaced with that using 𝑥0𝑖𝑗 and 𝜆̂0𝑐𝑗, and the 
resultant variance is denoted as 𝜎�0𝑐𝑗, indicating the sample variance of word 𝑡𝑗 in class 𝑐 
for the normalized dataset. 

• The parameters of the K-mixture distribution for the normalized dataset, 
denoted by 𝛽̂0𝑐𝑗 and 𝛼�0𝑐𝑗, are estimated by eqs. (12) and (13), respectively, by changing 
𝜆̂c𝑗 and 𝜎�c𝑗 to 𝜆̂0𝑐𝑗 and 𝜎�0𝑐𝑗. 

• The parameters of the negative binomial distribution for the normalized dataset, 
denoted by 𝑝̂0𝑐𝑗 and 𝑁�0𝑐𝑗, are estimated by eqs. (18) and (19), respectively, by changing 
𝜆̂c𝑗 and 𝜎�c𝑗 to 𝜆̂0𝑐𝑗 and 𝜎�0𝑐𝑗. 

The procedure for 𝐿1 normalization described above is computationally simpler than the 
procedure for the pseudo-document normalization presented below. 

2.5.2 Pseudo-document normalization 

This normalization method is basically the same as proposed by [17] and [18]. In this 
method, all the training documents belonging to class 𝑐 are firstly concatenated into a single 

huge document. The resultant length of this huge document is given by 𝐿 = ∑ 𝑙𝑖
∣𝐷𝑐∣
𝑖=1  where 𝑙𝑖 is 

defined by eq. (22) and |𝐷𝑐| the number of training documents belonging to class 𝑐. Then, the 
huge document is split into equally sized pseudo-documents, each of which has exactly 𝑙0 

URL: http://dx.doi.org/10.14738/tmlai.24.388  56 
 

http://dx.doi.org/10.14738/tmlai.24.388


Transact ions on  Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume  2 ,  Issue 4,  August 2104 
 

words. We then regard all the pseudo-documents obtained in this manner as the training set of 
normalized documents for class 𝑐  and reconstruct the document vector 𝑑𝑐𝑖  by counting 
occurrences of each word in each of the pseudo-documents. Since each of the pseudo-
documents has a predefined standard document length 𝑙0, we denote the component of the 
reconstructed vector as 𝑥0𝑖𝑗, which can be used in eqs. (7) and (14) to obtain the sample mean 
and the variance for normalized dataset without any corrections. (|𝐷𝑐| in eqs. (7) and (14), the 
number of training documents belonging to class 𝑐, should be reinterpreted as the number of 
pseudo-documents for this case.) Again, we denote the mean and variance as 𝜆̂0𝑖𝑗 and 𝜎�0𝑖𝑗, 
respectively. 

Estimating parameters of the K-mixture distribution for normalized dataset, 𝛽̂0𝑐𝑗 and 𝛼�0𝑐𝑗, 
and estimating those of the negative binomial distribution, 𝑝̂0𝑐𝑗  and 𝑁�0𝑐𝑗 , are also 
straightforward; explicitly, the estimation of these parameters can be achieved by using eqs. 
(12), (13), (18), and (19) directly with  𝜆̂0𝑖𝑗 and 𝜎�0𝑖𝑗 obtained from the procedures described 
above. 

2.5.3 Conversion of parameters for non-normalized test document 

We consider the case where we try to classify a test document having an actual word count 
𝑙. It has been shown that if we estimate the distribution parameters of the Poisson, K-mixture, 
and negative binomial distributions with a normalized dataset in which each document length is 
normalized to be exactly 𝑙0, then the parameters for the test document having the actual length 
𝑙 should be given as follows [1] : 

𝜆̂𝑐𝑗 = 𝑤 𝜆̂0𝑐𝑗,  (Poisson) (25) 

𝛼�𝑐𝑗 = 𝛼�0𝑐𝑗,   𝛽̂𝑐𝑗 = 𝑤 𝛽̂0𝑐𝑗,   (K-mixture) (26) 

𝑁�𝑐𝑗 = 𝑁�0𝑐𝑗,   𝑝̂𝑐𝑗 = 𝑤 𝑝̂0𝑐𝑗,  (negative binomial) (27) 

where the parameters with subscript 0 on the right-hand side are those estimated for the 
normalized dataset obtained through the 𝐿1  normalization or the pseudo-document 
normalization, and the parameters without subscript 0 on the left-hand side are those for the 
test document having the actual length 𝑙. In these equations, 𝑤 is the ratio of the actual length 

to the normalized length; that is, 𝑤 = 𝑙
𝑙0

. 

In the training phase of each classifier, we used one of the two normalization methods 
described above to obtain the parameters for the normalized dataset, and then in the test 
phase, eqs. (25)∼(27) were used to adjust the parameters to the values suitable for the non-
normalized test document. 
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3 EXPERIMENTAL EVALUATION 
To clarify the characteristics of the proposed three classifiers with the usual Poisson, K-

mixture, and negative binomial models, we performed text classification experiments using 
three standard document corpora. In the experiments, the performance of the proposed three 
classifiers is compared with that of the baseline multinomial naive Bayes classifier. 

3.1 Dataset 
In our experiments, we chose three different datasets that represent a wide spectrum of 

text classification tasks. 

The first one is the 20 Newsgroups dataset which was originally collected with a netnews-
filtering system [24] and contains approximately 20,000 documents that are partitioned nearly 
evenly across 20 different UseNet newsgroups. We use the 20news-18828 version from which 
cross-posts have been removed to give a total of 18,828 documents. (Original dataset is 
available from: http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.data.html. 
20News-18828 is available from: http://people.csail.mit.edu/jrennie/20Newsgroups/.) 
Consequently, 20 Newsgroups is a single-labeled dataset with approximately even class 
distribution, and the task is to apply one of the 20 possible labels to each test document. We 
build an initial vocabulary from all words left after stop word, punctuation, and number token 
removal. Uppercase letters are converted to lowercase letters and no stemming algorithm is 
applied. Here, words are defined as alphabetical strings enclosed by whitespace. The size of the 
initial vocabulary is 110,492 words. 

The second dataset is SpamAssassin which is available as part of the open-source Apache 
SpamAssassin Project 2 for public use. (The corpus is available online at 
http://spamassassin.apache.org/publiccorpus/.) It consists of email divided into three 
categories: “Easy Ham”, which is email unambiguously ham (i.e., not spam), “Hard Ham” which 
is not spam but shares many features with spam, and finally “Spam”. The task is to apply these 
three labels to test emails. We use the latest version of all datasets, and combine “easy ham” 
and “easy ham 2” datasets to form our Easy Ham dataset; similarly, “spam” and “spam 2” 
datasets are combined to form our Spam dataset. The preprocessing before building the initial 
vocabulary was the same as for the 20 Newsgroups. The resulting corpus is just over 6,000 
messages with an initial vocabulary of 151,126 words. 

The third test collection is the Industry Sector dataset which is a collection of corporate 
Web pages organized into hierarchical categories based on what a company produces or does. 
Although it has a hierarchy with three levels of depth, we do not take the hierarchy into 
account and use a flattened version of the dataset. This dataset contains a total of 9,555 
documents divided into 104 categories. (We obtained the dataset from 
http://www.cs.umass.edu/ mccallum/code-data.html. Because it was found that one of the 
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original 105 categories was empty, the remaining 104 categories having documents were used 
in our experiments.) We use all 9,555 documents in our experiments without removing the 
multi-labeled documents because the fraction of multi-labeled documents is very small and the 
effect of these documents is negligible. (Only 15 documents out of 9,555 belong to two classes; 
thus, they cannot affect our results considerably.) The largest and smallest categories have 105 
and 27 documents, respectively, and the average number of documents per category is 91.9. 
For this dataset, we remove HTML tags by skipping all characters between “<”and “>”, 
and we did not use a stop list. The resulting vocabulary has 64,202 words. 

For all three datasets, we use 10-fold cross-validation to make maximal use of the data. Ten 
obtained values of performance are averaged to give the final result. 

3.2 Feature selection 
To investigate the effect of vocabulary size on classification performance, we use a simple 

feature selection method based on the collection term frequency as follows. First, we count the 
collection term frequency, 𝐶𝐹, which is the total frequency of each word throughout the entire 
dataset. Then, we select all words that satisfy 𝐶𝐹 ≥ 𝑁0 where 𝑁0 is a predefined integer. The 
feature selection by 𝐶𝐹 is one of the simplest methods, but is sufficient for the task at hand, 
namely, comparing different classifiers at each vocabulary size. The resultant vocabulary sizes 
after feature selection are summarized in Table 1. 

Table 1: Vocabulary size obtained by feature selection with 𝑪𝑭. 

Feature selection 20 Newsgroups SpamAssassin 
Industry 
Sector 

Initial vocabulary 110,492 151,126 64,202 

𝐶𝐹 ≥ 2 64,065 53,886 37,634 

𝐶𝐹 ≥ 5 34,124 21,258 21,216 

𝐶𝐹 ≥ 10 21,697 12,749 14,317 

𝐶𝐹 ≥ 20 13,709 7,754 9,455 

𝐶𝐹 ≥ 50 7,314 3,869 5,329 

𝐶𝐹 ≥ 100 4,252 2,085 3,233 

𝐶𝐹 ≥ 200 2,180 1,077 1,770 

𝐶𝐹 ≥ 500 748 402 665 

𝐶𝐹 ≥ 1000 255 176 290 

Count-valued document vectors {𝑑𝑐𝑖} are constructed from document term frequency 
(number of occurrences of a considered word in a document) for each word in a vocabulary at 
each vocabulary level. Since we use the 10-fold cross-validation, 1/10 of the original count 
vectors {𝑑𝑐𝑖} are used as test vectors and the rest are used as original training vectors. In the 
training phase, the original training vectors are supplied to the three classifiers which normalize 
the training vectors by 𝐿1 normalization or pseudo-document normalization and then estimate 
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the distribution parameters. In addition to the two normalization methods, the distribution 
parameters without any normalization are directly calculated from the original training vectors 
to clarify the effect of document length normalization. To classify test vectors in the test phase, 
the classifiers use the three types of distribution parameters: those obtained without 
normalization, those obtained by 𝐿1 normalization and those obtained by pseudo-document 
normalization. 

3.3 Implementation issues 
All the classifiers used in this study are implemented in the Java programming language. 

Supplementary information is as follows: 

• For calculating the sample variance, we slightly modified eq. (14) for the 
following reason. The estimator of 𝑝𝑐𝑗, eq. (18), requires 𝜎�𝑐𝑗2 > 𝜆̂𝑐𝑗 to satisfy the constraint   
𝑝̂𝑐𝑗 > 0. To ensure that the constraint is satisfied, if 𝜎�𝑐𝑗2  calculated by eq. (14) is less than 
or equal to 𝜆̂𝑐𝑗, we always replace the original value of 𝜎�𝑐𝑗2  with 𝜎�𝑐𝑗2 =  𝜆̂𝑐𝑗 + ɛ in which a 
constant ɛ is set to 0.1 after a preliminary classification experiment on the 20 Newsgroups 
dataset. This happens when a considered word 𝑡𝑗 fails to appear in any of the training 
vectors for the considered class. In this case, 𝜎�𝑐𝑗2  calculated by eq. (14) is approximately 
equal to 𝜆̂𝑐𝑗2  and thus much smaller than 𝜆̂𝑐𝑗. 

• In 𝐿1 normalization, we use 𝑙0 = 1,000 for the normalized document length 
while in the case of the pseudo-document normalization, we set 𝑙0 = 100. The value of 
𝑙0 = 1,000 for 𝐿1 normalization was determined after a preliminary experiment on 20 
Newsgroups dataset (we tried 𝑙0 = 100, 1000, 10000 and found that 𝑙0 = 1000 gives the 
best classification performance.) , while 𝑙0 = 100 for pseudo-document normalization was 
determined to ensure a sufficient number of pseudo-documents for all categories in the 
three datasets used. 

• To compute the log of the gamma function in eq. (21), components available in 
the Apache Commons Mathematics Library (http://commons.apache.org/math/) are used. 

4 RESULTS 
As in our previous study [23], we also use the simplest measure of classification 

performance in this study, that is, accuracy, which is simply defined as the ratio of the total 
number of correct decisions to the total number of test documents in the dataset used. Note 
that for a single-labeled dataset and a single-labeled classification scheme as in this work, the 
micro-averaged precision and recall are equivalent, and hence equal to the F1 measure [25], 
which we call “accuracy” here. 

4.1 Effect of document normalization 
Figures 1, 2, and 3 show the performance of the classifiers for the 20 Newsgroups, 

SpamAssassin, and Industry Sector datasets, respectively. 

URL: http://dx.doi.org/10.14738/tmlai.24.388  60 
 

http://dx.doi.org/10.14738/tmlai.24.388


Transact ions on  Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume  2 ,  Issue 4,  August 2104 
 

In all these figures, the top-left plot (a) shows classification accuracy without normalization, 
the middle-left plot (b) shows classification accuracy with 𝐿1 normalization, and the bottom-left 
plot (c) shows classification accuracy with pseudo-document normalization. The plots on the 
right side in Figs. 1, 2, and 3 (i.e., plots (a’), (b’), and (c’)), show the same information as plots 
(a), (b), and (c), respectively, but with the horizontal axes on a logarithmic scale to show the 
lower vocabulary region clearly. Note that the accuracies of the multinomial classifier in each 
figure are identical in all plots (a)∼(c’), because 𝐿1 or pseudo-document normalization was only 
applied to the classifiers using the Poisson, negative binomial, and K-mixture models and was 
not applied to the multinomial naive Bayes classifier. In Figs. 1, 2, and 3, the accuracy curves of 
the multinomial classifier in plots (b) and (c), and those in plots (b’) and (c’) are thus simple 
replicas of those in plot (a) and plot (a’), respectively. 

 
Figure 1: Classification performance of examined four classifiers on 20 Newsgroups dataset. (a) and (a’) show 

the performance without document length normalization; (b) and (b’), with 𝑳𝟏 normalization; and (c) and (c’), 
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pseudo-document normalization. In (a), (b), and (c), the horizontal axes are linear while they are logarithmic in 
(a’), (b’) and (c’) in order to show the lower vocabulary region clearly.  

The reason for this special treatment of the multinomial naive Bayes classifier is that the 
estimated parameter 𝜃�𝑐𝑗 with eq. (3) for this classifier represents the probability of selecting 
the word 𝑡𝑗 at an arbitrary position of documents in class 𝑐 with any arbitrary document length. 
Similarly, the probability of the document 𝑑𝑐𝑖 for the multinomial naive Bayes calculated by use 
of eq. (2) is valid for documents in class 𝑐 with any arbitrary document length ∑ 𝑥𝑖𝑗|𝑉|

𝑗=1 ．On the 

other hand, when we calculate the probability of the document 𝑑 for the Poisson, K-mixture 
and negative binomial models by use of eqs. (8), (15) and (20), the document length of 𝑑 should 
be normalized to 𝑙0 , which is the document length used at estimating parameters. This is 
because the Poisson distribution describes the probability of count data occurring in a fixed 
interval, and as a consequence, the probability of 𝑥𝑖𝑗 occurrence of word 𝑡𝑗 given by use of eqs. 
(6), (11) and (17) for the Poisson, K-mixture and negative binomial models are, in a rigorous 
sense, only valid for the documents with fixed length 𝑙0. 
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Figure 2: The same as in Fig. 1, but for the SpamAssassin dataset. 

Based on the results shown in Figs. 1, 2, and 3, we first consider the effect of document 
length normalization on classification accuracy. The overall trends of the accuracy curves in 
these figures clearly indicate that the normalization of document length is fundamentally 
important to achieve better performance for the classifiers using the Poisson, negative 
binomial, and K-mixture models. Detailed observations are given below. 
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Figure 3: The same as in Fig. 1, but for the Industry Sector dataset. 

• For the 20 Newsgroups dataset, it can be seen from Figs. 1(a) and 1(a’) that the 
performance of the K-mixture and negative binomial classifiers without normalization are 
similar to that of the baseline multinomial classifier especially in the higher vocabulary 
region and that the Poisson classifier is apparently worse than that of the multinomial 
classifier for the non-normalized data. On the other hand, Figs. 1(b), (b’), (c), and (c’) show 
that the accuracies of the Poisson, K-mixture, and negative binomial classifiers are higher 
than that of the multinomial classifier for normalized data. 

• For the SpamAssassin dataset, the results are consistently the same or very close 
to those of the 20 Newsgroups dataset. Figures 2(a) and (a’) show that the K-mixture and 
negative binomial classifiers achieve accuracy similar to that of the multinomial classifier 
but the Poisson classifier fails to achieve that level of performance for non-normalized 
data. It is also confirmed from Figs. 2(b), (b’), (c), and (c’) that both types of normalization 
bring better performances to the classifiers using the Poisson, negative binomial, and K-
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mixture models than the one using the baseline multinomial model. The K-mixture 
classifier with pseudo-document normalization is the only exception and performs worse 
than the multinomial classifier does (Figs. 2(c) and (c’)).  

• The influence of document length normalization on classification accuracy is 
most evident for the Industry Sector dataset as seen in Fig. 3. Compared with the 
multinomial classifier, the Poisson, negative binomial, and K-mixture classifiers appear to 
give worse performance for non-normalized data (Figs. 3(a) and (a’)), while they perform 
better than the multinomial classifier does for normalized data especially in the higher 
vocabulary region (Figs. 3(b), (b’), (c), and (c’)). Again, the K-mixture classifier with pseudo-
document normalization (Figs. 3 (c) and (c’)) is the only exception and exhibits much worse 
performance than the multinomial classifier. 

In short, Figs. 1∼3 show that the document length normalization is effective for improving 
the performance with the Poisson, negative binomial, and K-mixture models. Although the 
degree of improvement differs by dataset, normalization typically achieves much better 
performance than that of the baseline multinomial classifier, in contrast to the case that non-
normalized data are used. 

In a comparison between the two different types of normalization, 𝐿1 normalization seems 
to bring about better improvement than pseudo-document normalization does, and this 
tendency is clearest for the K-mixture classifier, as seen in plots (b’) and (c’) of Figs. 2 and 3. The 
difference in the degree of improvement between the two normalization methods can be 
ascribed to the following reason. In the pseudo-document normalization, each term occurrence 
is treated as being equally important while in the 𝐿1 normalization, the event of a word 
occurrence has remarkably different weight according to the original document length. This is 
because, in the 𝐿1 normalization, the occurrence of a word in a short document more heavily 
weighted than the occurrence of the same word in a long document. The conversion of the 𝐿1 
normalization in this manner is reasonable and considered to bring about the better 
performance because, compared with long documents, short documents usually have fewer 
unnecessary terms that are irrelevant to the topic and the ratio of informative terms that 
represent a concept of the topic is higher.  

4.2 Comparative performance behavior 
In this subsection, we compare the four classifiers in term of classification performance. 

First, we consider the performance in the non-normalized case. Clearly, the multinomial 
classifier is the best performer when we use non-normalized data, as is clearly exhibited in plot 
(a’) of Figs. 1, 2, and 3. As for the other three classifiers in the non-normalized case, the 
negative binomial and K-mixture classifiers give similar performance and are superior to the 
Poisson classifier. Indeed, the negative binomial and K-mixture classifiers perform similarly to 
the multinomial classifier and apparently better than the Poisson classifier (Figs. 1(a), 1(a’), 2(a), 
and 2(a’)). The superiority of the negative binomial and K-mixture classifiers over the Poisson 
classifier for non-normalized data can be attributed to their flexibility in modeling text because 
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they can describe the overdispersion of word frequency which is often encountered in real 
texts but is not modeled well by the Poisson distribution. 

We next consider the cases where normalized data are used. The overall trends in the 
accuracy curves suggest that the Poisson, negative binomial, and K-mixture models achieve 
much better performance than the multinomial model for normalized data, as described in the 
previous subsection. To examine which model is best for normalized data, we further compare 
the three classifiers except the multinomial classifier on the basis of the results shown in Figs. 
1∼3. Observation of the six cases (3 datasets × two normalization methods) shows that the 
usual Poisson classifier performs best in two of six cases (Figs. 3(b’) and 3(c’)), the negative 
binomial performs best in one case (Fig 2(c’)), and they perform similarly in the other three 
cases (Figs. 1(b’), 1(c’), and 2(b’)). Therefore, the usual Poisson classifier appears to be the best 
performer, the negative binomial classifier is found to perform at a similarly high level, and 
compared with the K-mixture classifier, they are better for normalized data. These results raise 
the question as to why the usual Poisson model, which performs poorly for non-normalized 
data as described above, performs well for normalized data. In the next section, this question is 
discussed by considering the trade-off between fit and model complexity. 

5 DISCUSSION 
To examine the behavior of the usual Poisson, negative binomial, and K-mixture models for 

normalized datasets from a different perspective, we attempt to calculate the two most 
commonly used penalized model selection criteria, the Akaike’s information criterion (AIC) and 
the Bayesian information criterion (BIC), for the three datasets and we investigate the relation 
between these criteria and classification performance. In general, penalized model selection 
criteria are statistics of the form [26, 27] 

−2𝐿(𝜃�𝑀) + 𝑘𝑝𝑀, (28) 

where 𝜃�𝑀 is a parameters vector obtained by maximum likelihood estimation (MLE), 𝐿�𝜃�𝑀� is 
the log-likelihood, 𝑘 is a known positive quantity, and 𝑝𝑀 is the number of parameters in the 
model under consideration. The maximized log-likelihood obtained through MLE, that is, 
𝐿�𝜃�𝑀� in the first term of eq. (28), reflects the fit of the considered model to the observed data, 
while 𝑝𝑀 in the second term is regarded as a measure of the complexity of a considered model. 
The second term penalizes models for the number of parameters used. The two terms of eq. 
(28) thus pull in opposite directions, apparently expressing a trade-off between fit and model 
complexity. The penalized model selection criteria are intended to help select the best model 
from among several competing models, that is, a value of a criterion is calculated for each 
model under consideration, and the model with the smallest value is chosen as the best one. 

The two most commonly used penalized model selection criteria, the AIC and BIC, are 
defined as  [27-29] 

URL: http://dx.doi.org/10.14738/tmlai.24.388  66 
 

http://dx.doi.org/10.14738/tmlai.24.388


Transact ions on  Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume  2 ,  Issue 4,  August 2104 
 

𝐴𝐼𝐶 = −2𝐿(𝜃�𝑀) + 2𝑝𝑀, (29) 

𝐵𝐼𝐶 = −2𝐿(𝜃�𝑀) + 𝑝𝑀log𝑛, (30) 

where 𝑛 is the number of observations. The difference between their penalty terms seen in 
eqs. (29) and (30) arises from their different foundations [27]. In the following, we calculate AIC 
and BIC for each word 𝑡𝑗 for each class 𝑐 in the considered dataset by using 

𝐴𝐼𝐶𝑀(𝑐𝑗) = −2� log
∣𝐷𝑐∣

𝑖=1

𝑝𝑀�𝑥𝑖𝑗�𝑐� + 2𝑝𝑀, (31) 

𝐵𝐼𝐶𝑀(𝑐𝑗) = −2� log
∣𝐷𝑐∣

𝑖=1

𝑝𝑀�𝑥𝑖𝑗�𝑐� + 𝑝𝑀log|𝐷𝑐| (32) 

where ∣ 𝐷𝑐 ∣ is the number of documents belonging to considered class 𝑐, and the subscript 𝑀 
specifies the model and indicates Poisson, negative binomial, or K-mixture. In eqs. (31) and (32), 
𝑝𝑀�𝑥𝑖𝑗�𝑐� means the model-dependent probability of 𝑥𝑖𝑗  occurrences of word 𝑡𝑗  in the 𝑖th 
document of class 𝑐, and is given by eq. (6) for the Poisson, by eq. (11) for the K-mixture, and by 
eq. (17) for the negative binomial, respectively. Note that the parameters for each distribution 
model (i.e., 𝜆̂𝑐𝑗 for the Poisson, 𝛼�𝑐𝑗 and 𝛽̂𝑐𝑗 for the K-mixture, and 𝑁�𝑐𝑗 and 𝑝̂𝑐𝑗 for the negative 
binomial) are estimated from all the documents belonging to class 𝑐 in the considered dataset 
and are used to calculate 𝑝𝑀�𝑥𝑖𝑗�𝑐� for each model. We used the method of moments 
described in the previous section to estimate distribution parameters. (Parameters obtained by 
the method of moments do not coincide with those obtained by MLE in a strict sense. However, 
our experiences showed that an iterative calculation to obtain the MLE solution for the 
negative binomial parameters, which is given by [1], is not stable and can be easily affected by 
outliers. A similar trend was observed for MLE of the K-mixture parameters, and thus, we used 
the method of moments which offers more robust estimations.) Also, at the estimation of 
parameters and at the calculation of 𝑝𝑀�𝑥𝑖𝑗�𝑐�, all the documents are normalized by 𝐿1 
normalization with 𝑙0 = 1000. The number of parameters for each model, 𝑝𝑀, is set to be 
𝑝𝑃 = 1 (Poisson), 𝑝𝐾 = 2 (K-mixture) and 𝑝𝑁𝐵 = 2 (negative binomial). To compare the AIC and 
BIC values with the classification performances, a further step of averaging AIC and BIC over all 
categories is needed because the classification performance was obtained from entire 
documents of the considered dataset and thus reflect averaged classification accuracy over all 
categories. The averaged AIC and BIC for each word 𝑡𝑗 in the vocabulary are obtained through 

𝐴𝐼𝐶(Poisson / K − mixture / negative binomial, 𝑡𝑗) =  
1

|𝐶|�𝐴
∣𝐶∣

𝑐=1

𝐼𝐶𝑀(𝑐𝑗), (33) 
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𝐵𝐼𝐶�Poisson / K − mixture / negative binomial, 𝑡𝑗� =
1

|𝐶|�𝐴
∣𝐶∣

𝑐=1

𝐼𝐶𝑀(𝑐𝑗), (34) 

where |𝐶| is the number of classes in the considered dataset, and 𝐴𝐼𝐶𝑀(𝑐𝑗) and 𝐵𝐼𝐶𝑀(𝑐𝑗) are 
the AIC and BIC of word 𝑡𝑗 for class 𝑐 as given by eqs. (31) and (32), respectively. 

Figures 4, 5, and 6 show the scatter plots between two of three text models in terms of AIC 
and BIC for the 20 Newsgroups dataset, SpamAssassin dataset, and Industry Sector dataset, 
respectively. One data point in each plot of these figures corresponds to a word in the 
vocabulary of the considered dataset; we calculated the AIC or BIC for two different models by 
using eq. (33) or (34) and these values were used as the 𝑥- and 𝑦-coordinates of the data point. 

From overall trends in AIC and BIC depicted in Figs. 4, 5, and 6, we can find that an arbitrary 
pair among the three models which has a strong positive correlation with each other in terms 
of AIC and BIC. Another finding is that AIC and BIC behave fundamentally the same. This can be 
explained from eqs. (31) and (32) by noting that the number of parameters, 𝑝𝑃, 𝑝𝐾, and 𝑝𝑁𝐵, 
and the number of documents, |𝐷𝑐|, are common for all words in a given class of a dataset 
under consideration, and hence the difference between AIC and BIC is always a common 
constant for all words. 

 
Figure 4: Scatter plots between two of three text models in terms of AIC and BIC for the 20 Newsgroups 

dataset. (a) shows the correlation between the Poisson model and the K-mixture model in terms of AIC, and (b) 
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shows that between the Poisson model and the negative binomial model. (a’) and (b’) are the same as (a) and 
(b), respectively, but show BIC. In all cases, the vocabulary level used is 𝑪𝑭 > 𝟏𝟎 (21,697 words). 

 
Figure 5: The same as in Fig. 4, but for the SpamAssassin dataset. In all cases (a)∼(b’), the vocabulary level 

used is 𝐂𝐅 > 𝟏𝟎 (12,749 words). 

 
Figure 6: The same as in Fig. 4, but for the Industry Sector dataset. In all cases (a)∼(b’), the vocabulary level 

used is 𝐂𝐅 > 𝟏𝟎 (14,317 words). 
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Dotted diagonal lines in each plot of Figs. 4, 5, and 6 represent the function 𝑦 = 𝑥 and the 
numbers of data points satisfying 𝑦 > 𝑥 and 𝑦 < 𝑥 are depicted in each plot. For example, in 
Fig. 4(b’), the 𝑥 and 𝑦 axes represent the BIC of the Poisson model and that of the negative 
binomial model, respectively, and the number of words satisfying 𝐵𝐼𝐶(negative binomial) >
𝐵𝐼𝐶(Poisson) located in the upper half-plane over the dotted line in the plot area is ‘𝑛(NB>P) 
= 15459 (71.2%)’and the number of data points satisfying 𝐵𝐼𝐶(negative binomial) <
𝐵𝐼𝐶(Poisson) located in the lower half-plane is‘ 𝑛(NB < P) = 6238 (28.8%)’. The total of 
these two data points, 21697, gives the vocabulary of the 20 Newsgroups dataset chosen under 
the condition that 𝐶𝐹 > 10, as Table 1 shows. At first glance, the number of data points in the 
upper half-plane in Fig. 4(b’) seems to be much smaller than that in the lower half-plane; 
however, a closer look indicates that the data points located in the upper half-plane are much 
more densely plotted and hence there are more points in the upper half-plane. 

To compare the three models in terms of AIC and BIC, we tentatively use the numbers of 
data points in the upper and the lower half-planes. For example, from Fig. 4(b’), we find that 
the relation 𝐵𝐼𝐶(negative binomial) > 𝐵𝐼𝐶(Poisson)  holds for about 70% words in the 
vocabulary and therefore we can conclude that the Poisson model is more suitable than the 
negative binomial for the 20 Newsgroups dataset because the former gives smaller BICs for 
most words. We have made similar comparisons for each scatter plot in Figs. 4, 5, and 6 and 
have found that the comparisons in terms of BICs are qualitatively consistent with the 
classification accuracy described in the previous section. Table 2 summarizes our comparisons 
of three text models in terms of BIC. In the statements of comparison of text models in Table 2, 
for example, ‘ NB > K-mixture≳  Poisson’for the SpamAssassin dataset, NB means negative 
binomial and the symbols ‘>’and‘≳’should be read as “better than” and “better 
than or equivalent to”, respectively. We have tentatively used the following evaluation criteria 
to compare the models. For comparing the K-mixture and Poisson models, if the percentage of 
𝑛(K > P) is larger than 60% we conclude that ‘Poisson > K-mixture’, or if the percentage is 
less than 40% we conclude ‘K-mixture > Poisson’, and otherwise (the percentage is in the 
range of 40%∼60%) we conclude that ‘Poisson ≳ K-mixture’or ‘K-mixture ≳ Poisson’. 
The same evaluation criteria have been used for comparing the negative binomial and Poisson 
models. For comparing the K-mixture and negative binomial models, if the difference in the 
ratio between 𝑛(K > P) and 𝑛(NB > P) is more than 10%, then we conclude that one is better 
than the other; otherwise we conclude that one is better than or equivalent to the other. The 
rather loose criteria with a 20% range of tolerance described above arise from a consideration 
that the absolute values of the ratios 𝑛(K > P) and 𝑛(NB >  P) have a degree of uncertainty. The 
existence of this uncertainty is intuitively recognized from the fact that the ratio of, for 
example, 𝑛(K>P), calculated with AIC and that with BIC take different values by amount up to 
20%. Since we do not have enough evidence to prove that either the AIC or BIC is better than 
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the other, the ratio of 𝑛(K>P) should be considered to have the same degree of uncertainty. 
The comparisons of three text models are derived from the following considerations: 

• For 20 Newsgroups, 𝑛(K > P)=83.9% indicates that the Poisson model is better 
than the K-mixture model, 𝑛(NB > P)=71.9% indicates that the Poisson model is also better 
than the negative binomial model, and the comparison of 𝑛(K > P)=83.9% and 𝑛(NB > 
P)=71.9% leads us to conclude that the negative binomial model is better than the K-
mixture model. Thus the results are summarized as ‘Poisson > NB > K-mixture’ as 
shown in Table 2. 

• For SpamAssassin, 𝑛(K < P)=58.7% indicates that the K-mixture model is better 
than or equivalent to the Poisson model, 𝑛(NB < P)=80.8% shows that the negative 
binomial model is better than the Poisson model. Thus the results are summarized as ‘NB 
> K-mixture ≳Poisson’. 

• For Industry Sector, 𝑛(K > P)=92.5% indicates that the Poisson model is better 
than the K-mixture model, 𝑛(NB > P)=87.3% also means that the Poisson model is better 
than the negative binomial model, and the comparison of 𝑛(K > P)=92.5% and 𝑛(NB > 
P)=87.3% leads us to conclude that the negative binomial model is better than or 
equivalent to the K-mixture model. The results are summarized as ‘Poisson > NB ≳ K-
mixture’. 

Table 2: The percentages of words in the upper and lower half-planes in the scatter plots of BICs (plot (a') and 
(b') in Figs. 4, 5, and 6) and comparison of text models derived from the numbers of the data points. 

dataset 
K-mixture vs. Poisson NB vs. Poisson 

comparison of text models 
𝑛(K > P) 𝑛(K < P) 𝑛(NB > P) 𝑛(NB < P) 

20 Newsgroups 83.9% 16.1% 71.2% 28.8% Poisson > NB > K-mixture 

Spam Assassin 41.3% 58.7% 19.2% 80.8% NB > K-mixture ≳ Poisson 

Industry Sector 92.5% 7.5% 87.3% 12.7% Poisson > NB ≳ K-mixture 

 

Table 3 shows the classification performance corresponding to Table 2 and the comparisons 
of models in terms of classification accuracy. As seen in Tables 2 and 3, the result of comparing 
the three models in terms of BIC (Table 2) and that in terms of classification accuracy (Table 3) 
are reasonably consistent with each other, and the slight discrepancy is only that ‘K-mixture  
≳ Poisson’ for the SpamAssassin dataset in Table 2 is replaced with ‘Poisson ≳  K-mixture’ 
in Table 3. Of course, we can consider that this discrepancy is not a fundamental difference 
because there is some uncertainty in 𝑛(K>P) and therefore the comparison results in Tables 2 
and 3 are fundamentally the same. 
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Table 3: Comparisons of the three models in terms of classification accuracy. For each dataset, the 
vocabulary used is determined by the condition CF>10 and all the document vectors are normalized to 𝒍𝟎=1000 
by 𝑳𝟏 normalization. Values are shown as accuracy±𝛔 where 𝛔 is the standard deviation calculated through 10-
fold cross-validation. 

dataset 
classification accuracy 

comparison of text models 
Poisson K-mixture NB 

20 Newsgroups 88.11±0.61% 86.38±0.58% 87.51±0.62% Poisson > NB > K-mixture 

Spam Assassin 96.70±0.84% 96.33±0.63% 97.38±0.76% NB > Poisson ≳K-mixture  

Industry Sector 78.58±1.43% 73.63±1.30% 73.98±1.37% Poisson > NB ≳ K-mixture 

We now consider the meaning of the consistency between Tables 2 and 3 described above. 
By definition, an information criterion such as AIC and BIC having the form of eq. (28) indicates 
that given a finite quantity of data available for modeling, a model with a higher degree of 
freedom will have greater instability, resulting in reduced prediction ability [27]. The situation is 
very similar in classification tasks [30, chapter 4]. If we try to build a classification model that 
fits the training data too well in order to lower the training error, then the generalization error 
in classifying unknown test data becomes larger due to overfitting. In this sense, the log-
likelihood in eq. (28) corresponds to the degree of fitting in the training phase of classification 
and that represents how well the classification model fits the training data, and the second 
term of eq. (28) corresponds to the penalty for overfitting that will lead to misclassification in 
the test phase. The consistency between Tables 2 and 3 allows for an intuitive interpretation 
that both the degree of positive influence due to maximizing the log-likelihood with a precise 
description of the word distribution estimated through BIC and the degree of negative 
influence due to overfitting also estimated through BIC agree well with the actual trends, i.e., 
the actual amelioration and the deterioration in classification accuracy for the three models 
used. 

We next consider the reason why the usual Poisson model performs better for a normalized 
dataset than the K-mixture and negative binomial models do while it behaves worst among the 
three models for a non-normalized dataset. Figures 7, 8, and 9 show the scatter plots between 
the mean and variance for each word in a vocabulary for the 20 Newsgroups, SpamAssassin, 
and Industry Sector datasets, respectively. The plots labeled (a) in these figures show the case 
for non-normalized datasets and the plots labeled (b) show for the normalized cases using 𝐿1 
normalization with 𝑙0 = 1000. Comparing with plots (a) and (b), the positive correlation 
between the mean and variance appears to become stronger in the case of the normalized 
datasets compared with non-normalized datasets. In other words, when we want to describe 
the distribution of each word precisely, the mean and variance of each word are necessary in 
the case of a non-normalized dataset, while specifying both of these two values seems 
excessive in the case of a normalized dataset because these two values have strong positive 
correlation as seen in the plots labeled (b). This finding from Figs. 7, 8, and 9 can be 
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reinterpreted in terms of the number of model parameters needed to describe the word 
distribution because the mean and variance can be directly converted to 𝛼�𝑐𝑗 and 𝛽̂𝑐𝑗 for the K-
mixture model and to 𝑝̂𝑐𝑗and 𝑁�𝑐𝑗 for the negative binomial model. From the finding described 
above, we can deduce a possible explanation of the good performance of the usual Poisson 
models for normalized datasets as follows. For non-normalized data, specifying two parameters 
in the distribution model is necessary to obtain a large value of log-likelihood in eq. (28) and 
thus the models having two parameters, (i.e., the K-mixture and negative binomial models), are 
advantageous over the Poisson model for non-normalized data. On the other hand, using two 
parameters to describe the word distribution in normalized datasets is expensive in the sense 
that the effect of decreasing the information criteria by maximizing the log-likelihood with two 
parameters is restrictive and thus the influence of the penalty term becomes larger for 
normalized data. This situation makes the one-parameter Poisson model superior to the two-
parameter K-mixture and negative binomial models in the case of a normalized dataset. 

 
Figure 7: Scatter plots between the mean and variance of each word in a vocabulary for the 20 Newsgroups 

dataset. (a) shows the case of non-normalized data and (b) shows the case of normalized data by use of 𝑳𝟏 
normalization with 𝒍𝟎=1000. The vocabulary level used is CF>10 (21,697 words) and the means and variances are 
calculated from all the documents belonging to the ’alt.atheism’ category (the first category in alphabetical 
order) from the dataset.  

 
Figure 8: The same as in Fig. 7, but for the SpamAssassin dataset. The vocabulary level used is CF>10 (12,749 

words) and all the documents belonging to ’Easy Ham’ (the first category in alphabetical order) are used to 
calculate the mean and the variance of each word.  
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Figure 9: The same as in Fig. 7, but for the Industry Sector dataset. Vocabulary level used is 𝑪𝑭 > 𝟏𝟎 (14,317 

words) and all the documents belonging to ’accident.and.health.insurance.industry’ (the first category in 
alphabetical order) are used to calculate the mean and variance of each word. 

6 CONCLUSION 
The usual Poisson distribution and two well-known Poisson mixtures (the K-mixture and 

negative binomial distributions) have been utilized to build three types of generative 
probabilistic text classifiers. The classifier frameworks and assumptions used in constructing the 
classifiers were demonstrated with practical techniques for parameter estimation and 
document length normalization. The performance of the proposed classifiers was examined 
through experiments on automatic text categorization of the 20 Newsgroups, SpamAssassin, 
and Industry Sector datasets. For comparison, a classifier using the multinomial distribution 
(i.e., the standard multinomial naive Bayes classifier) was also applied to the same datasets. 

The results showed that, in the case of non-normalized datasets in which each document 
length is different from the others, the multinomial naive Bayes classifier performs best but 
that the classifiers with the K-mixture and negative binomial distributions perform similarly to 
the multinomial naive Bayes classifier; the Poisson classifier performs worst. On the other hand, 
the results for normalized datasets, in which each document is normalized to exactly the same 
length, showed that the three classifiers with the usual Poisson, K-mixture, and negative 
binomial distributions perform much better than the multinomial naive Bayes classifier. It was 
also shown from the results for the normalized datasets that the classifier with the Poisson 
distribution performs best among all the examined classifiers, even though the Poisson model 
gives a cruder description of term occurrence in real texts than the K-mixture and negative 
binomial models do. 

The origin of the superiority of the Poisson classifier for normalized datasets was discussed 
in terms of a trade-off between fit and model complexity. Through the discussion, we found 
that the Bayesian information criterion, which is one of the widely used information criteria, 
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can qualitatively give a reasonable description of model suitability that is consistent with the 
classification accuracy of the examined classifiers. 

At present, understanding of the relation between the information criteria and the actual 
classification performance is limited, although our results indicate a strong correlation. We 
consider that further quantitative analysis is needed before reaching a final conclusion, and 
such an investigation is planned for future research. 

 

We thank Dr. Yusuke Higuchi for useful discussion and illuminating suggestions. This work was 
supported in part by JSPS Grant-in-Aid (Grant No. 25589003). 
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