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ABSTRACT 

Gibberellins (GA) are one of the most important phytohormones that control different aspects 
of plant growth and influence various developments such as seed germination, stem elongation 
and floral induction. More than 130 GAs have been identified; however, only a small number of 
them are biologically active. In this study, five enzymes in GA metabolic pathway in monocots 
have been thoroughly researched namely, ent-copalyl-diphosphate synthase (CPS), ent-kaurene 
synthase (KS), ent-kaurene oxidase (KO), GA 20-oxidase (GA20ox), and GA 2-oxidase (GA2ox). 
We have designed and implemented a high performance prediction tool for these enzymes 
using machine learning algorithms. ‘GAPred’ is a web-based system to provide a comprehensive 
collection of enzymes in GA metabolic pathway and a systematic framework for the analysis of 
these enzymes for monocots. WEKA-based classifiers (Naïve-Bayes) and Support Vector 
Machine (SVM) based-modules were developed using dipeptide composition and high 
accuracies were obtained. In addition, BLAST and Hidden Markov Model (HMMER-based 
model) were also developed for searching sequence databases for homolog’s of enzymes of GA 
metabolic pathway, and for making protein sequence alignments. 

Keywords:   GA, SVM, WEKA, BLAST, HMMER 

1 INTRODUCTION 
Gibberellic acids (GA) are naturally occurring phytohormones that regulate growth and 
influence various developmental processes, including stem elongation, germination, dormancy, 
flowering, enzyme induction, and leaf and fruit senescence [1]. They are also involved in the 
discernment of environmental stimuli, thus are significant not only for a plant’s growth and 
development but also in awareness of its environment. Gibberellins are diterpenoid acids which 
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are formed by the terpenoid pathway in plastids and then modifying the endoplasmic reticulum 
(ER) and cytosol until they are biologically-active [2]. Gibberellins are derived by the ent-
gibberellane skeleton, but are synthesized by ent-kaurene [3]. The GA biosynthetic pathway can 
be divided into three stages, each stage residing in a different cellular compartment viz. plastid, 
the endoplasmic reticulum, and the cytosol [4].  

     A number of experimental studies have explained thoroughly the biosynthetic functions of 
gibberellic acid. In this study, five enzymes involved in GA metabolic pathway in monocots have 
been thoroughly researched namely, ent-copalyl-diphosphate synthase (CPS), ent-kaurene 
synthase (KS), ent-kaurene oxidase (KO), GA 20-oxidase (GA20ox), and GA 2-oxidase (GA2ox) 
[5]. In this study, we have designed and implemented a high performance prediction tool based 
on kernel-based Machine Learning Algorithms viz., Support Vector Machine (SVM) and WEKA 
for prediction of enzymes in gibberellic acid metabolic pathway. In addition, standalone BLAST 
and Hidden Markov Model (HMMER-based model) were also developed for searching sequence 
databases for homolog’s of enzymes of GA metabolic pathway, and for making protein 
sequence alignments. ‘GAPred’ was developed using the evolutionary and sequence features of 
a protein sequence and the performance of the each model was evaluated using cross-
validation techniques. Based on our study, we have also created and hosted a web server for 
predicting enzymes involved in GA metabolism.  

2 MATERIALS AND METHODS 
2.1 Dataset 

In the present study, two datasets were considered for the development of the prediction 
tool ‘GAPred’. Positive (+ve) dataset comprised of 102 selected GA metabolic enzyme protein 
sequences from monocots viz., date palm (Phoenix dactylifera), coconut (Cocos nucifera), rice 
(Oryza sativa), barley (Hordeum vulgare), maize (Zea mays), banana (Musa acuminata), and 
brachypodium (Brachypodium distachyon), after redundancy elimination by using ClustalW. 
Similarly negative (-ve) dataset was created by using same numbers of non-GA metabolic 
enzymes sequences. The sequences were retrieved from NCBI in FASTA format 
(http://www.ncbi.nlm.nih.gov/). Domains of enzymes involved in GA metabolic pathway were 
identified using Pfam search and PRINTS search and most of the identified enzyme domains are 
known to be conserved in related species. To avoid the over estimation, we clustered the 
protein sequences from positive data (+ve) set with a threshold of 30% identity by CD-HIT 
(Cluster Database at High Identity with Tolerance). Out of 102 GA metabolic enzymes sequence, 
62 proteins were randomly selected for the creation of training set. Similarly training set of 
non-GA metabolic enzymes sequence was created. To test the reliability of the prediction tool, 
we also prepared a test set of 40 GA metabolic enzymes sequences and non-GA metabolic 
enzymes sequences which were not the part of training set. 
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2.2 Support Vector Machine 

Support Vector Machines (SVM) are a group of rapid optimization machine learning 
algorithms with strong theoretical foundation, which have been used for many kinds of pattern 
recognition [6-8]. SVMs are now extensively used for biological applications and methods such 
as classifying objects as diverse as protein and DNA sequences, mass spectra and microarray 
expression profiles [9]. In this work, SVM has been implemented by using SVMmulticlass package 
[10] which possesses two modules: SVM_multiclass_learn and SVM_multiclass_classify. The 
first module (SVM_multiclass_learn) is concerned for preparing models learned from the 
training dataset (+ve and -ve) and the final one classifies the data by using the models prepared 
by SVM_multiclass_learn. Here, we have trained the SVMmulticlass by using a set of positive and 
negative datasets, and produces a model (classifier) that can be used to identify the potential 
enzymes involved in gibberellic acid metabolic pathway. With the help of this package the user 
can select various kernel functions (linear, polynomial, radial basis, sigmoid or any other user 
defined kernel) for preparing models. In SVMs, the kernel function selected must be the most 
favorable one. Here in the creation of SVM models, we have used three types of kernel 
functions: linear, polynomial, and radial. The performance of SVM based methods has been 
optimized by regulating SVM parameters so that maximum accuracy could be obtained. 

 
2.3 WEKA 

WEKA stands for ‘Waikato Environment for Knowledge Analysis’ and is a free open source 
software developed by at the University of Waikato, New Zealand. This popular machine 
learning software contains a collection of algorithms and visualization tools for data analysis, 
analytical modeling and also graphical user interfaces for easy access to this functionality.  In 
the given work, we used WEKA classification [11], where different attributes of a protein 
sequence are analyzed to classify the protein sequence into one of the predefined classes. Both 
train and test set was used to get the classification of the data set by using better algorithms. 
The performance of WEKA has been optimized by tuning evaluation parameters and 
visualization schemes, in order to analyze the accuracy of classifiers.   

2.4 Sequence Features 

Dipeptide composition gives comprehensive information about each protein sequence that 
possess sequence feature. Generally, the total number of amino acids is 20 and thus the 
theoretical number of possible dipeptides is 400. A matrix of these 400 dipeptides was 
generated for each protein and is then given as an input to both SVM and WEKA. Each 
dipeptide frequency is calculated by the formula: DFij=Nij/N where, Nij=count of the ijth 
dipeptide; N=total number of possible dipeptides; i, j = 1-20 amino acid. 
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2.5 Performance Assessment of GAPred 

With the help of statistical calculations, we generally examine the efficiency of a predictor 
either using single independent dataset test, cross-validation test or jackknife test. However, 
jackknife test method takes much longer time to examine a predictor based on SVM and WEKA 
[12] and therefore, in this work, we have adopted 10-fold cross-validation for WEKA and 5-fold 
cross-validation for SVMmulticlass and independent data set validation techniques were adopted 
for measuring performance. In 10-fold cross-validation test, the significant dataset was divided 
randomly into ten equally sized sets. The training and testing methods were carried out ten 
times with each individual set used for testing and for the nine sets left behind for training. 
Similarly in 5-fold cross validation, the dataset was partitioned randomly into five equally sized 
sets. In the independent dataset test, the training dataset used to train the predictor does not 
contain any data that is to be tested. 

 
2.6 Evaluation Parameters 

We had made use of five parameters to evaluate the reliability of the prediction tool, they 
are: Accuracy (Ac), Sensitivity (Sn), Specificity (Sp), Precision (Pr) and Matthew’s Correlation 
Coefficient (MCC). Accuracy defines the proportion of correctly predicted proteins (Eq.1). The 
sensitivity (Sn) and specificity (Sp) represent the correct prediction ratios of positive (+ve) and 
negative data (-ve) sets of metabolic enzymes of gibberellic acid sequence respectively (Eq. 2 
and 3). Precision is the proportion of the predicted positive cases that were correct (Eq.4). 
Matthew’s correlation coefficient or MCC [13-14] is a statistical parameter which also used to 
estimate the accuracy of prediction (Eq.5). MCC may range from -1 to +1 and the highest MCC 
value indicates better prediction [15].  

 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

× 100                                                                          (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

× 100                                                                                    (2) 

          𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝐹𝑃+𝑇𝑁

× 100        (3)  

             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

× 100                                                (4) 

             𝑀𝐶𝐶 = (𝑇𝑃 ×𝑇𝑁)− (𝐹𝑃 ×𝐹𝑁)
�(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

                                                                      (5) 

 

     Where TP=number of true positives; TN=number of true negatives; FP=number of false 
positives; FN=number of false negatives. In this work, metabolic enzymes of GA sequences are 
true positives and non- metabolic enzymes of GA sequences are true negatives. 
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2.6 Sequence Similarity search using standalone BLAST 

The standalone BLAST programs are freely provided as open-source software by NCBI. With 
stand-alone BLAST we can made our own databases to search against. In this study, sequences 
were searched against the protein non-redundant (nr) database in association with standalone 
BLASTp and to detect homology of metabolic enzymes of gibberellic acid proteins and result 
was analysed. 

 
2.7 Sequence Similarity Search using HMMER 

Profile Hidden Markov models (profile HMMs) techniques are one of the most dominant 
methods for protein homology detection [16]. HMMER helps to find out protein sequences 
which are similar in sequence databases and to make protein sequence alignments. HMMER 
becomes particularly powerful when the query is a multiple sequence alignment of a sequence 
family rather than for single query sequences. It makes a profile of the query that assigns a 
position-specific scoring system for substitutions, insertions, and deletions [17]. HMMER 
profiles are probabilistic models called “profile Hidden Markov models” (profile HMMs). 
Because of the strength of its underlying probability models, HMMER aims to be much more 
accurate and more capable of finding out remote homolog’s rather than BLAST, FASTA or any of 
the other sequence alignment and database search tools based on older scoring methodology 
[18]. Hence, in this study, we have used HMMER to detect homology of metabolic enzymes of 
gibberellic acid proteins and a remarkable result was analyzed. 

 
2.8 ROC Curves 
By making use of ROC curves, a graph created by plotting the fraction of false positives 

(FPR) against true positives (TPR) at various threshold settings [19], we can explain the 
performance of multi class classifiers in SVM and WEKA more specifically. TPR is also known as 
sensitivity, and FPR is 1-specificity or true negative rate. ROC analysis is linked in a direct and 
natural method to benefit analysis of diagnostic decision making. ROC curves useful for the 
evaluation of machine learning techniques and data mining research.  

 
2.9 Web-server 
We have implemented the prediction tool “GAPred” in a web server. The program is written 

entirely in HTML, PHP and PERL program in a Linux platform. The tool page serve as the 
platform for submitting data where users can either paste or upload sequence which should be 
in standard FASTA format. It also provides a comprehensive collection of enzymes in GA 
metabolic pathway and introduces a user to gibberellic acid metabolic pathway. 
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3 GAPRED 
3.1 Evaluation of Performance of GAPred  
We have carried out 10-fold cross-validation for WEKA and 5-fold cross-validation for SVM 

and also independent data test validation to evaluate the performance of GAPred (Tables 1-4). 
Cross validation and independent data test results for SVM from the Tables 1 and 3 shows that 
cross validation has better result for dipeptide composition methods compared to independent 
data test. While in the case of WEKA, the independent data set has better result than cross 
validation method.  

 
3.2 Comparison of GAPred with BLAST and HMMER 

We have also used standalone BLAST and HMMER to detect homology of metabolic enzymes of 
gibberellic acid. This was used to compare an input protein sequence with a created database 
to generate the homology of the given sequence. A comparison of enzyme proteins was 
conducted with standalone BLAST and HMMER database and an accuracy of 99% and 93% were 
obtained (Tables 5-6). By making a comparison between SVM, WEKA, BLAST and HMMER from 
Table 7 and Figure 1, it can be seen that SVM has achieved 100% accuracy and MCC value equal 
to 1 that an ideal classification method should possess.  Hence, SVM was selected to be the 
best model for GAPred.  

Table 1 Validation of independent data test results of dipeptide composition of metabolic enzymes of gibberellic 
acid with SVMmulticlass 

Algorithm Sn 
(%) 

Sp 
(%) 

Ac 
(%) 

Pr 
(%) 

MCC 

Linear 5 100 53 100 0.16 

Polynomial 95 100 98 100 0.95 

RBF 93 95 94 95 0.88 

Table 2 Validation of independent data test results of dipeptide composition of metabolic enzymes of gibberellic 
acid with WEKA 

Classifiers Sn (%) Sp (%) Ac (%) Pr (%) MCC 

Naïve Bayes 98 100 99 100 0.98 

Bayes Net 95 100 98 100 0.95 

Decorate 83 100 91 100 0.84 
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Table 3 Comparison of the prediction performance of three kernels of SVMmulticlass with dipeptide 
composition technique using 5-fold cross validation 

Algorithm Sn 
(%) 

Sp (%) Ac 
(%) 

Pr (%) MCC 

Linear 100 100 100 100 1 

Polynomial 100 100 100 100 1 

RBF 100 100 100 100 1 

Table 4 Comparison of the prediction performance of three classifiers of WEKA with dipeptide composition 
technique using 10-fold cross validation 

Classifiers Sn 
(%) 

Sp 
(%) 

Ac 
(%) 

Pr (%) MCC 

Naïve Bayes 89 100 94 100 0.89 

Bayes Net 95 97 96 97 0.92 

Decorate 95 95 95 95 0.90 

Table 5 Comparison of the prediction performance of standalone BLAST with created database of domains of 
metabolic enzymes of gibberellic acid 

 Sn 
(%) 

Sp 
(%) 

Ac 
(%) 

Pr (%) MCC 

BLAST 100 98 99 98 0.98 

Table 6 Comparison of the prediction performance of HMMER with created database of domains of metabolic 
enzymes of gibberellic acid 

 Sn 
(%) 

Sp 
(%) 

Ac 
(%) 

Pr (%) MCC 

HMMER 90 97 93 96 0.87 
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Table 7 Comparison of the prediction performance of three methods with metabolic enzymes of gibberellic acid 
sequences 

 Sn 
(%) 

Sp 
(%) 

Ac 
(%) 

Pr (%) MCC 

SVM 100 100 100 100 1 

WEKA 98 100 99 100 0.98 

BLAST 100 98 99 98 0.98 

HMMER 90 97 93 96 0.87 

 

 

Figure 1: Comparison of performance validation of GAPred with different methods 

3.3 ROC curve 
We have plotted the ROC curves for SVM and WEKA based on the independent test 

performance of the dipeptide compositions. From the ROC curves (Figures 2-3), representing 
the relationship between sensitivity and (1-specificity) for a class, it is clear that the SVM 
composition module represents a perfect classifier since the curve obtained is an inverted ‘L’, 
which is a desirable characteristic of an ROC curve. Each point on the ROC curve was plotted 
based on different threshold scores.  
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Figure 2: ROC curve for dipeptide composition in SVMmulticlass using independent test results 

 

 

Figure 3: ROC curve for dipeptide composition in WEKA using independent test results 

  
3.4 Description of Web Server 
We have implemented the prediction tool “GAPred” in a web server. The tool was 

developed in PERL program and web interface in PHP and HTML to assess the user queries, in 
Linux platform. The tool page serve as the platform for submitting data where users can either 
paste or upload sequence which should be in standard FASTA format (Figure 4). It also provides 
a comprehensive collection of enzymes in GA metabolic pathway and introduces the user about 
gibberellic acid. The tool is freely available at http://gapred.cpcribioinformatics.in/gapred/ 
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Figure 4: Web interface of GAPred 

 

 
Figure 5: The architecture of the GAPred server. 

 

4 CONCLUSION 
In this work, we have described SVM and WEKA-based approaches for the prediction of 

enzymes in gibberellic acid metabolic pathway based on dipeptide composition. Comparison of 
standalone BLAST and HMMER- based homology searches with machine learning algorithms 
revealed that the latter performed better compared to homology-based tools. Based on kernel 
methods, we have developed and implemented an efficient and easy to use user-friendly 
prediction server called ‘GAPred’ for predicting five gibberellic acid metabolic enzymes. The 
sensitivity and specificity reaches 100% for prediction of gibberellic acid metabolic enzymes. 
We expect that the tool may be a useful resource for researchers as it is freely available.  
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