

DOI: 10.14738/tmlai.61.3861
Publication Date: 26th November, 2017
URL: http://dx.doi.org/10.14738/tmlai.61.3861

Volume 6 No. 1
ISSN 2054-7390

SOCIETY FOR SCIENCE AND EDUCATION
UNITED KINGDOM

TRANSACTIONS ON
MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

SportsBuzzer: Detecting Events at Real Time in Twitter using
Incremental Clustering

1Jeyakumar Kannan, 2AR. Mohamed Shanavas, 3Sridhar Swaminathan
1,2Department of Computer Science, Jamal Mohamed College, Tiruchirappalli, India;

3Department of Computer Science Engineering, Bennett University, Greater Noida, India;
meetjey@gmail.com; arms3375@gmail.com; sridhar.swaminathan@bennett.edu.in

ABSTRACT

In the recent past, twitter users are highly regarded as social sensors who can report events and Twitter
has been widely used to detect social and physical events such as earthquakes and traffic jam. Real time
event detection in Twitter is the process of detecting events at real time from live tweet stream as soon
as an event has happened. Real time event detection from sports tweets, such as Cricket is an interesting,
yet a complex problem. Because, an event detection system needs to collect live sports tweets and should
rapidly detect key events such as boundary and catch at real-time when the game is ongoing. In this paper,
a novel framework is proposed for detecting key events at real time from live tweets of the Cricket sports
domain. Feature vectors of live tweets are created using TF-IDF representation and tweet clusters are
discovered using Locality Sensitive Hashing (LSH) where the post rate of each cluster based on the volume
of tweets is computed. If the post rate is above the predefined threshold, then a key event recognized
from that cluster using our domain specific event lexicon for Cricket sports. The predefined threshold
helps to filter out small spikes in the tweets volume. The proposed real-time event detection algorithm is
extensively evaluated on 2017 IPL T20 Cricket live tweets using ROC evaluation measure. The
experimental results on the performance of the proposed approach show that the LSH approach detects
sports events with nearly 90% true positive rate and around 10% false positive rate. The results have also
demonstrated the influence of different parameters on the accuracy of the event detection.

Keywords: Social media; Twitter; Sports event detection; locality sensitive hashing; incremental
clustering.

1 Introduction
Communication between people in modern world is now happening digitally through online social media
such as Facebook and Twitter, with the use of high speed internet, web and mobile technologies. Online
social media have drastically changed the way of communication between people, groups, and
communities [1]. Users of these social media often share information and express individual as well as
collective opinions on different issues in the world. Microblogging services such as Twitter is one such
form of famous and most widely used social media where diverse group of users share small digital
content such as short texts, links, images, or videos [2]. Twitter allows people to share the content in the
form of a short text called Tweet which is no longer than 140 characters, quickly and easily to the rest of
the world. Tweets shared by the people contain diverse information such personal opinions, news, general

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 2

information based on their individual behaviors and interests [3]. In a way, this makes the social media
users as sensors which share information to the world.

Despite being a medium for users’ personal information, Twitter also helps people, groups and
organizations to be well informed with live information around the world. Precious knowledge can be
gained by monitoring and analyzing the Twitter content continuously. Numerous organizations have now
started exploiting Twitter to analyze customers’ opinion on their products and services using sentiment
analysis. Other than business related applications, Twitter has also become an easier source of
information for societal related applications such as retrieval of real-life events, viral news content,
prediction of election results and crimes. Recent studies have found that the information provided by
human sensors in Twitter can be exploited for detection of real-life events. Due to a large volume of
Twitter data and redundancy among Tweets representing the same events, an automation of event
detection becomes inevitable.

Recent research has found that major social and environmental events such as earthquakes, deaths of
celebrities, and elections can be detected using Twitter [4]. Unlike a regular Television and paper based
news medium, reporting of events and news is rapid and quick in the Twitter social media where the
information reaches out rest of the world within few seconds. Hence Twitter can be exploited for real
time event detection. Real time detection of events has lot of real-life applications in catastrophic
situations, politics, entertainment, etc. In addition to the challenges in event detection such as limited
length of tweets, rumors, noises like grammar errors, typos and abbreviations, real time event detection
is considered much more challenging and complex due to a difficulty in the collection and processing of
large volume of Twitter data.

Whilst several event detection approaches based on strategies ranging from term interestingness to topic
modeling have been proposed these years, these approaches suffer from high computational cost. Even
though research on event detection has been studied well for over a decade, only a limited number of
research work have been carried out in the domain of sports. Unlike detection of general events with high
profile and global interests, sports event detection is targeted at the detection of events happening within
a game by considering a burst of tweets in a smaller scale at a specific time, where traditional event
detection approaches are slower and fails to cope with theses scalability issues. In addition, the research
on event detection in sports domain focused mostly on NFL soccer game and used offline twitter datasets.
Only a few recent research work have aimed to detect key events from NFL games at real-time. However,
there is no research work on real-time event detection for Cricket sports. Other than the common
challenges involved in generic real-time event detection, Cricket event detection poses additional
challenges due to large volume of tweets representing Cricket events that happen frequently and rapidly
almost every minute during the game.

In this research work, we study the problem of event detection at real time from live Cricket tweets. We
propose a novel event detection approach by adopting LSH technique [5] for the domain of Cricket sports.
For the incoming live tweets, feature vectors are computed using TF-IDF scores and clustered into
different buckets that are indexed on tweet signatures. An event is detected from each active cluster
leveraging post rate and is recognized utilizing our Cricket event lexicon. The architecture of the proposed
event detection framework is depicted in figure 1.

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 3

Figure 1. System architecture of SportsBuzzer

Our work is unique in a way that we apply LSH to the domain of Cricket sports where events are reported
frequently for every minute. To the best of our knowledge, ours is the first of its kind that adopts LSH for
sports with rapid events like Cricket, for discovering tweet clusters at real-time from huge volume of live
tweets. The major contributions of this paper are summarized as follows:

1. Unlike previous approaches which used offline datasets and focused on NFL games, we present a
novel approach which detects events rapidly in real-time from live Cricket tweets based on LSH
and event lexicon. Our approach is computationally fast as it adopts LSH technique to discover
tweet clusters. Since similar tweets of a particular event will fall into the same bucket, duplicate
events are greatly reduced.

2. Similar to NFL soccer sports, Cricket has been one of the popular sports and attract a lot of viewers
to the game. Since many viewers post tweets of key events, a widely agreed event lexicon for
Cricket sports will help future research. Therefore, we propose an event lexicon that has not been
reported before in any previous literature. The event lexicon represents 37 key events for the
Cricket sports.

The rest of the paper is organized as follows. In section 2, we survey the related work on Twitter event
detection. We introduce our data collection method and tweet preprocessing steps for creating feature
vectors in section 3. In section 4, we construct signatures to represent tweet feature vectors in LSH. We
describe our LSH based real-time event detection method in section 5 and examine the performance of
the proposed approach in section 6. Finally in section 7, we conclude the paper and describe our future
work.

2 Related Work
A considerable number of recent research work can be found in Twitter event detection. Based on the
domain of which events occur, event detection approaches can be generally classified into different
categories such as social, political, environmental, and sports event detections. Recent approaches on
event detection can be categorized based on the different classes of solution such as term-interestingness
based, incremental clustering based, topic modeling based and frequency based approaches [6]. The
readers are recommended to refer to some recent surveys [2, 6] for more detailed comparison of
approaches on Twitter event detection. However, recent research on twitter event detection is discussed
in this section.

Previous work in twitter event detection focused mostly on detecting physical and social events. Sakaki et
al [7] and Qu et al [8] aimed to detect earthquake incidents using Twitter. In another work, Vieweg et al
[9] studied detection of natural events such as grassfire and floods using microblogs. TwitterStand [10]
clustered tweets to discover news topics from the Twitter data. Sakaki et al [11] proposed an approach

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 4

for detecting events such as earthquakes and typhoons where the authors exploited SVM which is trained
on manually annotated Twitter data containing positive and negative tweet samples. Popescu and
Pennacchiotti [12] analyzed public discussions happening in Twitter for detecting controversial events
related to celebrities. In a related work [13], the authors proposed concert event detection based on
factor graph model where the clusters representing events are formed automatically and a canonical
value is produced for each event. One of the main drawbacks of the approaches discussed so far is that
they detect events from Twitter only several minutes after the actual event.

Becker et al [14] proposed an approach for detecting planned events from twitter data which is filtered
using precise queries representing the events where the queries are formed by combining simple rule-
based query building strategies. Becker et al. [15] proposed a centrality based approach for extracting
high-quality and useful Tweets that are related to different events. The authors in [16] proposed an event
detection approach based on generative language modeling using quality indicators of microblogs where
query expansion is used to collect messages from microblogs. Weerkamp and de Rijke [17] extracted
quality indicators which are useful for event detection such as different emoticons, tweet post length,
expressions, word capitalization and URLs. Gu et al. [18] proposed an N-gram based event modeling
approach called ETree which uses content analysis approaches for grouping large volume of tweets.

Some approaches exploit geo-locations associated with the tweets for event detection. Valkanas and
Gunopoulos [19] proposed an event detection system which clustered users based on their geo-locations
where the event detection is achieved by monitoring a sudden change in the emotional state of the user
groups. Lee and Sumiya [20] proposed a geo-social event detection system which detects local festivals
based on modelling and monitoring of crowd behavior in Twitter. The approach analyzes the regularity in
geographical locations using geo-tags of the twitter data.

Since words and their frequencies in tweets are highly correlated to the specific events in general, several
term interestingness based approaches have been proposed. Twevent [21] detects nontrivial word
segments using statistical information of continuous and non-overlapping word segments in tweets.
Bursty event segments are extracted using a fixed window based frequency detection approach where
relevant event segments are clustered to filter events based on newsworthiness score using Wikipedia
sources. TwitInfo [22] detects spikes in the twitter data and labels them automatically using meaningful
and most frequently occurring terms. Gathering of initial tweets are achieved using input keywords from
the user where the relevant tweets are crawled. Finally the peaks in the large twitter volume are labeled
as sub-events by the system.

TwitterMonitor [23] system detects emerging topics by considering whether high frequency terms co-
occur within a small time window that has tweets with bursty terms, and finally applies a greedy strategy
to generate groups to reduce computational costs. In a similar system enBlogue [24], emerging topics are
detected by measuring window based tag pair statistics where tag correlation shifts in unusual manner
are marked as emerging topics. Weng and Lee [25] developed an event detection system EDCoW,
exploited analysis of wavelet on word frequencies by calculating new features of words. The authors in
[26] aimed to detect emerging topics in Twitter by comparing the frequency of current words and previous
words using a directed graph comprising terms that belong to emerging topics.

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 5

Some previous work exploit the concept of topic modelling for event detection in Twitter. In an event
detection system TwiCal [27], structured representation of important events are extracted from the
twitter stream using a latent variable based model for open-domain event detection. A similar system
called LECM (Latent Event and Category Model) [28] utilizes semantic concepts to classify different types
of events. Hannon et al. [29] exploited post rate of tweets to produce highlights of a World Cup game in
an offline mode. However their system was not able to detect the specific events from the game.
Chakrabarti and Punera [30] utilized Hidden Markov Models which are trained for representing events in
a game. It should be noted that most of the previous work in the domain of sports have not focused on
real-time event detection.

Incremental clustering algorithm [31] is utilized for detecting events from Twitter stream where the
similarities between a tweet and event clusters are computed for identifying newsworthy events using
SVM. Named Entity Recognition was exploited [32] for event detection and tracking where bursty events
are detected using named entities in tweets. Few approaches [33], [34], [35] exploited Locality Sensitive
Hashing to measure the novelty of a tweet by comparing with previous tweets. Based on the novelty of a
tweet, it is further processed for new event detection.

It can be seen that the event detection is accomplished using different strategies. The earlier approaches
focused more on detecting physical and social events such as celebrity events, natural disasters, elections
etc. Few approaches exploited the network features such as geographical locations of the tweets while
others used strategies such as measuring term interestingness and exploiting topic modeling for event
detection. It should be noted that most of these previous work were performing event detection on offline
datasets. Even though a few work have been carried out in the domain of sports mainly focusing on NFL
soccer games, there is no previous work on event detection for Cricket sports, to the best of our
knowledge.

3 Preprocessing of sports tweets
With a length of just 140 characters, Twitter has the shortest delay in delivering user comments to citizens,
compared to other social media platforms such as blogs. As tweets are highly noisy, which contain URLs,
mentions, replies and others, preprocessing has been a fundamental step in detecting key events from
live tweet streams.

3.1 Collecting live tweets
Cricket fans and audience of a live game post tweets about interesting moments throughout game time.
So, these twitter users can be considered as sensors who can deliver current updates about key events
(e.g. Boundary, Sixer, Catch) in a game at real-time. SportsBuzzer relies on and leverages these sensors to
collect data and perform robust detection and recognition of key events at real-time.

SportsBuzzer requires live tweets which can be filtered based on some relevant keywords and without
any maximum limit for streaming. Hence, Streaming API of Twitter (www.twitter.com) is the most suitable
type of data collection for our real time event detection task. With the help of Streaming API, we will be
able to collect live tweets continuously, based on the scope of events such as hashtags. For instance, we
have used a keyword RCBvRPS to stream all live tweets at real-time when the game was ongoing. The
keyword RCBvRPS denotes an IPL T20 cricket game between the teams Royal Challengers Bangalore (RCB)
and Rising Pune Supergiant (RPS) that was held during April 2017 in India. Our SportsBuzzer runs

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 6

continuously collecting tweets without any break during the entire game time, detects events from tweets
at real-time and also archives all gathered tweets in JSON format for later offline analysis.

3.2 Removing noise from tweets
Figure 2 depicts the work flow of converting a raw cricket tweet into a feature vector. The feature vector
will be used as input for the clustering process. The creation of a feature vector consists of two steps -
preprocessing a given raw tweet and preparation of the feature vector from the preprocessed tweet. In
the preprocessing step, a set of features (i.e. unigrams) are extracted from each tweet. For simplicity, only
unigram features from a tweet are considered in this work. Later, each preprocessed tweet is converted
to its equivalent feature vector. Both steps are explained below in greater detail.

Figure 2. Work flow for building tweet feature vector

The preprocessing step eliminates noise which reduces the accuracy of an event detector. Here, each
tweet is first tokenized into a sequence of terms. Only tweets posted in English are considered for further
processing. In Information Retrieval (IR), the most commonly occurring words in a text document are
called stop words. The tokenized tweet is checked against a standard stop word list. The list of stop words
from Python’s Natural Language Tool Kit (NLTK) is used to eliminate all terms that are least meaningful
and less contributing to event detection. For instance, articles in English such as a, an and the are removed
from tweets. The URLs and all token starting with ‘@’ (i.e. a mention or reply) are also removed from the
raw tweets. Tokens that contain only alphanumeric characters are treated as valid tokens. At the end of
this process, each tweet has only features that will be included in the vector space model.

3.3 Creating tweet feature vector
Mathematically, a vector is represented by its direction and magnitude. Many term weighting schemes
use values or magnitudes to represent the features of a text document such as tweet. Term Frequency -
Inverse Document Frequency (TF-IDF) has been one of the most fundamental term weighting schemes in
IR, which is used to represent the features of a tweet as numerical values. TF-IDF is formally defined as a
product of term frequency (TF) and inverse document frequency (IDF). Here, TF represents the importance
of a term in a document and IDF represents the importance of the term in the entire document corpus.
The TF-IDF weighing scheme assigns weight to term w in document d using equation 1 and 2 [36]:

𝑡𝑡𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤,𝑑𝑑) = 𝑡𝑡𝑡𝑡(𝑤𝑤,𝑑𝑑) ∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤) (1)

𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁
𝑑𝑑𝑑𝑑(𝑤𝑤)

 (2)

Here, 𝑡𝑡𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤,𝑑𝑑) is known as TF-IDF weight of a term w in document d. The term frequency 𝑡𝑡𝑡𝑡(𝑤𝑤,𝑑𝑑)
represents the number of times the term w occurs in a document d. The inverse document frequency
𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤) helps to scale down the term frequency of w, if the term w occurs in almost all documents in a

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 7

data corpus. Here, N is the number of documents in a data corpus and 𝑑𝑑𝑑𝑑(𝑤𝑤) denotes the number of
documents in which the term w occurs at least once. Then, the features of a tweet are mapped to the
vocabulary in order to generate the tweet feature vector where TF-IDF weight is assigned to a vocabulary
term that appears in the tweet. For simplicity, we keep our vocabulary as a static dictionary.

4 Incremental Clustering of sports tweets
In this section, we first describe the problem of finding nearest neighbors and approximate nearest
neighbors. Then, we examine the suitability of locality sensitive hashing for the incremental clustering of
tweets. Incoming live tweets have to be represented as feature vectors so that they can be clustered in
LSH. We finally explain the process of construction of signatures for tweet feature vectors which are the
indices for the LSH approach.

4.1 Approximate nearest neighbors
Given a set of N points P = {P1,P2,P3,…,PN} represented as a matrix M and a query point Q, a nearest
neighbor search finds a point in P that is closest to Q ∈ M [5]. In case of vector space model, points are
documents and a query point is the document to be searched. The nearest point to a query point can be
found by simply computing the distance between all points in P to Q and selecting the one point Pi ∈ P
which is the closest to Q. The nearest neighbour approach is computationally expensive for high
dimensional data such as documents represented in vector space model. This problem is known as Curse
of Dimensionality [5].

To alleviate this problem, a variation known as Approximate Nearest Neighbour (ANN) search was
proposed. The ANN search finds an approximate nearest neighbor point P' in P that is the closest to Q
within a radius r, as shown in equation 3.

∀𝑃𝑃′ ∈ 𝑃𝑃,𝑑𝑑(𝑃𝑃′,𝑄𝑄) < (1 + 𝜀𝜀)𝑑𝑑(𝑃𝑃′,𝑄𝑄) (3)

Here, 𝑑𝑑(𝑃𝑃′,𝑄𝑄) is the distance between 𝑃𝑃′ and 𝑄𝑄 and (1 + 𝜀𝜀) is a constant factor [5]. Locality Sensitive
Hashing (LSH) [5] is a popular approach to address the problem of ANN search. In this paper, we have
adopted LSH technique to find tweet clusters from which events are detected by computing the post rate
of a cluster. Once an event is detected, then it is recognized using the event lexicon of Cricket sports.

4.2 LSH for incremental clustering
The LSH technique has been applied to information retrieval, pattern recognition, dynamic closest pairs
and fast clustering problems [5]. The key idea of LSH is to apply hash functions in such a way that the
probability of collision is much higher for similar objects than for dissimilar objects [5], i.e. the objects
close to each other will most likely fall into the same bucket. Intuitively, a hash function is locality sensitive
if two points that are close under the similarity distance measure are more likely to collide.

In LSH, initially a set of points will be preprocessed and stored into L number of buckets. Each point is
hashed using k hash functions and stored in L buckets. The concept of bucket can be implemented in
several ways. Hash table is an obvious choice for representing a bucket. The hash value of data points acts
as an index of a hash table. With the hash value of a query point q, all buckets are searched to retrieve
the points that are similar to q. The similarity distances between q and each of the retrieved similar points
are computed and the one point that is close to q is selected as a nearest neighbor for the query point q.
The LSH scheme proposed by Charikar [37] applied cosine similarity metric to compute the similarity
between two document vectors, where cosine similarity is a dot product of feature vectors normalized by

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 8

their norms. The cosine similarity will become 1 if the document vectors are parallel and 0 if the document
vectors are orthogonal to each other.

4.3 Signature for tweet feature vector
Traditional event detection methods do not provide sufficient solutions to handle the exponentially
growing social media streams where LSH has become a successful solution for processing these large data
streams. The LSH approach applies hash functions such that the probability of collision, i.e., falling into
the same bucket, is much higher for similar tweets than that of dissimilar tweets. The gap between two
dissimilar tweets should be larger enough so as to prevent the collision of dissimilar tweets into the same
bucket. In this research, our proposed methodology for discovering clusters of tweets uses hash table
based LSH for computing the nearest neighbours.

We adopt the LSH approach proposed by Charikar [37] that defines a hash function h to generate a k-bit
signature for the tweet feature vector. The hash function (equation 4) computes the dot product between
the tweet feature vector u and m-dimensional random unit vector r and retains the sign of the resulting
product. Each dimension in r is drawn from Gaussian distribution with mean 0 and variance 1.

ℎ(𝑢𝑢) = �1, 𝑖𝑖𝑖𝑖 𝑟𝑟.𝑢𝑢 ≥ 0
0, 𝑖𝑖𝑖𝑖 𝑟𝑟.𝑢𝑢 < 0 (4)

The k-bit signature reduces the dimension of the original tweet feature vector. As it is a low dimensional
vector, LSH approach clusters large number of tweet vectors very fast. Charikar applied cosine similarity
metric to compute the similarity between two document vectors and is defined in equation 5.

cos�𝜃𝜃(𝑢𝑢, 𝑣𝑣)� = cos�(1 − Pr[ℎ(𝑢𝑢) = ℎ(𝑣𝑣)])𝜋𝜋� (5)

Here, 𝜃𝜃(𝑢𝑢, 𝑣𝑣) is the cosine angle between the vectors 𝑢𝑢 and 𝑣𝑣 and is proportional to the hamming distance
of their signature vectors while preserving the cosine similarity in high dimensional space. Pr[ℎ(𝑢𝑢) = ℎ(𝑣𝑣)]
is the probability that a random hyper plane separates two vectors, which is proportional to the cosine
angle between them. The hamming distance is the number of bits that differ between two binary vectors.

5 Proposed Approach
In this section, we first describe our proposed approach for real-time Cricket event detection. We utilize
locality sensitive hashing method for implementing the online incremental clustering of sports tweets.
With the detected clusters, key events are recognized by leveraging our event lexicon. While game
spectators would continue to tweet about the same event for a long time, our detector would alert it
repeatedly, assuming a new event. Hence, we also elaborate on handling duplicate event alerts.

5.1 Event detection using LSH
Our event detection framework SportsBuzzer, strives to analyze cricket tweet streams to detect events,
such as boundary and sixer, accurately and as early as possible. We utilize locality sensitive hashing
method to cluster event related tweets at real time. Post rate of a cluster will be computed by considering
the volume of tweets at a given time. If it is above a predefined threshold, an event is declared detected.
We delete the cluster once an event is detected from it. The particular event will be recognized by
analyzing the representative tweets from a cluster. An event that has occurred most number of times in

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 9

those selected tweets, is the recognized event. The proposed algorithm for LSH based event detection
and recognition is depicted in figure 3.

Input: Live tweets, similarity threshold ST, buckets L, signature length K, post rate T
Output: Event name and its tweets
1: create event lexicon for pre-determined event types
2: build TF-IDF based dictionary Ɒ using lexicon
3: for each bucket i ϵ L do
4: create hash table ht[i]
5: create random vector rv using Gaussian distribution
6: end for
7: repeat
8: for each incoming tweet t do
9: construct tweet feature vector tv for t using Ɒ
10: create k-bit signature ts for tv
11: for each bucket i ϵ L do
12: get collision for ts
13: add tv with key ts in ht[i]
14: end for
15: get nearest neighbor NN for tv from collisions
16: if similarity(tv, NN) < ST then
17: create new cluster c
18: addTweetVectorToCluster(tv, c)
19: else
20: if tv not in NN’s cluster cNN then
21: addTweetVectorToCluster(tv, cNN)
22: end if
23: end if
24: end for
25: until connection closed

26: for each cluster c ϵ C do
27: if postRate(c) > T then
28: get text of all tweets in cluster c
29: select an event with highest document frequency using lexicon
30: display event name and its tweets using lexicon
31: delete cluster c
32: end if
33: end for

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 10

Function: addTweetVectorToCluster(tv, c)

1: c.tweetFrequency += 1
2: c.tweetVector += tv

Function: postRate(c)
1: sort timestamps of tweets based on c.tweetFrequency
2: cFirst ← count(tweets) in first half timestamps
3: cSecond ← count(tweets) in second half timestamps
4: return cSecond / cFirst

Figure 3. Proposed algorithm for LSH based key events detection

To improve the fidelity of the detector, we do not consider clusters that contain a single tweet. Similarly,
we delete all clusters whose life span is more than five minutes, because we expect an event might occur
within five minutes itself in Cricket sports. An important requirement for a real time event detection
system is that it should detect and report events in near real time to the needy people. Our online
incremental clustering approach clusters similar tweets together so as to detect and recognize key events
quickly. To obtain the optimal post rate, similarity threshold, number of buckets and number of hash
functions, we iterate our incremental clustering method with different parameter values. Because, the
choice of these values impact the accuracy of the event detection. The evaluation results with different
parameter setup will be explained in detail in section 6.

5.2 Lexicon-based event recognition
Once the post rate of a cluster is above the predefined threshold, SportsBuzzer assumes that some event
has occurred in that cluster. The event recognizer then identifies the specific event in that cluster based
on document frequency measure. The document frequency of each key event is computed in a case
insensitive way, considering all tweets in the middle timestamp of the particular cluster. The event
recognizer selects an event which has the highest document frequency and declare that event a winner.
It should be noted that the document is characterized by the representative tweets of a cluster.

For an accurate event recognition, it is crucial that we design a domain specific lexicon describing all game
terminologies for Cricket sports. Two important requirements should be considered while designing the
lexicon. The event names should be more descriptive, as every game viewer tweets about the same event
in different ways, using different words. Every game viewer just uses the event name to describe the
happening of an event, because of the limited size of a tweet. Our event lexicon (a portion of which is
shown in figure 4) describes 37 Cricket sports events, such as bowled out, run-out, lbw and leg bye. The
lexicon is populated with different event terminologies collected from ESPNCricInfo
(www.espncricinfo.com/ ci/content/story/ 239756.html) website.

BOUNDARY = ['boundary', 'four', 'fours', '4']
SIXER = ['sixer', 'six', '6']
CATCH = ['catch', 'c']

Figure 4. Lexicon for few events of Cricket sports

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 11

Our event lexicon is easy to implement and a better choice for a real time event detection from live tweets.
Because, it does not require any training for the event recognition as required by other statistical event
recognition models. Furthermore, there are real time applications which do not have training data such
as celebrity deaths and terrorist attacks. Therefore, it is very practical to adopt lexicon based approach
for event recognition.

5.3 Preventing duplicate event alerts
Duplicate event is an event that is repeatedly reported as a new event for a long time, even after the
actual event has occurred a long back. The LSH algorithm groups tweets of an event such as boundary,
into the same cluster until that event is detected (i.e., the post rate of that cluster is above the threshold).
New cluster will not be created until a new tweet is sufficiently dissimilar from existing clusters. Thereby,
all similar tweets will go into the same cluster and thus an event alert happens only once.

Nevertheless, there is still an issue with the duplicate event reporting. After an event is detected and
reported for a cluster, the cluster will be deleted. Sometimes, because of the intense discussion of the
current event among the audience of the game, a new cluster will be created once again for the same
event based on the new set of tweets describing the same event. Hence, the event detector will report
this duplicate event as a new event. We solve this problem by comparing the timestamp of an event that
is already reported with the timestamp of the new cluster. If the time difference of these two timestamps
is less than 60 seconds, then we ignore the new cluster and do not alert this event as a new event. Our
assumption is that an event of the same type cannot happen once again within 60 seconds. Because, in
cricket sports, an over containing six balls should be delivered within 5 to 6 minutes. So, the process of
bowling and batting should be finished within an average time frame of 60 seconds.

6 Experimental Results
In this section, we will present the experimental results of the proposed Cricket key events detection
approach. We evaluate the SportsBuzzer approach using tweets of IPL T20 2017 cricket sports. The
proposed approach has been implemented in Python and Pika. The evaluation proves that LSH based
event detection method can detect events with more than 90% true positives and less than 10% false
positives. We will now present the data set, evaluation criteria and parameter setup and evaluation
results.

6.1 Dataset
Twitter’s Streaming API was used to crawl live tweets at real time using official hashtags of games provided
by Indian Premier League (www.iplt20.com) in 2017 IPL T20 season held during April 2017 in India. Our
dataset collection includes tweets of 44 games with a file size of over 6GB. Out of these games, we
selected a game RCBvsRPS held on 16 April 2017 as it was considered an interesting and most anticipated
match. Table 1 shows the description of RCBvRPS game.

Table 1. Game statistics of RCBvRPS

RCBvRPS
game

Total Total min Mean (re)tweets
per min

Min (re)tweets
per min

Max (re)tweets
per min

Standard deviation

Tweets 34967 232 150.72 38 354 67.4779909455
Retweets 16162 232 69.664 13 176 34.4786150528

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 12

Figure 5 depicts the tweet post rate of RCBvRPS game. It shows that the volume of tweets posted during
the end of the game is high. Also, it contains several exciting moments throughout the game time.

Figure 5. Post rate of tweets of game RCBvRPS

We have collected ground truth of all events from IPL live commentary site (www.iplt20.com). We have
also cross-verified the time of each event with other live commentary websites. Table 2 shows the
description of ground truth events for the RCBvRPS game.

Table 2. Summary of events in ground truth

Game No. of ground truth events No. of Boundaries No. of Catches No. of Sixers Other events
RCBvRPS 81 24 6 9 42

6.2 Evaluation Criteria and Parameter Setup
Using all 24 boundaries, 9 sixes and 6 catches happened in the RCBvRPS game of 2017 IPL T20 cricket
season, we illustrate the effectiveness of our LSH-based event detection method using Receiver Operating
Characteristics (ROC) curves.

The results generated by our event detector are compared against the ground truth of RCBvRPS game.
We define four evaluation windows with different times namely 1min, 5min, 10min and 15mins for
comparison. Accordingly we compute the number of hits and misses for each evaluation window. A
detection is considered a hit if the detected event is reported within a particular evaluation window,
otherwise it is a miss.

Like any binary classifier, our detector can make two types of errors: reporting an event when nothing
happens (i.e., false positive) and reporting nothing when an event happens (i.e., false negative). True
Positive Rate and False Positive Rate (equation 6 and 7) are computed as follows:

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (6)

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 (7)

For a particular study, different set of TPRs and FPRs are computed with various parameter settings. There
are four parameters to be adjusted namely Post Rate (PR = 0.2, 0.5, 0.8), nearest neighbor Similarity
Threshold (SIM = 0.2, 0.5, 0.8), number of hash tables (L = 5, 10, 15) and number of projections (K = 5, 11,

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 13

13, 19). For an experiment with a particular parameter setup with different Post Rates results in a set of
TPRs and FPRs. The RoC curves are plotted using these rates and Area Under ROC curves (AUROC) are
calculated. The AUROC curve represents the accuracy of the event detector. A high AUROC denotes a high
true positive rate and low false positive rate while a low AUROC denotes a low true positive rate and high
false positive rate

6.3 Results
We evaluate SportsBuzzer system using 2017 IPL T20 cricket games and present the accuracy of the event
detection for key events such as boundary, catch, sixer, boundary+catch+sixer, boundary+catch,
boundary+sixer, catch+sixer. We also show the influence of various parameters such as similarity
threshold in finding nearest neighbor (SIM), number of hash tables (L) and number of projections (K),
besides the effect of retweets in real time event detection. Finally, we compare the average computation
times to find a nearest neighbor from buckets.

6.3.1 Performance on detecting events

Figure 6 shows the ROC curves that illustrate the performance of our LSH approach in detecting different
Cricket events such as boundary, catch, sixer, and major events (boundary+catch+sixer, boundary+catch,
boundary+sixer, catch+sixer) in the RCBvRPS game. The evaluation is conducted for different evaluation
window sizes such as 1, 5, 10 and 15 minutes, with fixed parameter values SIM=0.5, L=10 and K=13.

Figure 6. Detection performance of individual events

Results show that our LSH based approach delivers a decent performance in detecting the key game
events. The event sixer is detected fast within 1 min evaluation window than other events, because sixer

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 14

is considered a highly exciting event by the viewers of this game. When size of the evaluation window
increases, boundary is detected well, as twitter users reported this event with smaller delay. Due to a high
initial excitement among twitter users, catch is detected well within 5 minutes and the performance
decreases for 10 and 15 min windows. Major events (boundary+catch+sixer combination) of the game are
also detected well with our LSH approach. Major events (boundary+sixer combination) performs better
than other combinations. From these graphs, we can observe that almost all key events are detected with
a decent accuracy (with 80 percent true positives in AUROC) within an evaluation window of 10 minutes.
Also, the performance for evaluation window of 15 minutes is highly similar to that of 10 minutes window.
So, we can conclude that most of the key events are detected and reported well even within 10 minutes
from the actual happening of those events.

6.3.2 Influence of different similarity thresholds

Figure 7 shows the ROC curves that illustrate the performance of our LSH approach in detecting key events
for different evaluation windows, under various similarity thresholds. The influence of various similarity
thresholds (0.2, 0.5 and 0.8) on event detection is evaluated for key events and a combination of key
events under a fixed L and different evaluation window size of 1, 5, 10 and 15mins.

Figure 7. Detection performance for different similarity thresholds

From these graphs, we can observe that the overall performance is improved as the window size increases.
Even though individual events present slightly different performances, the effect of similarity thresholds

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 15

can be assessed using a combination of major events such as B+C+S. When the evaluation window is small
(i.e. 1 min), high similarity threshold is preferable, whereas for higher evaluation windows (like 10 or
15mins), lower similarity threshold is better. However, no significant difference can be noticed in the
performances with any of these thresholds, because of the consistency in the representation of tweets
using LSH based projections. Therefore, a reasonable threshold of 0.5 greatly strikes a balance for our
approach in detecting all key events.

6.3.3 Influence of hash table size

Figure 8 shows the ROC curves that illustrate the performance of our LSH approach in detecting key events
for different evaluation windows, under various hash table sizes. The influence of various hash table sizes
(5, 10 and 15) on event detection is evaluated for key events and a combination of key events under a
fixed similarity threshold and K and different evaluation window size of 1, 5, 10 and 15mins.

Figure 8. Detection performance for different sizes of hash tables

From the results shown in the ROC curves, it is evident that the accuracy of event detection improves in
many cases when the number of hash tables increases, especially in major events such as B+C+S. For
higher number of hash tables, the true positive rate reaches nearly 90% and the false positive rate is only
10%. Obviously, higher number of hash tables increases the chance of detecting the appropriate nearest
neighbor. In a way that if one hash table misses out the correct nearest neighbor, other hash tables with
different projections are more likely to consider it as a nearest neighbor. It is recommended that the
number of hash tables should be selected carefully as it might increase the search time of the nearest
neighbor. For a better tradeoff between speed and accuracy, it is preferable to keep L to a medium value.

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 16

6.3.4 Influence of different number of projections

Figure 9 shows the ROC curves that illustrate the performance of our LSH approach in detecting key events
for different evaluation windows, under various projections. The influence of the number of projections
(5, 11, 13 and 19) on event detection is evaluated for key events and major events under a fixed similarity
threshold and L values and different evaluation window size of 1, 5, 10 and 15mins.

Figure 9. Detection performance for different number of projections

From the results shown in the ROC curves, our proposed approach achieves better accuracy for smaller
number of projections, which can be noticed easily in the case of major events (B+C+S). The intuition is
that when the number of projections are low, two relevant tweets might be indexed with the same
signature. When the number of projections increases, location sensitivity of a tweet increases, thereby
two relevant tweets might get different signatures. However, it is likely that the signature for both
relevant and irrelevant tweet might be same because of lower number of projections, which results in
both tweets falling into the same bucket. Similar to parameter L, number of projections is directly
proportional to the search time of a nearest neighbor. Therefore, value for K should be chosen accordingly.
Based on our experiments, we can conclude that K = 11 is a reasonable value to balance speed and
accuracy.

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 17

6.3.5 Analysis on hash table size and number of projections

Figure 10 shows the ROC curves that illustrate the performance of our LSH approach in detecting key
events for different evaluation windows, under three combinations of hash tables and projections. The
influence of a number of hash tables (5, 10 and 15) and projections (5, 11 and 19) on event detection is
evaluated under a fixed similarity threshold and different evaluation window size of 1, 5, 10 and 15mins.

Figure 10. Detection performance for different number of hash tables and projections

From the results shown in the ROC curves, it is clear that true positive rate improves for larger evaluation
windows, as seen in the previous sections. Our LSH based proposed approach achieves a better accuracy
for higher number of hash tables (L=15) and smaller number of projections (K=5). As discussed in the
previous sections, higher number of hash tables increases the chance of getting correct nearest
neighbours, while lower number of projections gives the same signature to relevant and similar tweets.
Similarly, medium number of hash tables (L=10) and projections (K=11) achieves the second best
performance, whereas lower number of hash tables (L=5) and higher number of projections (K=19)
decreases the accuracy. Therefore, a higher number of hash tables and lower number of projections is
preferred.

We have also computed the average search time of finding nearest neighbours from 35000 tweets of the
game RCBvRPS. The search time increases linearly when the number of hash tables (HT) increase (figure
11a). The number of projections (P) almost remains a constant (figure 11b). While considering both (HT
and P), search time is high for case1 (HT=15, P=5), low for case2 (HT=5, P=19) and medium for case3

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 18

(HT=10, P=11) (figure 11c). We can see that the hash table size has more influence in deciding the speed
of the nearest neighbor search.

(a)

(b)

(c)

Figure 11a, 11b & 11c. Nearest neighbor search time

6.3.6 Performance under different evaluation windows

Figure 12 shows the ROC curves that illustrate the performance of our LSH approach in detecting key
events under different evaluation window of size 1, 5, 10 and 15mins. Since there is a significant delay
between the actual event time and the time twitter users post tweets, the influence of an evaluation
window greatly impacts the accuracy of our LSH approach.

Figure 12. Detection performance for different evaluation windows

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

5 10 15

Av
g.

 N
N

 S
ea

rc
h

Ti
m

e

HT Size

PR=0.2, SIM=0.5, K=13

0.00E+00

2.50E-08

5.00E-08

7.50E-08

1.00E-07

1.25E-07

1.50E-07

5 11 13 19

Av
g.

 N
N

 S
ea

rc
h

Ti
m

e

Projections

PR=0.2, SIM=0.5, L-10

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

Case1 Case2 Case3

Av
g.

 N
N

 S
ea

rc
h

Ti
m

e

HT size and # Projections

PR=0.2, SIM=0.5

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 19

From the results shown in the ROC curves, our LSH approach detects most of the events within a window
of 5 minutes, after the event has happened. Since a larger evaluation window allows some delay in
detecting events, true positive rates reaches around 80% from nearly 60%. Hence, accuracy can be
improved if considerable time delay in detection is permissible.

6.3.7 Performance of all tweets vs. no retweets

Figure 13 shows the ROC curves that illustrate the performance of our LSH approach in detecting key
events with fixed SIM, L and K values. Since incoming tweets may also include their retweets, influence of
retweets in detecting events is analyzed by evaluating the LSH approach with all tweets and with no
retweets. The evaluation is conducted for different evaluation window of 1, 5, 10 and 15mins.

Figure 13. Detection performance for all tweets and no retweets

From the results shown in the ROC curves, it is apparent that the inclusion of retweets generally improves
the accuracy of event detection, which we can observe easily based on the performance in major events
detection (B+C+S). Because many twitter users have the habit of retweeting the tweet that is already
posted by others. Also, they just want to approve that an event has actually happened, by way of
retweeting. Therefore a large number of retweets creates a burst in the tweet volume which makes the
event detection easy for the detector. Nevertheless, retweets do not help in detecting catch events. This
may be due to a delayed retweeting of catch event long time after it has occurred. Whether retweets to
be included or not for event detection can be sometimes decided based on the event we want to detect.

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 20

6.4 Limitations of SportsBuzzer
The performance of our real time event detection framework, SportsBuzzer, is impacted by various factors
including latency or delay in the flow of signals from twitter users. There are three types of delays
encountered in Twitter social media namely human delay, Twitter delay, and processing delay [3]. In this
research work, we have addressed the issue of the processing delay. Processing delay occurs due to the
processing time involved in data collection and analysis of a large volume of data. Our SportsBuzzer
significantly reduces the processing time for the analysis of data by adopting LSH for implementing
incremental clustering concepts. In our real time system that collects live tweets, data collection time is
very minimal because of the recent fast processors.

7 Conclusion
In contrast to existing event detection approaches for sports domain, SportsBuzzer, a novel real-time
event detection approach is presented in this paper. SportsBuzzer adopts LSH for discovering tweet
clusters. A new cluster is created when an incoming live tweet is sufficiently dissimilar from existing
clusters. An event is declared detected when the post rate of an active cluster exceeds the pre-defined
threshold. Then, the event represented within the cluster is recognized utilizing our event lexicon for
Cricket sports. Also a cluster is considered active if it contains at least two tweets. A cluster will be deleted
once an event is detected from it or its life span is more than five minutes. We fix this time based on the
assumption that at least one event would happen in one over which will last nearly five minutes.

Results of the extensive experiments demonstrated the efficacy of the LSH approach for event detection.
As many twitter users take few minutes to post their tweets after an event has occurred, an evaluation
window of five minutes was sufficient to detect most of the events. LSH effectively discovered tweet
clusters with appropriate values for threshold, number of hash tables and number of projections.
Influence of these parameters were also analyzed in the experiments. For a better tradeoff between speed
and accuracy, a medium value for number of hash tables and number of projections is recommended.

In future, we will investigate whether we can improve the event detection by characterizing event lexicon
as a dynamic lexicon instead of the present static lexicon. Similarly, we will study whether slope of the
tweet rate curve can be exploited, instead of choosing the middle time for recognizing the detected event.
Further, it would be interesting to explore other data structures that may speed up the clustering process,
besides comparing our LSH approach with other widely popular clustering algorithms.

REFERENCES

[1]. Boyd, D. M and N. B. Ellison. Social network sites: Definition, history, and scholarship. Journal of
Computer-Mediated Communication, 2007. 13(1): p. 210–230.

[2]. Atefeh, F and Khreich, W. A survey of techniques for event detection in twitter. Computational
Intelligence, 2015. 31(1): p. 132-164.

[3]. Zhao, D and M. B. Rosson. How and why people Twitter: The role that micro-blogging plays in informal
communication at work. In Proc. ACM International Conference on Supporting Group Work, GROUP ’09,
ACM, New York, NY, 2009. p. 243–252.

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 21

[4]. Zhao, S., Zhong, L., Wickramasuriya, J and Vasudevan, V. Human as real-time sensors of social and physical
events: A case study of twitter and sports games. ArXiv preprint, 2011. arXiv:1106.4300.

[5]. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality.
In Proc. Thirtieth Annual ACM Symposium on Theory of Computing, Dallas, Texas, USA, 1998. p. 604–613.

[6]. Hasan, M., Orgun, M. A and Schwitter, R. A survey on real-time event detection from the Twitter data
stream. Journal of Information Science, 2017. 0165551517698564.

[7]. T. Sakaki., M. Okazaki and Y. Matsuo. Earthquake shakes Twitter users: real-time event detection by social
sensors. In Proc. ACM WWW ’10, 2010.

[8]. Y. Qu., C. Huang., P. Zhang and J. Zhang. Microblogging after a major disaster in China: a case study of the
2010 Yushu earthquake. In Proc. ACM 2011 conference on Computer supported cooperative work, 2011.

[9]. S. Vieweg., A. L. Hughes., K. Starbird and L. Palen. Microblogging during two natural hazards events: what
twitter may contribute to situational awareness. In Proc. ACM CHI ’10, 2010.

[10]. J. Sankaranarayanan., H. Samet., B. E. Teitler., M. D. Lieberman and J. Sperling. TwitterStand: news in
tweets. In Proc. ACM SIGSPATIAL, 2009.

[11]. Sakaki, T., M. Okazaki and Y. Matsuo. Earthquake shakes Twitter users: Real-time event detection by social
sensors. In Proc. 19th International Conference on World Wide Web, WWW ’10, ACM, New York, NY, 2010.
p. 851–860.

[12]. Popescu, A. M and M. Pennacchiotti. Detecting controversial events from Twitter. In Proc. 19th ACM
International Conference on Information and Knowledge Management, CIKM ’10, ACM, New York, NY,
2010. p. 1873–1876.

[13]. Benson, E., A. Haghighi and R. Barzilay. Event discovery in social media feeds. In Proc. 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, vol. 1, HLT ’11,
Association for Computational Linguistics, Stroudsburg, PA, 2011. p. 389–398.

[14]. Becker, H., F. Chen., D. Iter., M. Naaman and L. Gravano. Automatic identification and presentation of
Twitter content for planned events. In Proc. International AAAI Conference on Weblogs and Social Media,
Barcelona, Spain, 2011.

[15]. Becker, H., M. Naaman and L. Gravano. Selecting quality Twitter content for events. In Proc. International
AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 2011b.

[16]. Massoudi, K., M. Tsagkias, M. De Rijke and W. Weerkamp. Incorporating query expansion and quality
indicators in searching microblog posts. In Proc. 33rd European Conference on Advances in Information
Retrieval, ECIR’11. Springer-Verlag: Berlin, Heidelberg, 2011. p. 362–367.

[17]. Weerkamp, W and M. De Rijke. Credibility improves topical blog post retrieval. In Proc. ACL, Columbus,
OH, 2008. p. 923–931.

[18]. Gu, H., X. Xie, Q. Lv, Y. Ruan and L. Shang. ETree: Effective and efficient event modeling for real-time online
social media. In Proc. Web Intelligence and Intelligent Agent Technology, WI-IAT 2011, IEEE/WIC/ACM
International Conference, 2011. 1: p. 300–307.

Jeyakumar Kannan, AR. Mohamed Shanavas, Sridhar Swaminathan; SportsBuzzer: Detecting Events at Real Time
in Twitter using Incremental Clustering, Transactions on Machine Learning and Artificial Intelligence, Volume 6
No 1 February, (2018); pp: 1-23

URL: http://dx.doi.org/10.14738/tmlai.61.3861 22

[19]. Valkanas, G and Gunopulos, D. How the Live Web Feels About Events. In Proc. In Proc. 22nd ACM
International Conference on Information and Knowledge Management CIKM, 2013. p. 639–648.

[20]. Lee, R and K. Sumiya. Measuring geographical regularities of crowd behaviors for Twitter-based geo-social
event detection. In Proc. 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks,
LBSN ’10, ACM, New York, NY, 2010. p. 1–10.

[21]. C. Li., A. Sun., and A. Datta. Twevent: Segment-based event detection from tweets. In Proc. ACM
International Conference on Information and Knowledge Management, ser. CIKM ’12. ACM, 2012. p. 155–
164.

[22]. Marcus, A., Bernstein, M. S., Badar, O., Karger, D. R., Madden, S and Miller, R. C. TwitInfo: Aggregating
and Visualizing Microblogs for Event Exploration. In Proc. CHI, 2011. p. 227–236.

[23]. Mathioudakis, M and Koudas, N. TwitterMonitor: Trend Detection over the Twitter Stream. In Proc.
SIGMOD/ PODS, 2010. p. 1155–1158.

[24]. F. Alvanaki., M. Sebastian., K. Ramamritham and G. Weikum. Enblogue: Emergent topic detection in web
2.0 streams. In Proc. ACM SIGMOD, SIGMOD ’11, New York, USA, 2011. p. 1271–1274.

[25]. Weng, J and Lee, B.-S. Event Detection in Twitter. In Proc. ICWSM, 2011. p. 401–408.

[26]. Shane Fitzpatrick. Improving new event detection in social streams. 2014. Master Thesis.

[27]. A. Ritter., Mausam., O. Etzioni and S. Clark. Open domain event extraction from Twitter. In Proc. 18th
ACM SIGKDD, KDD ’12, New York, USA, 2012. p. 1104–1112.

[28]. D. Zhou., L. Chen and Y. He. An unsupervised framework of exploring events on Twitter: Filtering,
extraction and categorization. In Proc. AAAI Conference on Artificial Intelligence, 2015. p. 2468–2475.

[29]. J. Hannon., K. McCarthy., J. Lynch and B. Smyth. Personalized and automatic social summarization of
events in video. In Proc. ACM IUI, 2011.

[30]. D. Chakrabarti and K. Punera. Event Summarization using Tweets. In Proc. AAAI ICWSM, 2011.

[31]. Becker, H., Naaman, M and Gravano, L. Beyond Trending Topics: Real-Wrold Event Identification on
Twitter. In Proc. ICWSM, 2011. 11: p. 438–441.

[32]. A. J. McMinn and J. M. Jose. Real-time entity-based event detection for Twitter. In Proc. Experimental IR
Meets Multilinguality, Multimodality, and Interaction. CLEF ’15, Springer, 2015. p. 65–77.

[33]. Cataldi, M., Di Caro, L and Schifanella, C. Emerging Topic Detection on Twitter Based on Temporal and
Social Terms Evaluation. In Proc. MDM/KDD, 2010. p. 4:1–10.

[34]. Petrovi´c, S., Osborne, M and Lavrenko, V. Streaming First Story Detection with Application to Twitter. In
Proc. NAACL HLT, 2010. p. 181–189.

[35]. M. Hasan., M.A. Orgun and R. Schwitter. TwitterNews: real time event detection from the Twitter data
stream. PeerJ PrePrints, 2016.

http://dx.doi.org/10.14738/tmlai.61.3861

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 6 , No 1 , Feb 2018

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 23

[36]. M. A. Russell. Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social
Media Sites. O'Reilly Media Inc, 2011.

[37]. M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proc. 34th Annual ACM
Symposium on Theory of Computing, Montreal, Quebec, Canada, 2002. p. 380-388.

	SportsBuzzer: Detecting Events at Real Time in Twitter using Incremental Clustering
	ABSTRACT
	1 Introduction
	2 Related Work
	3 Preprocessing of sports tweets
	3.1 Collecting live tweets
	3.2 Removing noise from tweets
	3.3 Creating tweet feature vector

	4 Incremental Clustering of sports tweets
	4.1 Approximate nearest neighbors
	4.2 LSH for incremental clustering
	4.3 Signature for tweet feature vector

	5 Proposed Approach
	5.1 Event detection using LSH
	5.2 Lexicon-based event recognition
	5.3 Preventing duplicate event alerts

	6 Experimental Results
	6.1 Dataset
	6.2 Evaluation Criteria and Parameter Setup
	6.3 Results
	6.3.1 Performance on detecting events
	6.3.2 Influence of different similarity thresholds
	6.3.3 Influence of hash table size
	6.3.4 Influence of different number of projections
	6.3.5 Analysis on hash table size and number of projections
	6.3.6 Performance under different evaluation windows
	6.3.7 Performance of all tweets vs. no retweets

	6.4 Limitations of SportsBuzzer

	7 Conclusion
	References

