

Parallelization of Termination Checkers for Algebraic
Software

Rui Ding, Haruhiko Sato, and Masahito Kurihara
Graduate School of Information Science and Technology, Hokkaido University, JAPAN;

{ray,haru}@complex.ist.hokudai.ac.jp, kurihara@ist.hokudai.ac.jp

ABSTRACT

Algebraic software is modeled as a set of equations representing its specification, and when
each equation is directed either from left to right or from right to left, the resultant set of
directed equations (or rewrite rules) is called a term rewriting system, which can be interpreted
as a functional program executed by the pattern matching and term rewriting. In the field of
formal verification of information systems, most of the properties of such a system are
formalized as inductive theorems, which are equations over terms which hold on recursively-
defined data structure such as natural numbers, lists and trees. Well-known as a method for
inductive theorem proving is the Rewriting Induction (RI) proposed by Reddy. Recently, this
method was extended by Sato and Kurihara to the Multi-context Rewriting Induction with
termination checker (MRIt), which is a variant of RI to try to find a suitable context for induction
automatically. However, MRIt should perform a large amount of termination checking of term
rewriting systems, causing a significant efficiency bottleneck. In this paper, we propose a
method of parallelizing the termination checkers used in MRIt to improve its efficiency by
focusing on the well-known typical termination checking method based on the lexicographic
path orders. For implementation, we used the functional concurrent programming language
Erlang. We discuss the efficiency of our implementation based on the experiments with the
standard set of termination problems.

Keywords: Algebraic Software, Term Rewriting System, Termination, Parallelization.

1 INTRODUCTION
Algebraic software is modeled as a set of equations representing its specification, and when

each equation is directed either from left to right or from right to left, the resultant set of
directed equations (or rewrite rules) is called a term rewriting system [1]. A term rewriting
system is a set of rewrite rules used for rewriting a term to another, and can be interpreted as a
functional program executed by the pattern matching and term rewriting. Given a term
rewriting system, we always concern about its termination. A software tool which checks its
termination is called a termination checker. The termination property is a very important

DOI: 10.14738/tmlai.24.368
Publication Date: 28th August 2014
URL: http://dx.doi.org/10.14738/tmlai.24.368

mailto:antonio.francisco01@gmail.com

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 4, August 2104

property especially in automated inductive theorem proving, which tries to prove inductive
theorems, which are equations over terms which hold on recursively-defined data structures,
such as natural numbers, lists and trees. Once we have found that the system is terminating in
the inductive theorem proving, we can use the transitive closure of the associated rewriting
relation as a well-founded order over terms for the basis of induction.

To automate the inductive theorem proving, a lot of methods have been proposed. Here we
only mention one of the most refined ones, i.e., the Rewriting Induction (RI) proposed by Reddy
[2]. The RI is a principle which has successfully generalized and refined several procedures
proposed so far for proving inductive theorems based on term rewriting systems. The RI relies
on the termination of term rewriting systems created from the axiomatic equations. However,
there are some strategic issues coming from the non-determinism in constructing proofs. The
most critical issue is that, in the proof procedure of the RI, we have to choose appropriate proof
steps, considering which reduction order should be employed to prove the termination and
which rules should be employed for rewriting. In general, it is difficult to choose appropriate
strategies leading to the success, because we do not know the final result beforehand. In the RI,
the issue of choosing the reduction order is fixed before starting the procedure, by specifying a
particular reduction order used to decide the direction of equations to transform them into
rewrite rules and ensure that the resultant term rewriting systems have the termination
property. However, it is most difficult to properly decide such a particular reduction order
beforehand, making the RI really hard to automate.

To solve this problem, Aoto [3] proposed a variant of the RI, named the Rewriting Induction
with termination checker (RIt). This method has enabled researchers to improve the efficiency
of the inductive theorem proving systems by customizing the external termination checkers,
instead of using the reduction order given beforehand in the built-in termination checkers.
However, although the RIt has solved some strategic issues mentioned above, there comes
another issue instead: in which direction equations should be directed. From the viewpoint of
the strategy, the use of the external termination checkers gives us more flexibility in the
direction strategy, because the dynamic decision on the direction contributes to the increase in
the possibility of the success of the theorem proving. Thus in order to prove inductive theorems
automatically, we can now exploit this flexibility by trying various direction strategies in parallel.
However, it is clear that if we physically created and ran a number of parallel processes in a
naive parallelization scheme, it would cause serious inefficiency.

Recently, Sato and Kurihara [4] proposed a new variant of the rewriting induction
procedures called the Multi-context Rewriting Induction with termination checkers (MRIt)
based on the idea of multi-completion of Kurihara and Kondo [5] . The procedure simulates the
execution of parallel RIt processes in a single process. There are inductive theorems which are
easily proved by the MRIt but were not proved by the standard RI or RIt unless the strategies
and contexts were chosen correctly or else auxiliary lemma were discovered and supplied. The

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 103

Rui Ding, Haruhiko Sato and Masahito Kurihara; Parallelization of Termination Checkers for Algebraic Software,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 4, Aug (2014); pp: 102-114

MRIt improved the efficiency of inductive theorem proving significantly. However, a large
amount of rapid check of termination is necessary in the MRIt. This causes the standard
termination checker to take a lot of time for calculation, especially when the checker is based
on the dependency pair method, one of the most powerful methods recognized in the
associated community, proposed by Arts and Giesl [6]. This is becoming the obstacle for further
improvement of its efficiency. In order to automate and accelerate the MRIt, we propose in this
paper the use of the multi-core CPU to parallelize the lexicographic path order method, a well-
known termination checking method implemented in a lot of termination checkers. We discuss
the problem from two viewpoints. One is the exploration of the lexicographic path orders, and
the other is a large amount of term rewriting systems to be checked. For the implementation, a
functional concurrent programming language named Erlang has been adopted.

The paper is organized as follows. In Section 2, we will briefly review the basic definitions on
term rewriting systems. Then we will present our parallelization method in Section 3, and
discuss its performance in Section 4. Finally we will come to the conclusion and discuss our
future work in Section 5.

2 PRELIMINARIES
Let us briefly review the basic definitions and notations for term rewriting systems (TRSs). In

TRSs, a term will be built from function symbols and variables in the usual way. For example, if
f is a binary function symbol and x and y are variables, then),(yxf is a term. To make clear

which function symbols are available in a certain context, you need to specify a signature as
defined below.

Definition 1: A signature Σ is a set of function symbols, where each Σ∈f is associated
with a non-negative integer n, the arity of f . The elements of Σ with arity n=0 are called
constant symbols.

For example, if we want to talk about a group, a well-known algebraic structure equipped
with an identity element e , a unary inversion operation i and a binary multiplication operation
f , we use the signature { , , }e i f=Σ , where e has arity 0, i is unary, and f is binary. If we

want to talk about the set of non-negative integers, we may use the signature consisting of the
smallest non-negative integer 0, the successor function s (meaning s(x)=x+1), and some
arithmetic functions such as + and × .

With the definition of signature, we can define terms as follows.

Definition 2: Let Σ be a signature and X be a set of variables such that {}=∩ XΣ . The
set),(XT Σ of all Σ-terms over X (or simply terms if Σ and X are clear from the context) is
inductively defined as

),(XTX Σ⊆ (i.e., every variable is a term)

URL: http://dx.doi.org/10.14738/tmlai.24.368 104

http://dx.doi.org/10.14738/tmlai.24.368

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 4, August 2104

 If),(,, 21 XTttt n Σ∈ and Σ∈f , then),(),,,(21 XTtttf n Σ∈ , where n is the arity of

f (i.e., application of a function symbol to argument terms yields a term).

For example, for the signature },{ gf=Σ with two binary function symbols, (, (,))f x g x y is
a term containing the variables x and y . For a constant symbol e , we write the corresponding
term simply as e instead of ()e . Some binary function symbols (such as + and ×) are written in
infix form, with parentheses if necessary, like zyx ++)(instead of)),,((zyx++ .

The main difference between constant symbols and variables is that the latter may be
replaced by terms specified with substitutions. A substitution is a function),(: XTV Σ→σ that

maps every variable to a term. The set of variables 1{ , , }nx x with ()i i ix t xσ = ≠ , 1 i n≤ ≤ , is

called the domain of σ . In this case, we may write σ 1 1{ , , }n nx t x t=    . Every substitution

σ can be extended to a mapping),(),(: XTXT ΣΣ →σ from terms to terms by introducing a

new regulation))(,),(()),,((11 nn ssfssf σσσ  = . In words, the application of a substitution

to a term simultaneously replaces all occurrences of variables by their respective images.

Definition 3: A rewrite rule is an ordered pair of terms (,)l r such that l is not a variable and
)()(rVarlVar ⊇ . We may write rl → instead of (,)l r . A term rewriting system (TRS) is a set of

rewrite rules. Note that the rewrite rule can be considered as an equation l r= directed from
left to right.

Let □ be a new symbol which does not yet occur in X∪Σ . A context is a term
(, { })C T X∈ ∪Σ □ with a single occurrence of □. For a term s and a context C ,][sC denotes

the term obtained by replacing □ in C by s . For any terms),(, XTts Σ∈ and a TRS R , if there
exists a rewrite rule Rrl ∈→ , a context C , and a substitution σ such that [()]s C lσ≡ and

[()]t C rσ≡ , we say that s can be rewritten to t by a rewrite rule of R and write ts R→ . We

call R→ a reduction relation. A TRS R terminates if it allows no infinite rewrite sequences

RR ss →→ 10 . In this case, one often says that R is terminating or R has the termination

property. We can prove the termination of term rewriting systems by using the following
definition and theorem on reduction orders.

Definition 4: A strict partial order > on),(XT Σ is called a reduction order, if it satisfies the
following properties.

 closed under context: s t> implies [] []C s C t> , for all contexts C .
 closed under substitution: s t> implies () ()s tσ σ> for all substitutions σ .

 well-founded: there are no infinite decreasing sequences 0 1s s> > .

Theorem 1: A term rewriting system R terminates if, and only if, there exists a reduction
order > that satisfies rl > for all rewrite rules l r→ of R .

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 105

Rui Ding, Haruhiko Sato and Masahito Kurihara; Parallelization of Termination Checkers for Algebraic Software,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 4, Aug (2014); pp: 102-114

3 PARALLELIZATION

3.1 Programming Language Erlang
To implement the termination checker efficiently in a multi-core CPU, we have adopted a

programming language named Erlang [7]. Erlang is a general-purpose concurrent programming
language run on an efficient runtime system. The sequential subset of Erlang is a functional
language, with strict evaluation, single assignment, and dynamic typing. For concurrency it
follows the Actor model. It was designed by Ericsson to support distributed, fault-tolerant, soft-
real-time, non-stop applications. It supports hot swapping, so that code can be changed
without stopping a system. We have selected this language because of the following three
characteristics.

Pattern Matching

A term is either a variable or a function symbol followed by zero or more argument terms.
To store terms in memory, we often design a recursively-defined tree-like structure,
distinguishing between variables and function symbols by using different data types or naming
conventions. To conduct term rewriting, we compare the structure of two terms (the pattern
and the data) and decide the substitution σ , if it exists, to rewrite the data by a rewrite rule
with that pattern in its left-hand side. Erlang has a convenient mechanism, pattern matching,
which can be used for this purpose. An expression of the form L R= in Erlang means the
instruction for matching the value of R with the pattern of L . If they match well, the variables
in L will get the corresponding value in R ; otherwise there will be an error. For example, if you
run in the shell of Erlang the commands 1 2 3 6X = + , Y = X + , Y = , X = Y , you will easily get

3X = and 6=Y from the first three commands. However, the last one will throw a bad-match
error, because X is not equal to Y . Pattern matching in Erlang is simple, but when the left-
hand side of the equation has a complex structure, it becomes very convenient to valuate all
the variables in it. There are two data structures in Erlang we would like to mention. A tuple is a
structure with a fixed number of data specified in the form },,{ 1 nxx  with fixed n, while a list

is a structure with a variable number of data specified in the form],,[1 nxx  . If you want to get

values from a complex tuple like]}]},[,,{,,[,{ gfedcba , you only need to do the pattern
matching]}]},[,,{,,[,{]}]},[,,{,,[,{ gfedcbaGFEDCBA = to get the variables in uppercase
letters valuated with the data in lowercase letters. Such characteristics make it convenient to
deal with TRSs.

Efficient Parallelization

An amazing thing to the users of Erlang is the fact that the program will run n times faster
in a n core CPU without any modification. But to achieve this, you must make sure that the
program is constructed with processes and there are no interferences and sequential
bottlenecks among them. To avoid sequential bottlenecks in the implementation, you can use

URL: http://dx.doi.org/10.14738/tmlai.24.368 106

http://dx.doi.org/10.14738/tmlai.24.368

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 4, August 2104

the feature named the process link in Erlang. After creating a process bP , you can link it with an

existing process aP for message transfer. A process will send a signal to the linked processes

once its task has been completed (or exit with error), and the processes which have received
the termination signal also terminate unless they are system processes. A system process can
be set at the beginning of the process. This link mechanism is a great help in relieving
sequential bottlenecks in the implementation.

Extendability

To communicate with other applications or programs, Erlang can create a process called a
port. Ports provide your programs with various features to cooperate with external programs.
The external programs are run outside the Erlang runtime system. The virtual machine running
the Erlang processes copies data through the port to and from the port’s driver controlling the
external programs. Messages can be sent to a driver through a port by using the same
operator, !, used to send messages to regular Erlang processes. Messages sent by drivers to
Erlang are also received using the same operator, receive. With this mechanism, your Erlang
programs can be easily extended with external programs in a transparent way.

3.2 Lexicographic Path Order
To verify the termination, we use the lexicographic path order (LPO), which is a basic

reduction order used in the literature.

Definition 5: Let Σ be a finite signature and > be a strict partial order (called a precedence)
on Σ. The lexicographic path order lpo> on),(XT Σ induced by > is defined as follows:

ts lpo> , if and only if

(LPO1) s is not a variable and t is a variable that occurs in s , or

(LPO2)),,(1 mssfs = ,),,(1 nttgt = , and

(LPO2a) there exists ,1i i m≤ ≤ , with ts lpoi ≥ , or

(LPO2b) gf > and jlpo ts > for all ,1j j n≤ ≤ , or

(LPO2c) gf = , jlpo ts > for all ,1j j n≤ ≤ , and

there exists ,1i i m≤ ≤ , such that 1111 ,, −− == ii tsts  and ilpoi ts > .

The definition of the LPO is recursive, since in (LPO2a), (LPO2b) and (LPO2c) it refers to the
relation lpo> to be defined. Nevertheless, lpo> is well defined, since the definition of ts lpo>

only refers to the relation lpo> applied to pairs of terms that are smaller than the pairs ts, . It is

proved that lpo> is a reduction order, so the termination of TRS R with the signature Σ is

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 107

Rui Ding, Haruhiko Sato and Masahito Kurihara; Parallelization of Termination Checkers for Algebraic Software,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 4, Aug (2014); pp: 102-114

proved if we can find out a precedence > over Σ such that the LPO lpo> induced by > satisfies

lpol r> for all rewrite rules l r→ of R.

3.3 Data Structure
Now we are ready to present the data structure for parallelizing the termination checker.

Since only terms and rewrite rules need to be constructed by the data structure, we define
their representations in Erlang using the tuple data type as follows:

 A variable v is represented by a tuple }{v with a single element.
 A constant c is represented by a tuple { ,[]}c of a symbol and the empty list.
 A term with the function symbol Fun and its arguments ,2,1 ArgArg is represented

by a tuple]},2,1[,{ ArgArgFun of a symbol and a non-empty list.
 A rewrite rule Left Right→ is represented by a tuple },{ RightLeft of two elements

where the second one is not a list.

This definition is based on the recursive definition of terms. Note that those four kinds of
objects can be clearly distinguished by their syntactical patterns. With those representations,
we can store any objects for TRSs in the Erlang environment. For example, we can store the TRS
given in Figure 1 in a TRS file as in Figure 2.

Figure 1. An Example of TRS

Figure 2. A TRS File

URL: http://dx.doi.org/10.14738/tmlai.24.368 108

http://dx.doi.org/10.14738/tmlai.24.368

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 4, August 2104

Although the TRS file is difficult for us to read, Erlang can read it easily by using the pattern
matching. For example, we only need to match an object with the pattern {_} (" _ " means a
“wild card” matching with any data) to decide whether it is a variable or not.

Besides the data structures for TRSs, we define the data structure for a precedence > over
the function symbols as the list of binary tuples of them. For example, the precedence defined
by gf > , g h> and f h> is represented as the list [{ , },{ , },{ , }]f g g h f h .

Since there is no precedence when the termination checker starts, we initiate it as []=I .
When we need to add a new element f c> , we put { , }f c into I , making sure that it
preserves the properties required for precedences, without causing no conflict with the current
precedence represented as I .

3.4 Parallelization
In this subsection we describe the parallelization architecture for termination verification.

Actually, we propose two schemes of parallelization: microlevel and macrolevel.

Microlevel parallelization

First, the architecture for the termination verification of a single TRS is shown in Figure 3.

Figure 3. Microlevel parallelization in termination check with Lexicographic Path Orders

If the TRS is empty, the procedure terminates; otherwise it computes the list of the
precedences ()i> , 1, 2,i =  , that make the left-hand side of the first rule greater than its right-

hand side in ()i
lpo> . This can be easily computed from the definition of LPO [8]. The procedure

then tries to extend each precedence ()i> obtained, so that it can further compute the list of
the precedences (,) ()i j i> ⊇ > , 1,2,j =  , that make the left-hand side of the second rule greater

than its right-hand side in (,)i j
lpo> . The procedure continues this operation until it finds a

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 109

Rui Ding, Haruhiko Sato and Masahito Kurihara; Parallelization of Termination Checkers for Algebraic Software,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 4, Aug (2014); pp: 102-114

precedence (, ,)i j>  that makes the left-hand side of the last rule greater than its right-hand side

in
(, ,)i j

lpo>


 or else it finds that there is no such precedence in any branches. In the figure, a single

[] means there is no such precedence. (This should be distinguished from [[]] , which means
there is an empty precedence in the list.) At each choice point, the procedure creates a parallel
process for each precedence just obtained. This procedure can be summarized as follows.

1. Create a supervisor process to monitor the set of created processes by the link feature
of Erlang, and create and start a process that executes the step 2 with the rule number

1=i and the precedence []=p . The supervisor process waits until a created process
returns “terminate” successfully or else it finds there are no created processes, and
returns “terminate” in the former case and “failure” in the latter case.

2. Given i and p , if there is no i th rule, then return “terminate”; otherwise compute

},,{ 21 ppPlist = , which is the list of all the precedences that are extensions of p and

make the left-hand side of the i th rule greater than its right-hand side in the induced
LPO, and
• terminate this process, if listP is empty.

• execute the step 3, if listP is not empty.

3. For each listj Pp ∈ , create and start a process that executes the step 2 with 1+i and

jp .

One may notice a subtle synchronization problem in the procedure: if the supervisor
process starts before any other children processes, it will return “failure” even before the
termination verification is started. To avoid this, we lock the supervisor process until all the
possible precedences are obtained and sent to children processes. Besides this, there is also
another small synchronization problem, but it is solved by the link and message transfer
features of Erlang.

Macrolevel parallelization

Now let us think about two or more TRSs to verify the termination of. Our architecture for
such an application is based on the macrolevel viewpoint as shown in Figure 4, where the
termination checker should take a stream of TRSs and their identifiers as input. We create an
input port in Erlang which receives TRSs from other applications or programs. Each received TRS
is assigned to a new process, and its termination will be checked using the procedure described
above (designated as lpo in the figure). When the verification is over, the result is sent to the
output port to send it to the external program. In Erlang, each process is executed on its
independent memory, so there is no interference among the processes in the macrolevel
parallelization.

URL: http://dx.doi.org/10.14738/tmlai.24.368 110

http://dx.doi.org/10.14738/tmlai.24.368

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 4, August 2104

Figure 4. Macrolevel Parallelization in termination check for multiple TRSs

4 EXPERIMENT
In this section, we show and discuss the results of the experiments. In the experiments, we

used the standard problems stored in the Termination Problem Data Base [9], which contains
2,125 TRSs to be checked for their termination. The implementation and experiments were
performed on a workstation with two AMD Opteron 2.3GHz CPUs with 12 cores. This means we
had 24 cores in the workstation.

First we conducted the experiment on all the 2,125 problems. We deliberately eliminated
all the IO operation time in the measurement of the computation time so that we only measure
the computation time of the termination check. In order to compare the proposed
parallelization with the non-parallelization, we also wrote a sequential termination checker in
Erlang. We show the result in Figure 5, in which the horizontal axis represents the number of
the cores, while the vertical axis represents the computation time in microseconds.

Figure 5. Result of experiment on all the TRSs

With a single core, the computation time of the proposed method was almost the same as
the sequential method. With multi-cores, however, the computation time decreased
significantly when we increased the number of cores. As for the sequential program, its
computation time was basically unchanged, because it creates no parallel processes even when
a lot of cores are available. The change in efficiency with the increase of cores can be observed

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 111

Rui Ding, Haruhiko Sato and Masahito Kurihara; Parallelization of Termination Checkers for Algebraic Software,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 4, Aug (2014); pp: 102-114

more clearly in Figure 6, where the vertical axis represents the reciprocal number of the
computation time, indicating the speed of computation in terms of the amount of work done in
a microsecond.

Figure 6. Efficiency result of experiment on all the TRSs

Obviously, the speed of computation increased with the increase in cores, when the
number of cores is less than 16. However, when the number of cores exceeded 16, the increase
in the efficiency of the proposed method came to the limit and even went down.

In order to figure out the reduction in efficiency, we divided all the TRSs into three groups
by the number of rewrite rules they contain. The 46 TRSs which contain 50 or more rules were
classified as a group named Large, and 300 TRSs with 15 or more but less than 50 rules were
named Medium. The remaining 1,779 TRSs with less than 15 rules were put into the last group
named Small.

New experiments were conducted for each of the three groups. First we repeated the same
experiment described above, but this time, the program was run for each group as input. In
addition, we performed another experiment where only microlevel parallelization was
activated for each group. The results are shown in Figure 7, Figure 8 and Figure 9, where
"Proposed method" shows the results when both microlevel and macrolevel parallelizations
were activated, while "Microlevel Parallel" only activated the microlevel parallelization.

Figure 7. Efficiency result of experiment on Large TRSs

URL: http://dx.doi.org/10.14738/tmlai.24.368 112

http://dx.doi.org/10.14738/tmlai.24.368

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 4, August 2104

Figure 8. Efficiency result of experiment on Medium TRSs

Figure 9. Efficiency result of experiment on Small TRSs

As in the original experiment, the efficiency of the sequential program was almost
unchanged with the number of cores, and the efficiency of the proposed method increased
with the increase of the number of cores, showing obvious better efficiency than the sequential
program. However, a difference from the original experiment can be seen in the figure for the
Large group, where the efficiency of the proposed method increased until the number of cores
came to 23 rather than the original 16. This is in contrast with the figures for the Medium and
Small groups, where the increase in efficiency came to limit when the number of cores became
nearly 14.

For the cases of the Large and Medium TRSs, the microlevel parallelization attained almost
the same performance as the proposed method, which performs both micro- and macro-level
parallelizations. This implies that the microlevel parallelization was effective but the macrolevel
one was not effective for those cases. For the case of the Small TRSs, on the other hand, we can
see the macrolevel parallelization was very effective and the efficiency of the microlevel
parallelization was even worse than the sequential method. The results show that the
macrolevel parallelization did not work well for a small number of TRSs, and the microlevel
parallelization decreased its efficiency for TRSs with a small number of rewrite rules. From the
results, we can say that if the number of TRSs and the number of rewrite rules in those TRSs is
large enough, the proposed method is useful and efficient. Fortunately, in practice of

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 113

Rui Ding, Haruhiko Sato and Masahito Kurihara; Parallelization of Termination Checkers for Algebraic Software,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 4, Aug (2014); pp: 102-114

termination checking performed in the inductive theorem proving, we often encounter a large
number of complex TRSs, which make the proposed method satisfactory to us.

5 CONCLUSION
In this paper, we have proposed a parallel method of termination checking for term

rewriting systems using the lexicographic path order method. The efficiency of the proposed
method was shown to be satisfactory for the applications with a large number of complex TRSs
generated for termination checking. However, the power of the lexicographic path order is not
strong enough to solve a lot of termination problems we encounter. It is a challenging task as a
future work to try to parallelize a more powerful termination checking method such as the
dependency pair method [6, 10], and finally improve and automate the inductive theorem
proving.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Number 25330074.

REFERENCES

[1]. Baader, F and Nipkow, T. Term Rewriting and All That, Cambrdge University Press, 1998.

[2]. Reddy, U. Term Rewriting Induction, Proc. of 10th International Conference on Automated Deduction,
Lecture Notes in Computer Science, Vol. 449, pp. 162-177, 1990.

[3]. Aoto, T. Rewriting Induction Using Termination Checker, Proceedings of JSSST 24th Annual Conference,
3C-3, 2007.

[4]. Sato, H and Kurihara, M. Muti-Context Rewrting Induction with Termination checkers, IEICE Transactions
on Information and Systems, vol. E93-D, no. 5, pp. 942-952, 2010.

[5]. Kurihara, M and Kondo, H. Completion for Multiple Reduction Orderings, Journal of Automated Reasoning,
vol. 23, no. 1, pp. 25-42, 1999.

[6]. Arts, T and Giesl, J. Termination of Term Rewriting Using Dependency Pairs, Theoretical Computer Science,
vol. 236, no. 1-2, pp. 133-178, 2000.

[7]. Armstrong, J. Programming Erlang: Software for a Concurrent World, Second Edition, Pragmatic Bookshelf,
2013.

[8]. Kurihara, M and Kondo, H. Efficient BDD Encodings for partial order constraints with application to expert
systems in software verification, Proceedings of 17th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems, Lecture Notes in Artificial
Intelligence, vol. 3029, pp.827-837, 2004.

[9]. Termination problems data base. [Online] http://termination-portal.org/wiki/TPDB.

[10]. Hirokawa, N and Middeldorp, A. Tyrolean Termination Tool: Techniques and Features, Information and
Computation, vol. 205, no. 4, pp. 474-511, 2007.

URL: http://dx.doi.org/10.14738/tmlai.24.368 114

http://dx.doi.org/10.14738/tmlai.24.368

	Parallelization of Termination Checkers for Algebraic Software
	Abstract
	1 Introduction
	2 Preliminaries
	3 PARALLELIZATION
	3.1 Programming Language Erlang
	Pattern Matching
	Efficient Parallelization
	Extendability

	3.2 Lexicographic Path Order
	3.3 Data Structure
	3.4 Parallelization
	Microlevel parallelization
	Macrolevel parallelization

	4 Experiment
	5 Conclusion
	ACKNOWLEDGMENT
	References

