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ABSTRACT

This paper proposes an adaptation of the Random- Key Cuckoo Search (RKCS) algorithm for solving
the famous Quadratic Assignment Problem (QAP). We used a simplified and efficient random-key
encoding scheme to convert a continous space (real numbers) into a combinatorial space. We also consid-
ered the displacement of a solution in both spaces by using Le'vy flights. The performance of the RKCS for
QAP is tested against a set of benchmarks of QAP from the well-known QAPLIB library, and the
comparison with a set of other methaheuristics is also carried out.

Index Terms—Nature-Inspired Metaheuristic, Cuckoo Search, Le’vy Flights, Combinatorial Optimization,
Quadratic Assign- ment Problem, Random-Key.

1 Introduction

NP-hard problems [17] are very challenging to solve. It is also the most complicated among combinatorial
optimization problems. The main difficult of such problems is that the number of combinations grows
exponentially with the problem size. Quadratic assignment problem [7] is one of the problems that
belongs to this class.

Quadratic Assignment Problem (QAP) is a combinatorial optimization problem that is applied to solve
various problems in many fields such as Steinberg Wiring Problem [5], Hospital Layout [13], Dartboard
Design [12], and many other applica- tions [7], [14]. Problems such as QAP do not have an efficient
algorithm to solve them exactly. It is practically very difficult to get a solution of optimal quality and in a
reduced runtime simultaneously. This requires some heuristic algorithms that can find good (not
necessarily optimal) solutions in a good runtime by trial and error. Approximate algorithms such as
metaheuristics [4] are actually the best choice to solve many combinatorial optimization problems. They
are characterized by their simplicity and flexibility while demonstrating remark- able effectiveness. Many
metaheuristics are proposed to solve QAP. Existing studies include Genetic Algorithms (GA) [1] that used
a sequential constructive crossover, a modified Particle Swarm Optimisation (PSO) [21], Ant Colony
Optimisation (ACO) [11], and many other examples [22], [15].

Among the most difficult issues that arises when solving a combinatorial optimization problem with a
metaheuristic, is how to move in the combinatorial solution space without affecting the performance of
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the metaheuristic. Several meta- heuristics are designed in principle for continuous optimization
problems. So, the question is how to treat combinatorial problems properly without losing the good
performance of these metaheuristics. In this paper, we used the Random-Key Cuckoo Search (RKCS)
algorithm by using the random key encoding scheme to represent a position, found by the cuckoo search
algorithm, in the QAP solution space.

This work presents a novel approach using the improved cuckoo search algorithm [26], based on random
keys [3], with a simple local search procedure to solve QAP.

The rest of this paper is organized as follows: Section 2 introduces briefly the QAP. Section 3, first,
introduces the standard cuckoo search and its improved version. Section 4 presents the random-key
encoding scheme, while Section 5 describes how CS solves QAP by using Random key. Then, Section
6 presents results of numerical experiments on a set of QAP benchmarks from the QAPLIB library [8].
Finally, Section 7 concludes with some discussions and future directions.

2 Quadratic Assignment Problem
The Quadratic Assignment Problem is a combinatorial optimisation problem, which tries to minimize the
total cost of building and operating the facilities knowing that the benefit resulting from an economic
activity at any site is depending on the sites of the other facilities. The solution space in QAP is considered
as a set of all potential assignments of the facilities to the possible sites.

A selected solution S is the permutation ¢ of a given set Q = {1,2,...,N} where N is the instance
dimension, it is also the number of sites and facilities, ¢(i) = k means that the facility i is assigned to the
site k.

The objective problem is to find a permutation ¢ = (¢(1), ©(2), ..., (N)) that minimizes

N N
ZZ“?’_)”-::M.‘»IJ') (1)

i=1 j=1

where a is the flow matrix, and aij is the flow between facilities i and j, and b denotes the distance
matrix. So, the distance from facility i to j takes the value of b(i)(j).

Here, (i) is the location assigned to facility i. The aim is to minimize the sum of products flowxdistance
[30].

3 Cuckoo Search Algorithm

In the aim to increase their survival chances and reduce the probability of abandoning eggs by the host
birds, cuckoos adopt many strategies and tricks. These strategies are mimicked successfully and designed
in the well known Cuckoo Search (CS) algorithm [34]. Cuckoo search introduces Le’vy flights [28] for
generating a new good solution. Le'vy flights, named after the French mathematician Paul Le’vy,
represent a model of random walks characterized by their step lengths which obey a power-law
distribution [6]. CS is widely applied to solve many combinatorial optimization problems such as Travelling
Salesman Problem [25], [27], Flow Shop Schedul- ing Problem [20], Knapsack Problem [19].

The first version of CS, which is developed by Xin-She Yang and Suash Deb, is summarized as the following
ideal rules: (1) Each cuckoo lays one egg at a time and selects a nest randomly; (2) The best nest with the
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highest quality of egg can pass onto the new generations; (3) The number of host nests is fixed, and the
egg laid by a cuckoo can be discovered by the host bird with a probability pa € [0, 1]. pa is also a switch
parameter to control the balanced combination of local

explorative random walk and the global explorative random walk. The local random walk can be written
as:
t+1 t .

— \ o L t
i =rit+as@H(pa—€)® (z; — zp), (2)

a
where xand x¢ are two different solutions selected randomly by random permutation, H(u) is a Heaviside
function, € is arandom number drawn from a uniform distribution, and s is the step size. On the other

hand, the global random walk is carried out by using Lévy flights

41

T;

= z! + aL(s,\), (3)

Where

A'(A)sin(wA/2) 1
- gl+A’

Here a > 0 is the step size scaling factor, which should be related to the scales of the problem of

L(s,\) = (s >50>0). @

interest. Lévy flights have an infinite variance with an infinite mean [34]. Here sqis a constant, which
can be take as 0.01 to 0.1.

Before applying CS to solve QAP, as described in the Algorithm 1, we will consider an improved version of
CS [26]. This improvement introduces a new category p. of cuckoos that can engage a kind of
surveillance on nests likely to be a host. So, around the pertinent solutions, this portion p.intensify the
search process to find a new better solution via Lévy flights.

Algorithm 1 Improved CS Algorithm

1: Objective function f(z).z = (21....,: en)T
2: Generate initial population of n host nests z;(i =
1,...,] N)

3: while (¢ <MaxGen) or (stop criterion) do

4:  Start searching with a fraction (p.) of smart cuckoos

5. Get a cuckoo randomly by Lévy flights

6:  Evaluate its quality/fitness F;

7. Choose a nest among n (say, j) randomly

8 if (F; > F;) then

9 replace j by the new solution;

1. end if

11: A fraction (p,) of worse nests are abandoned and new
ones are built;

122 Keep the best solutions (or nests with quality solutions);

13:  Rank the solutions and find the current best

14: end while

15: Postprocess results and visualization
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4 Random-Key Encoding Scheme

Random-key encoding scheme [3], [27] is an interesting procedure that can be useful to pass from a
continuous space to the combinatorial space. In general, the position in the continuous space is
represented by a vector of real numbers. To have a projection in the combinatorial space, random-key (RK)
associates each real number with a weight. These weights are used to generate one combination as a
solution. The random real numbers drawn uniformly from [0,1) compose a vector showed in Figure 1.
On the other hand, the combinatorial vector is composed of integers ordered according to the weights
of real numbers in the first vector, illustrated in the Figure 1.

Random keys: [ 0.8 0.5(0.7 [0.1]0.4]0.2

3 >

Decoded as: ‘ 6 | 4 ‘ 5 ‘ |

Figure. 1. Random key encoding scheme

5 Random Key Cs For Qap
A QAP solution is a vector of N integers. Each integer is the facility index and its order in the vector is the
corresponding site index. By considering Figure 1, we can say that resulting vector in this figure is a QAP
solution. So to move from the current solution to a new one we can just perturb the first vector that
contains the real numbers. This perturbation is performed via Lévy flights. In the case of big jumps
we per- form a random pairwise interchanges of vector integers. It is a series of chained swaps ®¢()¢(2)
» Pea)eays - - -0 Peo—1)e(p), Where §(1), €(2), ..., &(p) is a sequence of random integers between 1 and N

such that £(i) =¢(j),i,j =1,2,...,p,i =j,1 <p < N. The mutated solution it can thus be represented
as a composition (((((Tt & bg1)e2) ® De2)ez)®,---) @ giyeqivn) @ -..) @ Deo—1)¢(p), Where 1 is
the current solution. This series of chained swaps is called the controlled chained mutation (CCM) [23].
The parameter p is the mutation rate. This allows an improved way to balance the search for solutions in
local areas as well as global areas.

To detect the best solution in the found area, a simple local search (Steepest Descent [2]) is performed.
In this local search method we used 'swap’ move as described in Figure 2 (In this example we chose to
swap the facilities of the sites 2 and 6, which are 1 and 9.) which moves from a placement ¢ to a neighbour
placement 1t by applying a swap between facilities r and s:

(k) =d(k), Vk#nrs (5)
m(r) =o(s), w(s)=a(r) (6)

Ehl s o L T ]

Vo 1 2 38 4 5 6 7 8 9
|'_’|10|9|5|:5|s| 1|4|0||1|7|(s |

To gain some precious time, estimations are generally performed. They restrict positively the choice of
passing to a new good solution.

SwapMoveli=2, j=¢
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In the case of symmetrical matrices with a null diagonal the cost 6(d, r,s) of a move is given by:

— N N
0(@r,s) = Yicy e (@isbeye) — Giga(iyn) (1)
= 2.V kstr s (@sk = @rk) (bg(s)ok) = boryary) )

In the minimization case, the swap move is done only if the new solution cost is less than the current one.
Obviously, this process is repeated until no further improvement is possible or when a given number
of steps is reached.

Steepest Descent is a simple local search method that can be easily trapped in a local minimum and,
generally, it cannot find good quality solutions. We choose this simplified local search “Steepest Descent”
method to show the performance of CS combined with RK for QAP. It allowed us to generate solutions
of good quality, without introducing an advanced local search method.

6 Experimental Results

We will show some results of running RKCS to solve a set of bechmark instances [29], [31], [32], [10], [9],
[13], [18], [33], [24] of QAP from the QAPLIB library [8]. Forty-six instances are considered with sizes
ranging from 12 to 100 facilities. The numerical value in the name of an instance represents the
number of provided facilities, e.g., the instance named sko90 has 90 facilities. We note that for each
instance, 10 independent runs are carried out. These results describe the performance of this first version
approach.

In Table Il, we compare RKCS with two algorithms based on Genetic Algorithm [1] (SCX) and Ant Colonies
[15] (HAS- QAP). Another comparisons are carried out to a Particle Swarm Optimization based
algorithm [16] (HPSO) in Ta- ble lll. We have implemented RKCS algorithm using Java under 32 bit MS
Windows Seven operating system. Experi- ments are conducted on a laptop with Intel(R) Core™ 2 Duo
2.00 GHz CPU, and 3 GB of RAM. SCX algorithm has been encoded in Visual C++ and run on a PC
with Intel(® Core(™) j7-3770 CPU @ 3.40GHz and 8.00GB RAM under MS Windows Seven. For HAS-QAP
it was not possible to obtain the hardware configurations used in the experiments. HPSO has been run
on Intel pentium core 2 Duo Q9950 (2.83GHz).

TABLE |
PARAMETER SETTINGS FOR RKCS ALGORITHM.

Parameter  Value  Meaning

n 20 Population size

Pe 0.6 Portion of smart cuckoos

Pa 0.2 Portion of bad solutions
MaxGen 500 Maximum number of iterations
a 0.01 Step size

A 1 Index

p Levy  Mutation rate
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The properly selected parameter values used for the experiments of RKCS algorithm are shown in Table
I. These values are selected, based on some preliminary trials, and gave the best results concerning both
the solution quality and the computational time. In each case study, 10 independent runs of RKCS with
these parameters are carried out.

TABLE Il
COMPARING RKCS WITH GENETIC ALGORITHM (SCX) [1] AND ANT COoLONIES (HAS-QAP) [15)
SCX HAS-QAP RKCS

Instance  Bkv PDbest(%) ume(s) PDbesti%) utme(s) PDbest(%c) tme(s)
tai20a 703482 450 6 1.483 3 0.0 20
tai20b 122455319  6.56 6 0.243 3 0.0 0.5
tai2Sa 1167256 458 9 2.527 5 0.0 39
tai2Sb 344355646 524 9 0.133 5 0.0 1
tai30a 1818146 429 13 2.600 9 0.0 74
tai30b 637117113 878 13 0.260 9 0.0 5
tai3Sa 2422002 495 18 2969 15 0.92 96
tai3sb 283315445 500 18 0.343 15 0.0 11
taid0a 3139370 453 24 3.063 24 079 141
tai40b 637250948  7.30 24 0.280 24 0.0 11
taiSOa 4938796 451 37 3.487 50 1.34 258
taiSOb 458821517 5.60 37 0.291 50 0.0 163
taicDa 7205962 454 54 3.686 88 27 433
tai60b 608215054 5.12 54 0313 9% 0.0 133
taiS0a 13499184 435 95 2.996 220 1.53 1067
1ai80b 818415043 6.63 95 1.108 225 0.0 1033
sko42 15812 - - 0.654 25 0.0 87.06
sko49 23386 - - 0.661 45 0.05 245.17
sko56 34458 - - 0.729 69 0.02 356.25
sko64 48498 - - 0.504 105 0.00 521.09
sko72 66256 - - 0.702 153 0.11 820.53
sko81 90998 - - 0.493 222 0.09 1090.11
sko90 115534 - - 0.591 307 0.04 1469.63

In the following three tables of experimental results, the first column ‘Instance’ shows the name of the
instance, while the column ‘Bkv’ shows the optimal solution value taken from the QAPLIB [8]. In Table II,
the column ‘PDbest(%)’ gives the percentage deviation of the best solution value over the optimal solution
value of 10 runs, and the column ‘time’ denotes the average run time. In Table Ill, the remaining
columns ‘mean’ and ‘Stdev’ are the mean and standard deviation of solution cost (expressed as
Average Percentage Deviation (APD), which is the percentage by which the cost exceeds the Bkv). The
last Table IV which gives statistic results of testing RKCS on some QAP instances contains nine columns.
The column ‘best’ shows the value of the best found solution. The column ‘average’ gives the average
solution value of the 10 independent runs, the column ‘worst’ shows the value of the worst solution
found by RKCS. The column ‘SD’ denotes the standard deviation. The column ‘PDav (%)’ denotes the
percentage deviation of the average solution value over the optimal solution value of 10 runs. Bold
values indicate that the solutions found have the same length as the Bkv. The percentage deviation of a
solution to the best known solution (or optimal solution if known) is given by the Equation 9.

. solution value — best known solution value
PDsolution(%) = x 100

best known solution value 0)

The three tables show that RKCS can be a useful tool to switch from continuous search space to
combinatorial one. It also facilitates a better control of the balance between intensification and
diversification through local and global random walks.
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Fig. 3. PDbest(%) for 16 QAPLIB instances

SCX performs a modified sequential constructive crossover operators in genetic algorithms, without using
any robust local search technique to improve the solution quality. HAS-QAP is a hybrid ant colony system
coupled with a simple local search that consists in applying a complete neighborhood examination twice
with first improving strategy [15]. These two methods are compared with RKCS in Table Il and Figure
3. We can observe that the difference between RKCS and the two methods is significant. This can be
explained basically by a good balance between intensification and diversification, an intelligent use of
Lévy flights and the reduced number of parameters.

Table Ill, shows the comparison of RKCS and HPSO. In this hierarchical particle swarm optimization,
particles are arranged in a tree-like hierarchy, where the better-performing particles float towards the
top of the hierarchy, and each particle is influenced by its immediate parent in the tree [16]. We have
used in this comparison, the mean and the standard deviation. The results prove that RKCS outperforms
HPSO in solving the tested QAP instanced. One of the advantages of the RKCS is the relatively
independent of cuckoos in the search process for the best solution, and the use of several search
strategies adopted by each category of cuckoos, without using any advanced local search method.

These results show that RKCS can be adapted easily to solve QAP. Therefore, we can say that the
random-key en- coding scheme can be a very useful tool for switching from continuous to combinatorial
spaces. It allows operators of the continuous space to behave freely, then projecting the changes made
by these operators in the combinatorial space. It also facilitates a better control in balancing
intensification and diversification through Lévy flights, which make intensified small steps in a limited
region followed by a big explorative jump to a distant region. Using the real numbers, Lévy flights can
easily act with the notion of distance, and can define clearly small or big steps. Then RK projects
these changes in the space of QAP solutions.
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TABLE 111
COMPARISON OF RKCS WiITH HPSO A PARTICLE SWARM OPTIMISATION BASED ALGORITHM [16].

HPSO RKCS HPSO RKCS
Instance  Bkv mean Stdev  mean  Stdev | Instance  Bkv mean Stdev  mean  Stdev
bur26a 5426670 1.9 022 0.0 0.0 tail2a 224416 8.11 1.42 0.0 0.0
bur26b 3817852 1.96 0.41 0.0 0.0 tail2b 39464925 482 1.79 0.0 0.0
bur26¢ 5426795 23 0.24 0.0 0.0 tail5a 388214 7.28 0.89 0.02 0.00
bur26d 3821225 2.18 0.42 0.0 0.0 tail5h 51765268 1.05 0.15 0.0 0.0
bur26e 5386879 2.14 0.42 0.0 0.0 tai20a 703482 1204 073 04 0.36
bur26f 3782044 239 0.59 0.0 0.0 1ai20b 122455319 9.67 1.04 0.0 0.0
bur26g 10117172 2.07 0.22 0.0 0.0 tai25a 1167256 11.62 045 0.81 0.62
bur26h 7098658 2.27 04 0.0 0.0 tai25b 344355646 27.12 434 0.0 0.0
chr25a 3796 16841 1179 025 025 tai30a 1818146 1225 041 089 035
els19 17212548  27.04 4.91 0.0 0.0 tai30b 637117113 25.18 3.28 0.0 0.0
kra30a 88900 26.85 1.09 016 0.16 tai3Sa 2422002 13.19 038 1.24 030
kra30b 91420 2498 1.23 002 0.2 tai35h 283315445 2786 242 0.0 0.0
wil50 48816 8.69 0.26 004 0.04 taid0a 3139370 1352 032 .23 037
nug30 6124 16.85 0.79 004 004 1ai40b 637250948 3594 23 0.0 0.0
nug20 2570 11.65 0.95 0.0 0.0 taiS0a 4938796 1387 027 1.63 022
skod2 15812 16.54 0.46 003 0.3 1aiS0b 458821517 3488 1.9 0.00 000
skod9 23386 15.52 0.42 015 007 tai60a 7205962 1354 03 1.69 038
sko56 34458 15.88 043 015 012 tai60b 608215054 36.5 1.28 0.0 0.0
sko64 48498 14.68 0.42 0.14 0.12 tai80a 13499184 1246 0.18 1.81 0.26
sko72 66256 14.52 0.26 024 o1 1ai80b 818415043 3448 094 007 006
sko81 90998 13.98 0.28 023 0.3 tail00a 21052466 11.68 0.14 1.58 025
sko90 115534 13.79 0.23 025 0.16 tai 100b 1185996137 33.03 0.96 023 013

TABLE IV
ResulTs or APPLYING RKCS on A seT or QAP INSTANCES.

Instanae Bkv Be st Average Worst sD PDav (%) PDhest( %) timme (=)
burlta 54266570 S2266T0 542667 0.00 5426670 oo ao oo ass
bur2eh 3B ITSS2 IS ITSS2 38 1TES2.00 3IBITES2 oo ao oo a7es
burltc 5426795 S426795 542679500 SL£26795 oo ao oo Lis
bur2ed 3821225 IK21225 3821225.00 3821225 oo ao oo L77
burZte S386879 S3BESTO S3BGET9.00 S386ET9 oo ao oo LIS
bur26f 3782044 ITR2DS3 ITEXN - 2 oo ao oo Q.0
burltg 10117172 10117172 10117 172.00 10117172 oo ao oo L73
bur26h TOSEaSE TOOSESS TOIBGSE 00 TO9BGSS oo ao oo Q7s
chr2Sa 3796 3796 38OSTS 3874 97s a32s oo 1376
el=19 17212548 17212538 17212548 00 17212548 oo ao oo 22
kra3Oa BESOO ER000 S904RTS SO0 14875 s oo 9.56
kra306 91420 1420 91446 25 91490 2625 ao2 00 3aas
wilso 48816 S8R 16 4883975 ARKBO 23.7S a.0a oo 22050

6124 6123 612650 G128 2s a.0a oo 3990
nug20 2570 2570 257000 2570 oo ao oo Qs7
=il2a 224416 223416 222416 222416 ao ao 0o ao2
@2 l2b 39464925 39364925 ISL6A92S INLGA92S oo ao oo Qo3
tailSa 388214 ISK213 388224 8 388250 1297 a2 oo ais
=i 15b S1765268 S1TES268 SITGS268 S1765268 oo ao oo Qos
2i20a TO3482 TO3IN2 TOs342 0 TOSaS54 256575 a.s0 oo 1992
2 20b 122455319 122455319 122455319 122455319 oo ao oo Qas
2i2Sa 1167256 1167256 11767328 1181852 731699 asl oo 3945
2E2Sh 344355646 344355646 324355646 o ao 00 L13
230 1818146 1827 18344562 1843032 647419 .89 0S4 Tam
2 30b 637117113 G3TIITI13 37117113 637117113 oo ao oo 493
2i3Sa 2422002 2444322 2452223 4 2450532 T7ITO30 1.24 o9 95.a3
2i3Sh 283315445 2IR3IZIS3as 283315445 2V3315445 oo ao oo 1as2
tatOa 3139370 3164372 317E239.4 3192798 1191791 1.23 o079 140 86
t220b 637250948 E3TISO9AS G3T2SONMME G3T2SOME oo ao oo 109
2850 4938796 S019579.6 Sa27S! 11282 49 163 134 258 518
2 SOb 4ASSS21517 4ASKS21517 4588425164 4ASE9G9332 2 . a.oo oo 163532
taesa T205962 T297618 TI2B3IG 4 T3IS9S6S ZTTET.29 1.69 127 433 4293
t2ia0b 15053 608215054.0 608215054 oo ao 00 133 597
aaGic 1855928 1855928 ISSS928 0 ISS592% oo a oo 11506
taSa 13499184 13705886 13744806 8 13781908 3sesns2 1.81 153 1067 45
2 S0b B18415043 S18315043 818994242 5 S23187a91 57164311 oor oo 103337
=2:100a 21052466 21322258 213855680 21421678 5317040 1.58 128 1993 95
i 1006 1185996137 1187179912 1ISET7 54349 1 1859986795 1561365 85 a23 0.09 222183
skod2 15812 1S812 ISS167 15844 47s aos oo B7.06
sSolts 2338s 233598 234215 23450 17.80 alis oas 24517
skaS6 34458 34466 345110 34584 42 15 ais oa2 35625
sdcontsd AB498 48s02 485705 ARGBO sQs7 ala 000 521.09
skaT2 G625 6332 64200 GCHA90 To2S a2a o1 B20.S3
koSl DOGTE 91088 SI2087 91380 12075 a23 009 109011
ko0 115534 115582 11S832 2 116042 188 99 azs 004 1469.63
sko 1 00a 152002 152324 1524702 152692 12195 30 021 2287 .07

7 Conclusion

Random Key Cuckoo Search (RKCS) is designed to be easily adapted to solve many combinatorial
optimization problems such as the Travelling Salesman Problem and the Quadratic Assignment Problem.
Indeed, we have shown that it is easy to move in the continuous space by using Le vy flights and project
these moves in appropriate combinatorial space, of the treated problem, via random key. It proved a good
balance between intensification and diversification through Le'vy flights. In this paper, we proposed an
application of RKCS to solve QAP. During the design of RKCS, we have focused on the possibility of
facilitating the reuse of this metaheuristic in a direct adaptation to solve various combinatorial
optimization problems.
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The results are promising, but there is still room for improvement. For example, for the moment, the

random key is uniform, and it may be useful to investigate if how any non- uniform decoding of random

keys may affect the performance.

In addition, it will be also useful to extend the proposed approach to study larger scale benchmarks.

Furthermore, the proposed RKCS may also be useful to solve other combina- torial optimization problems.
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