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ABSTRACT   

The Firefly Algorithm (FA) metaheuristic is employed to determine the optimal parameter settings in a 

case study of the osmotic dehydration of mushrooms. In the case, the functional form of the dehydration 

model is established through a response surface technique and the resulting mathematical programming 

is formulated as a non-linear goal programming model. For optimization purposes, a computationally 

efficient, FA-driven method is used and the resulting optimal process parameters are shown to be superior 

to those from previous approaches. 

Keywords: Biologically-inspired Metaheuristics, Mushrooms, Non-linear Goal Programming, Process 

Parameter Optimization, Osmotic Dehydration. 

1 Introduction  

Commercial agronomy represents a multi-billion dollar, worldwide enterprise. Within this industry, the 

annual global production of mushrooms currently exceeds 6 million tonnes [1]. As with many fresh fruits 

and vegetables, the high moisture content of mushrooms renders them highly perishable and, due to 

various enzymatic, microbial and chemical reactions, they commence deterioration immediately upon 

harvesting [2] [3]. Therefore, it becomes imperative to determine effective preservation methods that 

retain the overall quality and desirable features of the product. The preservation of many agricultural 

commodities has often been accomplished by employing various combinations of drying using heat 

processing and dehydration [2] [3] [4]. The dehydration of fresh produce generally extends their storage 

lives, decreases their shipping weights, and reduces the need for special packing requirements [2]. 

However, hot-air dried products conventionally processed using tray, vacuum, or cabinet dryer techniques 

have not received widespread acceptance due to the perceived diminished quality of the endproduct [2] 

[4] [5]. 

Recently, osmotic dehydration has been introduced as a practical alternative preservation approach that 

is capable of producing a higher quality final product [6]. In osmotic dehydration, fresh produce is 

immersed in a hypertonic solution where the water content from the cells of the produce is transferred 

into the solution due to the relative differences in their solute concentrations [6]. In this processing, 

osmotic dehydration removes a desired portion of the water from within the fresh produce resulting in a 

product of intermediate moisture content [7] [8]. Simultaneously, a corresponding transfer of solid 

materials (normally sugar and/or salt) occurs from the solution into the product [6] [9] [10]. In terms of 
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final product quality relative to standard hot air drying methods, osmotic dehydration causes only minimal 

thermal degradation due to the low temperatures involved [6] [11] [12] [13].  

Osmotic dehydration of fresh agricultural commodities can also be used as a pre-treatment to 

supplemental dry-processing because it improves many sensory, functional and nutritional properties 

[14]. The quality of the subsequent product is superior to one without pre-treatment due to (i) the 

improvements to texture of the fruits and vegetables, (ii) the stability of the colour pigmentation during 

storage, and (iii) increases in the solid gain transfer of sugar and salt from the hypertonic solution [2] [11]. 

Thus, in conjunction with other ensuing drying technologies, osmotic dehydration produces a superior 

quality, shelf-stable product for both local consumption and export markets.  

Water removal during the dehydration process is influenced by many factors such as type and 

concentration of osmotic agents, temperature, circulation/agitation of solution, solution-to-sample ratio, 

thickness of food material, and any pre-treatments [4] [6]. While an expanding market currently exists for 

osmo-convective dehydrated fruits and vegetables in both domestic and world markets, only limited 

efforts have been undertaken to optimize the requisite osmotic process parameters [2] [11] [15] [16] [17] 

[18]. Specifically, an effective analysis of the mass transport occurring within the osmosis process 

measured in terms of water loss and solid (sugar, salt) gains is of considerable commercial and practical 

relevance [4] [6] [10].  

In this study, the functional form of the osmotic dehydration process for mushrooms is constructed using 

a standard response surface technique [17] [18] [19] [20] [21]. The format of the resulting optimization 

model is shown to be a non-linear goal programming problem [15] [16] [17] [18]. This study employs the 

Firefly Algorithm (FA) [17] [22] [23] [24] to determine the optimal osmotic parameters for the mushroom 

dehydration case considered in [2]. It can be shown that the resulting osmotic process parameters 

produced by the FA are superior to those from the previous approaches. 

2 Functional Form and Mathematical Model of the Osmotic Dehydration 

Process 

The first section of the analysis examines the dehydration case of mushrooms taken from [2]. In the case, 

a brine solution is employed for dehydration and the solid gain corresponds to the transport of salt from 

the brine into the mushrooms. The first step requires the construction of an appropriate model of the 

responses to the three main osmotic process parameters – (i) solution temperature, (ii) hypertonic 

solution concentration and (iii) duration of osmosis – on the water loss and solid gain of the mushrooms. 

This functional representation can then be used to predict the water loss and salt gain impacts in the 

mushrooms over the requisite experimental ranges of the three designated parameters. Once the 

appropriate model has been constructed, the next step is to optimize this model in order to determine 

the maximum water loss and the optimum salt gain achieved during dehydration. In the subsequent 

formulations, let T represent the brine solution temperature in oC, C be the salt solution concentration in 

percent, and D be the duration of the osmosis measured in minutes. For the response variables, let WL 

be the percentage of water loss and SG represent the solid gain of the product during the dehydration 

process. In this instance, SG corresponds to the percentage of salt gain in the mushrooms. 

Response surface methods are statistical techniques frequently used for optimization in empirical studies 

[19] [20] [21]. Response surfaces employ quantitative data in appropriately designed experiments to 
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simultaneously ascertain the various variable relationships within multivariate problems [21]. The 

equations constructed describe the effect of various test variables on responses, determine 

interrelationships among the test variables and represent the combined effect of all test variables in any 

response. Response surfaces enable an experimenter to undertake an efficient exploration of a process 

or system [20] [21]. These approaches have frequently been used in the optimization of food processes 

[2] [11] [25] [26] [27] [28] [29] and will, consequently, be employed in this study to determine the 

appropriate mathematical representation. The proposed model can then be used to predict the water loss 

and salt gain in the dehydration of mushrooms over the different experimental ranges for the process 

durations, brine concentrations and solution temperatures. 

For the osmotic dehydration process, it should be noted that the exact mathematical representation for 

the relationship between the parameters remains unknown. Thus, a response surface methodology 

enables an empirical approximation to it using efficient experimental design techniques [20] [21]. The 

specific testing design actually contains the three variables (T, C, D) each set at three levels using the data 

taken from [2] in order to determine the corresponding water loss (WL) and salt gain (SG) responses. The 

design for the various combinations of input variables and levels requires the various experimental 

combinations shown in Table 1 (see [2]), while the values determined for the response variables WL and 

SG appear in last two columns of Table 1. 

    Based upon the response surface experimental design appropriately applied to the water loss and the 

salt gain outputs of TABLE 1 [19] [20] [21], the functional equations empirically determined for responses 

are: 

 
2 2 19.58  –  0.13  1.7  0.98  0.00357  0.00673 –  343 –  0.0106WL T C D TD CD C D           (1) 

2 2 2  –  13.87   0.11  1.09  0.14 –  0.000973 –  0.0296 –  0.00129SG T C D T C D               (2)  

Mehta et al. [2] established organoleptic ranges for the osmotic dehydration parameters and restricted 

their search for best parameter settings to values within these ranges. Organoleptic properties refer to 

sensory aspects of food including taste, sight, smell, touch, dryness, moisture content, and stale-fresh 

factors. In order to find values for the osmotic dehydration parameters, Mehta et al. [2] constructed a 

number of contour plots by varying the values of the three variables and observed the effect that these 

had on their response functions. By superimposing these contours onto a single chart, the best settings 

for the temperature, concentration, and duration variables were determined to be 44.89 oC, 16.53% and 

47.59 minutes, respectively. These settings generate responses of 40.55% for water loss and 2.98% for 

salt gain (see Table 2). 
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Table 1.  Response Surface Experimental Design Layout for 3 Variables and 3 Levels. 

Level 

for T 

Temperature 

(oC) 

Level 

for C 

Concentration 

(%) 

Level 

for D 

Duration 

(Mins) 

Water Loss 

(%) 

Salt Gain (%) 

1  55  1  20  0  45  44.93  3.24 

1  55  -1  10  0  45  36.38  1.03 

-1  35  1  20  0  45  39.70  2.56 

-1  35  -1  10  0  45  29.92  0.59 

1  55  0  15  1  60  43.92  2.90 

1  55  0  15  -1  30  34.23  2.24 

-1  35  0  15  1  60  37.09  2.34 

-1  35  0  15  -1  30  29.54  1.73 

0  45  1  20  1  60  45.04  3.03 

0  45  1  20  -1  30  35.51  2.22 

0  45  -1  10  1  60  33.69  1.06 

0  45  -1  10  -1  30  26.18  0.33 

0  45  0  15  0  45  38.05  2.57 

0  45  0  15  0  45  38.44  2.64 

0  45  0  15  0  45  38.27  2.64 

0  45  0  15  0  45  38.55  2.79 

0  45  0  15  0  45  38.60  2.82 

Table 2.  Best Osmotic Dehydration Parameters Determined by Mehta et al. [2]. 

Temperature (oC)  Concentration (%)  Duration (Mins)  Water Loss (%)  Salt Gain (%) 

44.89  16.53  47.59  40.55  2.98 

 

3 A Goal Programming Formulation for Setting Osmotic Dehydration 

Parameters 

The determination of the parameters settings can be viewed as a multi-response optimization process 

and could, therefore, be transformed into a corresponding mathematical programming model [15] [16] 

[17] [18]. In this section, this formulation will be accomplished by converting the parameter setting 

process into an equivalent goal programming format.  

Based upon the organoleptic requirements established for the parameters and response functions in [2], 

the technical constraints for the problem can be specified as: 

                                        26.18 45.04WL                                                                                (3) 

                                                      0.33 3.24SG                                                                                      (4) 

   35   55T                                                                                             (5) 

                                                  10   20C                                                                                             (6) 

                                                  30   60D                                                                                                (7) 
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Additional organoleptic preferences can be applied to the responses and variables for the solution. The 

targets for these desired criteria are summarized in TABLE 3. From a hierarchical preference attainment 

perspective, several of these criteria can be recognized as more important attributes to achieve than the 

others. Namely, from a dehydration perspective, the water loss should be as high as possible within the 

indicated range, while from a taste perspective, the salt gain needs to be as close to 2.98% as possible. 

The relative importance for the achievement of these hierarchy targets is indicated in the last column of 

Table 3. 

Table 3.  Ranges for Process Variables and Response Goals in the Osmotic Dehydration 

Parameter  Goal  Requirement  Lower 

Limit 

Upper 

Limit 

Relative Importance 

Temperature (oC)  1  Minimize  35  55  Important 

Concentration (%)  2  Minimize  10  20  Important 

Duration (Mins)  3  Minimize  30  60  Important 

Water Loss (%)  4  Maximize  23.02  44.05  Very Important 

Salt Gain (%)  5  Target = 2.98  0.33  3.24  Very Important 

 

Hence, from a mathematical perspective, each of these desired targets can be specified as a definitive 

goal and the entire formulation can then be transformed into a conventional goal programming problem. 

An objective function that appropriately penalizes deviations from the desired targets must be created 

and, in the subsequent mathematical programming formulation, a percentage deviation objective 

weighted by the relative importance of each goal is employed. Consequently, the problem of determining 

osmotic dehydration parameter values can be transformed into the following non-linear goal 

programming formulation. 

                Minimize  1 1 2 2 3 3 4 4 5 5 5  * * * * *W P W P W P W N W P N                                 (8) 

subject to   1 –  35P T                                                                     (9) 

1  55  –N T                                                                     (10) 

2 –  10P C                                                                     (11) 

2  20  –N C                                                                    (12) 

3 –  30P D                                                                       (13) 

3  60  –N D                                                                    (14) 

4 –  26.18P WL                                                               (15) 

4  45.04  –N WL                                                            (16) 

5 –  2.98P SG                                                                  (17) 

5  2.98  –N SG                                                               (18) 
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6 –  0.33P SG                                                                       (19) 

6  3.24  –N SG                                                                    (20) 

 0,  0                              1,  2,  3,  4,  5,  6i iP N i    (21) 

 

In order to complete the transformation of the problem into the series of defined goals, several additional 

deviation variables have been introduced. Namely, for the goal model, define Pi and Ni, i = 1 to 6, to be 

the positive and negative deviations, respectively, from the disparate goal targets and constraint limits 

shown for the variables in Table 3. Let Wi correspond to weighting factors applied to goal i, i = 1 to 5, to 

reflect the relative importance in achieving that goal’s target. Each Wi also contains the appropriate 

denominator constant required to transform the deviation variables into the requisite percentage 

deviation value format. Thus, solving the goal programming model would be equivalent to determining 

optimal parameter values for the osmotic dehydration process. 

4 A Goal Programming, Firefly Algorithm-driven Optimization Approach 

While numerous different techniques could have been used to solve the resulting optimization problem, 

the method actually applied uses an FA procedure. For optimization, Yang [23] has proved that the FA is 

more computationally efficient than other such commonly-used metaheuristics as simulated annealing, 

enhanced particle swarm optimization, and genetic algorithms. Thus, the FA represents a very 

computationally efficient solution procedure. This section provides a brief outline of the FA procedure, 

while more comprehensive descriptions can be found in [22] and [23].  

The FA is a population-based, nature-inspired metaheuristic in which each firefly within the population 

corresponds to one potential solution to the problem. All FA procedures employ three specific rules: (i) 

The fireflies within a population are unisex, so that one firefly will be attracted to other fireflies 

irrespective of their sex; (ii) Attractiveness between any two fireflies is proportional to their brightness, 

implying that the less bright firefly will move towards the brighter one; and (iii) The explicit brightness of 

any firefly is explicitly determined by the corresponding value of its objective function. For maximization 

problems, the brightness can be considered proportional to the value of the objective function. Yang 

(2010) demonstrates that the FA approaches the global optima whenever the number of fireflies n   

and the number of iterations t, is set so that t >>1. In reality, the FA has been shown to converge extremely 

quickly into both local and global optima [22] [23]. The basic operational steps of the FA are summarized 

in the following pseudo-code (Yang 2010). 


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Objective Function F(X), X = (x1, x2,… xd) 

Generate the initial population of n fireflies, Xi, i = 1, 2,…, n 

Light intensity Ii at Xi is determined by F(Xi) 

Define the light absorption coefficient γ 

while (t < MaxGeneration) 

 for i = 1: n, all n fireflies 

  for j = 1: n, all n fireflies (inner loop) 

   if (Ii < Ij), Move firefly i towards j; end if 

   Vary attractiveness with distance r via e- γr   

  end for j 

 end for i 

 Rank the fireflies and find the current global best solution G*   

end while 

Postprocess the results 

In the FA, there are two important issues to resolve: the formulation of attractiveness and the variation 

of light intensity. For simplicity, it can always be assumed that the attractiveness of a firefly is determined 

by its brightness which in turn is associated with its encoded objective function value. In the simplest case, 

the brightness of a firefly at a particular location X would be its calculated objective value F(X). However, 

the attractiveness, , between fireflies is relative and will vary with the distance rij between firefly i and 

firefly j. In addition, light intensity decreases with the distance from its source, and light is also absorbed 

in the media, so the attractiveness needs to vary with the degree of absorption. Consequently, the overall 

attractiveness of a firefly can be defined as  

 = 0 exp(-r2) 

where 0 is the attractiveness at distance r = 0 and  is the fixed light absorption coefficient for the specific 

medium. If the distance rij between any two fireflies i and j located at Xi and Xj, respectively, is calculated 

using the Euclidean norm, then the movement of a firefly i that is attracted to another more attractive 

(i.e. brighter) firefly j is determined by 

Xi = Xi + 0 exp(-(rij)2)(Xi – Xj) + i. 

In this expression of movement, the second term is due to the relative attraction and the third term is a 

randomization component. Yang [23] indicates that  is a randomization parameter normally selected 

within the range [0,1] and i is a vector of random numbers drawn from either a Gaussian or uniform 

(generally [-0.5,0.5]) distribution. It should be explicitly noted that this expression represents a random 

walk biased toward brighter fireflies and if 0 = 0, it becomes a simple random walk. The parameter  

characterizes the variation of the attractiveness and its value determines the speed of the algorithm’s 

convergence. For most applications,  is typically set between 0.1 to 10 [23].]. For the computational 

approaches for the FA considered in this study, the variation of attractiveness parameter is fixed at 5 

while the randomization parameter  is initially set at 0.6, but is then gradually decreased to a value of 

0.1 as the procedure approaches its maximum number of iterations (see [23]). 
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Optimizing the goal programming problem using the FA-driven procedure, the best process parameters 

for the osmotic dehydration of the mushrooms were calculated. The resulting values are shown in Table 

4. Comparing these values to those found by Mehta et al. [2], it can be seen that the salt concentration 

increases by 2.5%, the required temperature increases by 9oC, while the duration of dehydration remains 

essentially unchanged. In terms of the two key response variables, the resulting water loss increases by 

4.5%, while the salt gain remains at its desired organoleptic target of 2.98%. Consequently, since the water 

loss response – which is obviously the fundamental feature of the osmotic dehydration process –  has 

been increased significantly from that determined in [2], this goal programming solution provides a 

significant improvement.  

Table 4.  Optimal Process Parameters Determined for the Osmotic Dehydration of Mushrooms 

   Temperature 

(oC) 

Concentration 

(%) 

Duration 

(Mins) 

Water Loss 

(%) 

Salt Gain 

(%) 

Mehta et al. [2]    44.89  16.53  47.59  40.55  2.98 

FA Solution    54.043  19.031  46.777  45.04  2.98 

 

In any given optimization problem, for a very large number of fireflies n >> k where k is the number of 

local optima, the initial locations of the n fireflies should be distributed as uniformly as possible to ensure 

that a comprehensive search throughout the search domain occurs. As the FA proceeds, the fireflies 

should converge into all of the local optima, including the global ones. By comparing the best solutions 

among all these optima, the global optima can easily be determined. As noted above, the FA approaches 

the global optima whenever the number of fireflies n    and the number of iterations t, is set so that t 

>>1 [23]. In reality, the FA has a tendency to converge very quickly into both local and global optima [22] 

[23].  

As can be observed in the pseudo code of the FA, the two parameters that most directly impact the 

solution running time of the FA are the values selected for n and t. Obviously, for practical applications, 

the desire is to be able to determine the best solution in the shortest period of time. This would 

correspond to setting n and t at the minimum possible values that produce the best solution(s). Using 

terminology from computational complexity, the search time for the FA is linear in t, but is a second order 

polynomial in n. 

5 Conclusion 

In this study, an empirical response surface approach was employed to provide the functional form of the 

osmotic dehydration responses for mushrooms. Using these estimates of the functional form, the 

resulting optimization model was formulated into a non-linear goal programming problem. The optimal 

solution to the goal programming problem was found using a computationally efficient, FA-directed 

procedure and the osmotic parameters determined were shown to be superior to those found in all 

previous instances. Since the running time complexity of the FA is linear in the number of iterations but 

polynomial in the number of fireflies, it would be more computationally practicable to run the FA using a 

relatively larger number of iterations in combination with a “reasonable” number of fireflies than vice 

versa. Since an FA can clearly be modified to solve a diverse spectrum of “real world” problems beyond 
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the context of fresh produce dehydration, the computational approach employed in this study can 

obviously be extended into numerous other “real world” settings. These extensions will be considered in 

future research.  
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