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ABSTRACT 

This paper  proposes  an adaptation of the Random­ Key  Cuckoo  Search  (RKCS)  algorithm for  solving 

the  famous Quadratic  Assignment   Problem   (QAP).  We  used  a  simplified and efficient random­key 

encoding scheme to convert a continous space (real numbers) into a combinatorial space. We also consid­ 

ered the displacement of a solution in both spaces by using Le´vy flights. The performance of the RKCS for 

QAP is tested against a set of benchmarks of QAP from the well­known QAPLIB library, and  the  

comparison  with  a set of other  methaheuristics is also carried out. 

Index Terms—Nature­Inspired Metaheuristic, Cuckoo Search, Le´vy  Flights,  Combinatorial  Optimization,  

Quadratic  Assign­ ment  Problem,  Random­Key. 

1 Introduction	

NP­hard problems [17] are very challenging to solve. It is also the most complicated among combinatorial 

optimization problems. The  main  difficult of  such  problems is  that  the number of combinations grows 

exponentially with the problem size. Quadratic assignment problem [7] is one of the problems that 

belongs to this class. 

Quadratic Assignment Problem (QAP) is a combinatorial optimization problem that is applied to solve 

various problems in many fields such as Steinberg Wiring Problem [5], Hospital Layout [13], Dartboard 

Design [12], and many other applica­ tions [7], [14]. Problems such as QAP do not have an efficient 

algorithm to solve them exactly. It is practically very difficult to get a solution of optimal quality and in a 

reduced runtime simultaneously. This requires some heuristic algorithms that can find good (not 

necessarily optimal) solutions in a good runtime by trial and error. Approximate algorithms such as 

metaheuristics [4] are actually the best choice to solve many combinatorial optimization problems. They 

are characterized by their simplicity and flexibility while demonstrating remark­ able effectiveness. Many 

metaheuristics are proposed to solve QAP. Existing studies include Genetic Algorithms (GA) [1] that used 

a sequential constructive crossover, a modified Particle Swarm Optimisation (PSO) [21], Ant Colony 

Optimisation (ACO) [11], and many other examples [22], [15]. 

Among the most difficult issues that arises when solving a combinatorial optimization problem with a 

metaheuristic, is how to move in the combinatorial solution space without affecting the performance of 



Transact ions on Machine  Learn ing and  Art i f i c ia l  Inte l l igence Vol  5  No 4,  Aug 2017  
 

Copyright © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 843 
 

 

the metaheuristic.  Several meta­ heuristics are designed in principle for continuous optimization 

problems. So, the question is how to treat combinatorial problems properly without losing the good 

performance of these metaheuristics. In this paper, we used the Random­Key Cuckoo Search (RKCS) 

algorithm by using the random key encoding scheme to represent a position, found by the cuckoo search 

algorithm, in the QAP solution space. 

This work presents a novel approach using the improved cuckoo search algorithm [26], based on random 

keys [3], with a simple local search procedure to solve QAP. 

The rest of this paper is organized as follows: Section 2 introduces briefly the  QAP. Section 3,  first, 

introduces the standard  cuckoo  search  and  its  improved  version.  Section 4 presents the random­key 

encoding scheme, while Section 5  describes  how  CS  solves  QAP  by  using  Random  key. Then, Section 

6 presents results of  numerical  experiments on a set of QAP benchmarks from the QAPLIB library [8]. 

Finally, Section 7 concludes with some discussions and future directions. 

2 Quadratic	Assignment	Problem	

The Quadratic Assignment Problem is a combinatorial optimisation problem, which tries to minimize the 

total cost of building and operating the facilities knowing that the benefit resulting from an economic 

activity at any site is depending on the sites of the other facilities. The solution space in QAP is considered 

as a set of all potential assignments of the facilities to the possible sites. 

A selected solution S is the permutation ϕ of a given set Q = {1, 2, . . . , N } where N  is the instance 

dimension, it is also the number of sites and facilities, ϕ(i) = k means that the facility i is assigned to the 

site k. 

The  objective  problem  is  to  find  a  permutation  ϕ   = (ϕ(1), ϕ(2), ..., ϕ(N )) that minimizes 

 

where  a  is  the  flow matrix,  and  aij  is  the  flow between facilities  i  and  j,  and  b denotes  the  distance  

matrix.  So, the distance from facility i to j takes the value of bϕ(i)ϕ(j). 

Here, ϕ(i)  is the location assigned to facility i. The aim is to minimize the sum of products flow×distance 

[30]. 

3 Cuckoo	Search	Algorithm	

In the aim to increase their survival chances and reduce the probability of abandoning eggs by the host 

birds, cuckoos adopt many strategies and tricks. These strategies are mimicked successfully and designed 

in the well known Cuckoo Search (CS) algorithm [34]. Cuckoo search introduces Le´vy flights [28] for 

generating a new good solution. Le´vy flights, named after the French mathematician Paul Le´vy, 

represent a model of random walks characterized by their step lengths which obey a power­law 

distribution [6]. CS is widely applied to solve many combinatorial optimization problems such as Travelling 

Salesman Problem [25], [27], Flow Shop Schedul­ ing Problem [20], Knapsack Problem [19]. 

The first version of CS, which is developed by Xin­She Yang and Suash Deb, is summarized as the following 

ideal rules: (1) Each cuckoo lays one egg at a time and selects a nest randomly; (2) The best nest with the 
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highest quality of egg can pass onto the new generations; (3) The number of host nests is fixed, and the 

egg laid by a cuckoo can be discovered by the host bird with a probability pa  ∈ [0, 1]. pa  is also a switch 

parameter to control the balanced combination of local 

explorative random walk and the global explorative random walk. The local random walk can be written 

as : 

 
where xj

t and xk
t  are two different solutions selected randomly by random permutation, H (u)  is a Heaviside 

function, ϵ   is a random number drawn from a uniform distribution, and s is the step size. On the other 

hand, the global random walk is carried out by using Lévy flights 

 

 
Where  

 
Here α > 0 is the step size scaling factor, which should be related to the scales of the problem of 

interest. Lévy flights have an infinite variance with an infinite mean [34]. Here s0 is a constant, which 

can be take as 0.01 to 0.1. 

Before applying CS to solve QAP, as described in the Algorithm 1, we will consider an improved version of 

CS [26]. This improvement introduces a new category pc  of cuckoos that can engage a kind of 

surveillance on nests likely to be a host. So, around the pertinent solutions, this portion pc intensify the 

search process to find a new better solution via Lévy flights. 
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4 Random-Key	Encoding	Scheme	
 

Random­key encoding scheme [3], [27] is an interesting procedure that can be useful to pass from a 

continuous space to  the  combinatorial space. In  general, the  position in  the continuous space is 

represented by a vector of real numbers. To  have a projection in the combinatorial space, random­key (RK) 

associates each real number with a weight. These weights are used to generate one combination as a 

solution. The random real numbers drawn uniformly from [0, 1) compose a vector showed in Figure 1. 

On the other hand, the combinatorial vector  is  composed  of  integers  ordered  according  to  the weights 

of real numbers in the first vector, illustrated in the Figure 1. 
 

 
Figure. 1.  Random key encoding scheme 

 

5 Random	Key	Cs	For	Qap	

A QAP solution is a vector of N integers. Each integer is the facility index and its order in the vector is the 

corresponding site index. By considering Figure 1, we can say that resulting vector in this figure is a QAP 

solution. So to move from the current solution to a new one we can just perturb the first vector that 

contains the  real numbers. This perturbation is performed via Lévy flights. In the case of big jumps 

we per­ form a random pairwise interchanges of vector integers. It is a series of chained swaps φξ(1)ξ(2) 

, φξ(2)ξ(3) , . . . , φξ(ρ−1)ξ(ρ) , where ξ(1), ξ(2), . . . , ξ(ρ)  is a sequence of random integers between 1 and N  

such that ξ(i) = ξ(j), i, j = 1, 2, . . . , ρ, i = j, 1 < ρ ≤ N . The mutated solution π can thus be represented 

as  a  composition (((((π ⊕ φξ(1)ξ(2) ) ⊕ φξ(2)ξ(3) )⊕, . . . ) ⊕ ξ(i)ξ(i+1) ) ⊕ . . . ) ⊕ φξ(ρ−1)ξ(ρ) ,  where  π  is  

the  current solution. This series of chained swaps is called the controlled chained mutation (CCM) [23]. 

The parameter ρ is the mutation rate. This allows an improved way to balance the search for solutions in 

local areas as well as global areas.  

To detect the best solution in the found area, a simple local search (Steepest Descent [2]) is performed. 

In this local search method we used ’swap’ move as described in Figure 2 (In this example we chose to 

swap the facilities of the sites 2 and 6, which are 1 and 9.) which moves from a placement ϕ to a neighbour 

placement π by applying a swap between facilities r and s: 

 

 

To gain some precious time, estimations are generally performed. They restrict positively the choice of 

passing to a new good solution. 
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In the case of symmetrical matrices with a null diagonal the cost δ(φ, r, s) of a move is given by: 

 

 

In the minimization case, the swap move is done only if the new solution cost is less than the current one. 

Obviously, this process is repeated until no further improvement is possible or when a given number 

of steps is reached. 

Steepest Descent is a simple local search method that can be easily trapped in a local minimum and, 

generally, it cannot find good quality solutions. We choose this simplified local search “Steepest Descent” 

method to show the performance of CS combined with RK for QAP. It allowed us to generate solutions 

of good quality, without introducing an advanced local search method. 

 

6 Experimental	Results	

We will show some results of running RKCS to solve a set of bechmark instances [29], [31], [32], [10], [9], 

[13], [18], [33], [24] of QAP from the QAPLIB library [8]. Forty­six instances are considered with sizes 

ranging from 12 to 100 facilities. The numerical value in the name of  an  instance represents the 

number of provided facilities, e.g., the instance named sko90 has 90 facilities. We note that for each 

instance, 10 independent runs are carried out. These results describe the performance of this first version 

approach. 

In Table II, we compare RKCS with two algorithms based on Genetic Algorithm [1] (SCX) and Ant Colonies 

[15] (HAS­ QAP).  Another  comparisons  are  carried  out  to  a  Particle Swarm  Optimization  based  

algorithm  [16]  (HPSO)  in  Ta­ ble III. We have implemented RKCS algorithm using Java under 32 bit MS 

Windows Seven operating system. Experi­ ments are conducted on a laptop with Intel(R) CoreT M   2 Duo 

2.00  GHz  CPU,  and  3  GB  of  RAM.  SCX  algorithm  has been encoded in Visual C++ and run on a PC 

with Intel(R) Core(T M ) i7­3770 CPU @ 3.40GHz and 8.00GB RAM under MS Windows Seven. For HAS­QAP 

it was not possible to obtain the hardware configurations used in the experiments. HPSO  has  been  run  

on  Intel  pentium core  2  Duo  Q9950 (2.83GHz). 
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The properly selected parameter values used for the experiments of RKCS algorithm are shown in Table 

I. These values are selected, based on some preliminary trials, and gave the best results concerning both 

the solution quality and the computational time. In each case study, 10 independent runs of RKCS with 

these parameters are carried out. 

 

In the following three tables of experimental results, the first column ‘Instance’ shows the name of the 

instance, while the column ‘Bkv’ shows the optimal solution value taken from the QAPLIB [8]. In Table II, 

the column ‘PDbest(%)’ gives the percentage deviation of the best solution value over the optimal solution  

value  of  10  runs,  and  the  column  ‘time’  denotes the average run time. In  Table III, the remaining 

columns ‘mean’  and  ‘Stdev’  are  the  mean  and  standard  deviation of solution cost (expressed as 

Average Percentage Deviation (APD), which is the percentage by which the cost exceeds the Bkv). The 

last Table IV which gives statistic results of testing RKCS on some QAP instances contains nine columns. 

The column ‘best’ shows the value of the best found solution. The column ‘average’ gives the average 

solution value of the 10 independent runs, the column ‘worst’ shows the value of the worst solution 

found by RKCS. The column ‘SD’ denotes the standard deviation. The column ‘PDav (%)’ denotes the 

percentage deviation of the average solution value over the optimal solution value of 10 runs. Bold 

values indicate that the solutions found have the same length as the Bkv. The percentage deviation of a 

solution to the best known solution (or optimal solution if known) is given by the Equation 9. 

 

The three tables show that RKCS can be a useful tool to switch from continuous search space to 

combinatorial one. It also facilitates a better control of the balance between intensification and 

diversification through  local  and  global random walks. 
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SCX performs a modified sequential constructive crossover operators in genetic algorithms, without using 

any robust local search technique to improve the solution quality. HAS­QAP is a hybrid ant colony system 

coupled with a simple local search that consists in applying a complete neighborhood examination twice 

with first improving strategy [15]. These two methods are compared with RKCS in Table II and Figure 

3. We can observe that the difference between RKCS and the two methods is significant. This can be 

explained basically by a good balance between intensification and diversification, an intelligent use of 

Lévy flights and the reduced number of parameters. 

Table III, shows the comparison of RKCS and HPSO. In this hierarchical particle swarm optimization, 

particles are arranged in a tree­like hierarchy, where the better­performing particles float towards the 

top of the hierarchy, and each particle is influenced by its immediate parent in the tree [16]. We have 

used in this comparison, the mean and the standard deviation. The results prove that RKCS outperforms 

HPSO in solving the tested QAP instanced. One of the advantages of the RKCS is the relatively 

independent of cuckoos in the search process for the best solution, and the use of several search 

strategies adopted by each category of cuckoos, without using any advanced local search method. 

These results show that RKCS can be adapted easily to solve QAP. Therefore, we can say that the 

random­key en­ coding scheme can be a very useful tool for switching from continuous to combinatorial 

spaces. It allows operators of the continuous space to behave freely, then projecting the changes made 

by these operators in the combinatorial space. It also facilitates  a  better  control  in  balancing  

intensification and diversification through Lévy flights, which make intensified small steps in a limited 

region followed by a big explorative jump to a distant region. Using the real numbers, Lévy flights can 

easily act with the notion of distance, and can define clearly small or big steps. Then RK projects 

these changes in the space of QAP solutions. 
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7 Conclusion	

Random Key Cuckoo Search (RKCS) is designed to be easily adapted to solve many combinatorial 

optimization problems such as the Travelling Salesman Problem and the Quadratic Assignment Problem. 

Indeed, we have shown that it is easy to move in the continuous space by using Le´vy flights and project 

these moves in appropriate combinatorial space, of the treated problem, via random key. It proved a good 

balance between intensification and diversification through  Le´vy  flights.  In this paper, we proposed an 

application of RKCS  to  solve QAP. During the design of RKCS, we have focused on the possibility of 

facilitating the reuse of this metaheuristic in a direct adaptation to solve various combinatorial 

optimization problems. 
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The results are promising, but there is still room for improvement. For example, for the moment, the 

random key is uniform, and it may be useful to investigate if how any non­ uniform decoding of random 

keys may affect the performance. 

In addition, it will be also useful to extend the proposed approach to study larger scale benchmarks. 

Furthermore, the proposed RKCS may also be useful to solve other combina­ torial optimization problems. 
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