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ABSTRACT 

This paper aims to explore effects of the yield strength of steel, compressive strength of concrete, 

eccentricity of the axial load and steel bar size on the optimization of reinforced concrete isolated footings. 

The optimization tool adopted in this paper is genetic algorithms. Based on the ACI Building Code, 

constraints are built by considering the wide-beam and punching shears, bending moment, upper and 

lower limits of reinforcement, allowable soil pressure, development length for deformed bars and clear 

distance between parallel deformed bars. Design variables consist of the width, length and thickness of 

the footing and the number of bars in the long and short directions, all of which are integers. The objective 

is to minimize the cost of steel and concrete used in the footing. By changing one of the four factors: the 

yield strength of steel, compressive strength of concrete, eccentricity and bar size while fixing the other 

three, this paper finds that the highest yield strength of steel, the lowest compressive strength of concrete, 

the smallest eccentricity and No. 6 bar, respectively, will lead to the optimal results. In addition, when the 

size of the reinforcement gets larger, the optimal footing have a tendency to become square and thicker.    
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1 Introduction 

A footing that serves the purpose of transmitting the load from the superstructure to the supporting soil 

is a very important element in an architectural structure. A conventional way to design a footing is to find 

its suitable dimensions and amount of reinforcement according to the provisions of a building code. The 

design results are usually not the most economical. In order to achieve this goal, the optimization 

techniques can be applied. There have been a number of optimization studies of reinforced concrete 

footings published over the past few years, such as optimization of combined footings using modified 

complex method of box [1], optimization of concentrically loaded reinforced concrete footing using an 

analytical model [2], and optimization of concentrically loaded reinforced concrete footings using genetic 

algorithms [3]. 

The fundamental techniques of genetic algorithms are designed to imitate processes in natural evolution. 
Genetic algorithms are the most effective methods in a search space for which little is known and which 

is uneven and has many hills and valleys with potential candidate solutions. The idea of genetic algorithms 

was inspired by the evolution theory of “survival of the fittest,” and formally introduced in 1970s by 

Professor John Holland at the University of Michigan, who in 1975 published the ground-breaking book 

“Adaptation in Natural and Artificial System” [4] that led to many important discoveries. In 1989, Goldberg 
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described in more detail the theory of genetic algorithms and its applications [5]. From then on, the 

continuing improvements of computational techniques have made genetic algorithms more attractive and 

popular. Genetic algorithms have successfully been applied to many fields, for example, engineering, 

economics, chemistry, manufacturing, mathematics and physics. Especially in the aspect of engineering 

structures, there are a lot of applications, such as reliability analysis of structures [6], 

global optimization of grillages [7], global optimization of trusses with a modified genetic algorithm [8], 

optimization of pile groups using hybrid genetic algorithms [9], prediction of concrete faced rock fill dams 

settlements [10], optimization of grid shell topology and nodal positions [11],  optimizations of 

constrained layered damped (CLD) laminated structures [12], calibration of a hydrological model to 

predict stream flows [13] and optimal design of short columns [14].The fact that they are successfully 

applied to many problems which are difficult to solve by using conventional optimization techniques prove 

that genetic algorithms are a powerful, robust optimization technique.  

Most optimization approaches have been focused on and developed for continuous variables, while the 

design variables are usually integers for problems in architectural structures. Due to their abilities to solve 

discrete optimization problems, genetic algorithms provided by the MATLAB Global Optimization Toolbox 

[15] are used in this paper to carry out the optimization of eccentrically loaded reinforced concrete 

isolated footings and explore effects of the yield strength of steel, compressive strength of concrete, bar 

size and eccentricity on the optimal results. Based on the provisions of the ACI Building Code 

Requirements for Structural Concrete and Commentary [16], the constraints of genetic algorithms are 

constructed, considering the wide-beam and punching shears, bending moment, upper and lower limits 

of reinforcement, allowable soil pressure, development length for deformed bars, clear distance between 

deformed bars. The design variables are the depth, width and length of the footing, the number of bending 

reinforcement in each direction of the footing; the objective is to find the minimum cost of concrete and 

steel. 

2 Genetic Algorithms  

Genetic algorithms are basically a heuristic process for mimicking the survival of the fittest among 

individuals over a sequence of generations for solving an optimization problem. There is a population of 

individuals in each generation. Each individual made up of design variables represents a candidate 

solution to a given problem. The individuals are similar to chromosomes and the design variables to genes. 

A fitness value is assigned to each solution to measure its competitiveness. The individuals with higher 

fitness values are more likely to be selected to form the next generation. If the current population can no 

more produce individuals significantly better than those in the previous few generations, the algorithm is 

said to converge and the optimal solution are found. 

The most common type of genetic algorithms works through the following process of natural selection: 

(1) Randomly create an initial population of individuals; (2) Score each individual of the current population 

by computing the value of the fitness function; (3) Scale the raw fitness scores to convert them into a 

range that is suitable for the selection function; (4) Select a specified number of individuals with lower 

fitness values, called parents, by using the selection function; (5) Choose a few elite individuals with the 

lowest fitness values from the current population. These elite individuals are then just passed to the next 

population; (6) Produce children from the parents. Children are produced either by combining portions of 

good individuals (i.e., crossover), which aims to create even better individuals or making random changes 

to a single individual (i.e., mutation), whose purpose is to maintain diversity within the population and 
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inhibit premature convergence; (7) Replace the current population with the crossover and mutation 

children and elites to form the next generation and the process repeats form steps (2) to (7). The algorithm 

stops when one of the stopping criteria is met, such as the number of generation, the weighted average 

change in the fitness function value over some generations less than a specified tolerance, no 

improvement in the best fitness value for an interval of time, etc. Genetic algorithms can solve both 

constrained and unconstrained optimization problems. The constraints built for genetic algorithms can be 

linear or nonlinear in the form of equality or inequality with bounds on the variables. Each individual made 

up of the design variables can be real-coded or binary-coded. In this paper, the constraints consist of 

nonlinear and linear inequalities and all the design variables are integers. 

3 Design Considerations in Eccentrically Loaded Footings 

Both the concentric compressive force Pu and bending moment Mu, are considered to act on the 

reinforced concrete isolated footing whose layout is shown in Fig. 1. The rectangular footing has width B, 

length L and thickness h, and the column size is ab. The soil bearing pressure distribution on the footing 

is trapezoidal due to the combined effects of axial load and bending, as shown in Fig. 1(a). All the 

constraints required to design the isolated footing comply with the ultimate-strength design of ACI 318-

11 Code, considering wide-beam and punching shears, bending moment, the development length for 

deformed bars, clear distance between parallel deformed bars and the upper and lower limits of 

reinforcement. The units of force and length in the following formulas are kgf (=9.81N) and cm, 

respectively. The factored load Pu =1.2PD+1.6PL,   

 

(a) 

 

(b) 

Figure 1 The reinforced concrete footing subjected to the concentric factored load Pu and bending 
moment Mu: (a) elevation and (b) plan 

Figure 1 The reinforced concrete footing subjected to the concentric factored load Pu and bending 

moment Mu: (a) elevation and (b) plan. 

where PD and PL are the dead and live loads, respectively. The eccentricity e is defined as Mu/ Pu. 

3.1 Factored Shears  

To have enough shear capacity, there are two kinds of actions that need to be considered: wide-beam 

action and two-way action. 

3.1.1 Wide-beam Action 

The maximum and minimum soil pressures on the footing, as shown in Fig. 1, are  
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respectively, where 
6

L
e  is the eccentricity. The plane of the critical section is assumed to extend in a 

plane across the entire width and lies at a distance d from the face of the column, as shown in Fig. 2(a). 

The nominal shear strength of this section is                   
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and 
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respectively in the long and short directions, where d is the average effective depth of the footing. Let

udLq denote the soil pressure in the long direction of the footing at a distance d from the right face of the 

column and  =0.75 be the strength reduction factor for shear. The constraints for the wide-beam shear 

are  
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respectively for the long and short directions of the footing, where  
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3.1.2 Two-way Action 

The critical section occurs at a distance d/2 from the face of the column, as shown in Fig. 2 (b). The 

maximum allowable nominal shear strength is the smallest of the following three equations 



Transact ions on Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume 5,  Issue 5,  Oct 2017 
 

Copyright © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 91 
 

        

dbfV

dbf
b

d
V

dbfV

cc

c
s

c

c

c

c

0

0

0

0

06.1

)
265.0

53.0(

,)
06.1

53.0(











                                                             (9) 

where c = long side a/short side b of the concentrated load or reaction area, b0 = perimeter of the critical 

section CDEF and s = 40, 30 and 20 for interior, edge and corner columns, respectively. In this paper, 

interior columns are considered; therefore, s = 40. Let 1uLq  and 2uLq  denote the soil pressures at a 

distance d/2 from the left and right faces of the column, respectively. The constraint for the punching 

shear is 
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where Vc,min is the smallest of Eqs. (9). 

 
(a) 

 
(b) 

Figure 2 Critical sections: (a) wide-beam action and (b) two-way action. 

3.2 Factored Moments 

Suppose that NL and NB are the number of steel bars required in the long and short directions of the 

footing, respectively, and Ab is the cross-sectional area of the flexural reinforcement. The critical section 

for moment is taken at the face of the column. Let 3ulq denote the soil pressure at the right face of the 

column. The constraints for the factored moments are  
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where mL and mB are the strength reduction factors for moment and k is distance from the face of the 

column to the centroid of the trapezoid. Let t be the tensile strain of the reinforcement, then  
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3.3 Upper and Lower Limits of Reinforcement 

To prevent sudden failure with little or no warning when the beam cracks or fails in a brittle manner, the 

ACI code limits the minimum and maximum amount of steel to be 
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respectively in the long and short directions, where  is the stress block depth factor,   
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The formula for AsL,max in Eq. (14) and AsB,max in Eq. (15) is derived based on the requirement that the tensile 

strain must be greater than or equal to 0.004. In addition, both the steel ratios NLAb/(Bh) and NBAb /(Lh) 

must exceed the minimum value required for temperature and shrinkage: 0.0018 for grade 60 deformed 

bars and 0.002 for grade 40 or 50 deformed bars.  

3.4 Allowable Bearing Capacity of Soil  

Bearing capacity is the capacity of soil to support the loads applied to the ground. Usually, only the service 

loads need to be considered, i.e., PD and PL without load factors. Assume that the allowable soil pressure 

under the base of the footing is qa. The gross soil pressure must not exceed the allowable soil pressure, 

that is,  

  afsc
LD qhDhw

BL

PP



)(                                                            (18) 

where Df is the distance from the base of the footing to the ground surface, as shown in Fig. 1, wc is the 

weight of concrete and s is the unit weight of soil over the footing. 

3.5 Development Length for Deformed Bars 

The ACI Code specifies that the equation for the development of deformed bars in tension be expressed 

by  
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for No. 6 and smaller bars or No. 7 and larger bars, respectively, with clear spacing not less than 2db and 

clear cover not less than db , where db is the bar diameter, and t and e are the bar location and coating 

factors, respectively.  In this paper t and e are assumed to be 1.0 and =1 for normal weight concrete. 

The critical section for development length of the bars in tension is the same as the critical section in 

flexure, that is, at the face of the column. Hence,  

       0.5(L-a) - concrete cover  dL                                                              (21) 

and 

       0.5(B-b) - concrete cover  dL                                                               (22) 

respectively in the long and short directions. The equation for the development length of bars in 

compression is  
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The dowel bars stressed to fy are required to transfer the axial compression force in the column into the 

footing, as shown in Fig. 1; hence, there should be minimum extension of the dowels into the footing. 

Therefore, the thickness h of the footing must satisfy the following constraints: 

 h – concrete cover - 2db (footing bars) - db (dowels)    dcL                                (24)  

In addition, depth of footing above bottom reinforcement shall not be less than 15 cm for footings on soil 

and a practical minimum thickness h should not be less than 25 cm.  

3.6 Distribution and Minimum Clear Distance of Steel Bars 

The total steel area NBAb in the short direction determined from Eqs. (12) and (15) should be uniformly 

distributed over the central band of the footing, whose width is B, as shown in Fig. 3. The ratio of the 

reinforcement in the central band to the total reinforcement is equal to 2/(L/B+1). The reinforcement that 

is not placed in the central band is uniformly spaced at each side of the central band. In the long direction, 

the total steel area NLAb determined from Eqs. (11) and (14) is uniformly distributed across the entire 

width of the footing. The clear distance s between parallel steel bars in both the long and short directions 

must satisfy  

  )5.2,2()45,3( cmdMaxscmhMin b                                               (25) 

Instead of db, the minimum clear distance 2db used in Eq. (25) is due to the requirement of Eqs. 19 and 20.   
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Figure 3 The central band of the footing. 

4 Numerical Results 

The given design conditions for the eccentrically loaded footings are as follows: the dead load PD=100 ton, 

the live load PL=80 ton, the distance from the footing bottom to the ground surface Df =1.5m, the unit 

weight of concrete c=2.4 ton/m3, the unit weight of soil over the footing s= 2 ton/ m3 and the allowable 

soil pressure at the base of the footing qa=25 ton/m2. The size of the column transferring the axial load 

and eccentric moment to the footing is assumed to be 0.40 m0.40 m. The concrete cover for the 

reinforcement of the footing is assumed to be 7.5 cm. In order to explore their effects on the optimization 

of eccentrically loaded footings, the yield strength of steel fy, compressive strength of concrete cf  , size of 

the flexural reinforcement or eccentricity e is varied, with the other three fixed. In Taiwan, the unit price 

of concrete is 1950 NT$/m, 2150 NT$/m3, 2350 NT$/m3and 2450 NT$/m3 for 
cf  =210 kgf/cm2 (3000 psi), 

280 kgf/cm2 (4000 psi), 350 kgf/cm2 (5000 psi) and 420 kgf/cm2 (6000 psi), respectively; the unit price of 

steel is 14400 NT$/ton. Design variables are the thickness h, width B and length L of the footing, and the 

number of steel bars in the long direction NL and short direction NB. In this paper, there are six kinds of 

bar sizes: Nos. 4 to 9; four kinds of cf  : 210 kgf/cm2, 280 kgf/cm2, 350 kgf/cm2 and 420 kgf/cm2; three 

kinds of fy: 2800 kgf/cm2 (40 ksi), 3500 kgf/cm2 (50 ksi) and 4200 kgf/cm2 (60 ksi); and seven kinds of 

eccentricity: 0 cm, 10 cm, 20 cm, 30 cm, 40cm, 50 cm and 60 cm. The fitness function is the total cost in 

New Taiwan Dollars of the footing reinforcement and concrete. All the constraints are built according to 

the formulas discussed in Sec. 3. The population size is set to be 100, crossover rate 0.8, and elite number 

5. Furthermore, all the individuals are encoded as integers; “Rank” is used as the scaling function that 

scales the fitness values based on the rank of each individual; “Roulette” is the selection function to choose 

parents for the next generation; “Two-point crossover” is used as the crossover method to form a new 

child for the next generation; The “Adaptive Feasible Function” is selected as the mutation function. The 

results are discussed as follows. 

4.1 Optimal Results by Fixing fy = 4200 kgf/cm2, fc′ =210 kgf/cm2 and e = 10 cm 

The size of reinforcement is varied, ranging from No. 4 to No. 9. The optimal results are listed in Table 1, 

where No. 6 reinforcement has the minimum cost. The lowest cost can be seen clearly in Fig. 4. In addition, 

when the size of the reinforcement becomes larger, the optimal footing grows square and thicker, as 

shown in Fig. 5.  
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4.2 Optimal Results by Fixing fc′ =210 kgf/cm2, No. 6 bar and e = 10 cm 

There are three kinds of yield strengths of steel: fy = 4200 kgf/cm2, 3500 kgf/cm2 and 2800 kgf/cm2. The 

optimal results are listed in Table 2, where fy = 4200 kgf/cm2 has the minimum cost. Besides, when fy 

changes, the optimal thickness remains the same.  

4.3 Optimal Results by Fixing fy = 4200 kgf/cm2, No. 6 bar and e = 10 cm 

There are four kinds of compressive strengths of concrete: cf  =210 kgf/cm2, 280 kgf/cm2, 350 kgf/cm2 and 

420 kgf/cm2. The results are listed in Table 3, where cf  =210 kgf/cm2 has the minimum cost. Besides, when

cf   becomes larger, the thickness of the footing turns to be smaller.  

4.4 Optimal Results by Fixing fy = 4200 kgf/cm2, fc′ =210 kgf/cm2 and No. 6 bar 

There are seven kinds of eccentricity explored: e= 0 cm, 10 cm, 20 cm, 30 cm, 40 cm, 50 cm and 60 cm. 

The results are listed in Table 4, which shows the smaller the eccentricity is, the less cost the footing 

becomes. Aside from that, when the eccentricity becomes bigger, the optimal footing turns to be thicker. 

Table 1 Optimal results by fixing fy = 4200 kgf/cm2, 
    fc′ =210 kgf/cm2 and e = 10 cm. 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 4 The optimal prices for different bar sizes 

 
Figure 5 The Optimal Results of thickness, width 

and length for different bar sizes 

 
 

 
 

 

Bar size h 
(cm) 

B 
(cm) 

L 
(cm) 

NB NL Cost 
(NT$) 

No. 4 62 270 307 43 38 13,188 

No. 5 62 266 311 28 24 13,180 

No. 6 62 261 317 20 16 13,166 

No. 7 63 300 300 14 14 14,547 

No. 8 71 335 335 14 14 20,672 

No. 9 79 372 372 14 14 28,628 
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Table 2 Optimal results by fixing fc′ =210 kgf/cm2, No. 6 bar  and e = 10 cm. 

 
 
 
 
 

 
 

Table 3 Optimal results by fixing fy = 4200 kgf/cm2, No. 6 bar and e = 10 cm. 

 
 
 
 
 
 
 

Table 4 Optimal results by fixing fy = 4200 kgf/cm2,  fc′ =210 kgf/cm2 and No. 6 bar. 

 

 

5  Conclusions 

This paper explores effects of the yield strength of steel, compressive strength of concrete, bar size and 

eccentricity of the axial load transmitted to the footing on the optimization of reinforced concrete isolated 

footings. Genetic algorithms are used to optimally design the eccentrically loaded reinforced concrete 

footings. From the numerical results, the principal conclusions may be summarized as follows: 

(1) The steel yield strength of 4200 kgf/cm2, the concrete compressive strength of 210 kgf/cm2, the 
smallest eccentricity and No. 6 bar, respectively, will have the optimal results if one of them is varied 
and the other three are fixed.  

(2) When the size of the reinforcement is getting larger, the optimal footing have a tendency to become 
square and thicker.  

(3) When fy changes, the optimal thickness of the footing remains the same. 

(4) When cf   becomes larger, the optimal footing is getting thinner.  

(5) When the eccentricity becomes bigger, the optimal footing grows thicker. 
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