

DOI: 10.14738/tmlai.55.3580
Publication Date: 20th August, 2017
URL: http://dx.doi.org/10.14738/tmlai.55.3580

Volume 5 No. 5

A Computational Algorithm for Simultaneously Creating

Alternatives to Optimal Solutions

1 Julian Scott Yeomans
1 OMIS Area, Schulich School of Business, York University, Toronto, ON, M3J 1P3 Canada;

syeomans@schulich.yorku.ca

ABSTRACT

In solving many practical mathematical programming applications, it is generally preferable to formulate

several quantifiably good alternatives that provide distinct perspectives to the particular problem. This is

because decision-making typically involves complex problems that are riddled with incompatible

performance objectives and contain competing design requirements which are very difficult – if not

impossible – to capture and quantify at the time that the supporting decision models are actually

constructed. There are invariably unmodelled design issues, not apparent at the time of model

construction, which can greatly impact the acceptability of the model’s solutions. Consequently, it is

preferable to generate several, distinct alternatives that provide multiple, disparate perspectives to the

problem. These alternatives should possess near-optimal objective measures with respect to all known

modelled objective(s), but be fundamentally different from each other in terms of their decision variables.

This solution approach is referred to as modelling to generate-alternatives (MGA). This paper provides an

efficient computational procedure for simultaneously generating multiple different alternatives to

optimal solutions that employs the Firefly Algorithm. The efficacy of this approach will be illustrated using

a well-known engineering optimization benchmark problem..

Keywords: Biologically-inspired Metaheuristics, Firefly Algorithm, Modelling to generate alternatives.

1 Introduction

Typical “real world” decision-making involves complex problems that possess design requirements which

are frequently very difficult to incorporate into their supporting mathematical programming formulations

and tend to be plagued by numerous unquantifiable components [1][2][3]. While mathematically optimal

solutions provide the best answers to these modelled formulations, they are generally not the best

solutions to the underlying real problems as there are invariably unmodelled aspects not apparent during

the model construction phase [1][2]. Hence, it is generally considered desirable to generate a reasonable

number of very different alternatives that provide multiple, contrasting perspectives to the specified

problem [4]. These alternatives should preferably all possess near-optimal measures with respect to all of

the modelled objective(s), but be as different as possible from each other in terms of the system structures

characterized by their decision variables. Several approaches collectively referred to as modelling-to-

generate-alternatives (MGA) have been developed in response to this multi-solution creation

requirement [4]-[9].

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5, Issue 5, Oct 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 59

The primary motivation behind MGA is to construct a manageably small set of alternatives that are good

with respect to all measured objective(s) yet are fundamentally dissimilar within the prescribed decision

space. The resulting set of alternatives should provide diverse approaches that all perform similarly with

respect to the known modelled objectives, yet very differently with respect to any unmodelled issues

[3][10]. Clearly the decision-makers must then conduct a sub-sequent comprehensive comparison of

these alternatives to determine which options would most closely satisfy their very specific circumstances.

Therefore, MGA methods must necessarily be classified as decision support processes in contrast to the

explicit solution determination methods assumed, in general, for optimization.

In this paper, it is shown how to simultaneously generate sets of maximally different solution alternatives

by implementing a modified version of the nature-inspired Firefly Algorithm (FA) [10][11] by extending

previous concurrent MGA approaches [6]-[9][12]-[14]. For calculation and optimization, it has been

demonstrated that the FA is more computationally efficient than such commonly-employed

metaheuristics as enhanced particle swarm optimization, simulated annealing, and genetic algorithms

[11][15]. The MGA procedure extends the earlier approaches of Imanirad et al. [6]-[9][12][13] to now

permit the simultaneous generation of the desired number of alternatives in a single computational run.

This new simultaneous FA-based MGA procedure is extremely computationally efficient. This paper

illustrates the efficacy of the new FA approach for simultaneously constructing multiple, good-but-very-

different solution alternatives on a commonly evaluated benchmark engineering optimization test

problem [16].

2 Firefly Algorithm For Optimization

While this section provides only a relatively brief synopsis of the FA procedure [5][12][13], more

comprehensive explanations appear in [10][11]. The FA is a biologically-inspired, population-based

metaheuristic. Each firefly in the population represents one potential solution to a problem and the

population of fireflies should initially be distributed uniformly and randomly throughout the solution

space. The solution approach employs three idealized rules. (i) The brightness of a firefly is determined by

the overall landscape of the objective function. Namely, for a maximization problem, the brightness is

simply considered to be proportional to the value of the objective function. (ii) The relative attractiveness

between any two fireflies is directly proportional to their respective brightness. This implies that for any

two flashing fireflies, the less bright firefly will always be inclined to move towards the brighter one.

However, attractiveness and brightness both decrease as the relative distance between the fireflies

increases. If there is no brighter firefly within its visible neighborhood, then the particular firefly will move

about randomly. (iii) All fireflies within the population are considered unisex, so that any one firefly could

potentially be attracted to any other firefly irrespective of their sex. Based upon these three rules, the

basic operational steps of the FA can be summarized within the following pseudo-code [11].

Julian Scott Yeomans; A Computational Algorithm for Simultaneously Creating Alternatives to Optimal Solutions.

Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 5 October (2017); pp: 58-68

URL:http://dx.doi.org/10.14738/tmlai.55.3580 60

Objective Function F(X), X = (x1, x2,… xd)

Generate the initial population of n fireflies, Xi, i = 1, 2,…, n

Light intensity Ii at Xi is determined by F(Xi)

Define the light absorption coefficient γ

while (t < MaxGeneration)

 for i = 1: n , all n fireflies

 for j = 1: n ,all n fireflies (inner loop)

 if (Ii < Ij), Move firefly i towards j; end if

 Vary attractiveness with distance r via e- γr

 end for j

 end for i

 Rank the fireflies and find the current global best solution G*

end while

Postprocess the results

In the FA, there are two important issues to resolve: the formulation of attractiveness and the variation

of light intensity. For simplicity, it can always be assumed that the attractiveness of a firefly is determined

by its brightness which in turn is associated with its encoded objective function value. In the simplest case,

the brightness of a firefly at a particular location X would be its calculated objective value F(X). However,

the attractiveness, , between fireflies is relative and will vary with the distance rij between firefly i and

firefly j. In addition, light intensity decreases with the distance from its source, and light is also absorbed

in the media, so the attractiveness needs to vary with the degree of absorption. Consequently, the overall

attractiveness of a firefly can be defined as

 = 0 exp(-r2)

where 0 is the attractiveness at distance r = 0 and  is the fixed light absorption coefficient for the specific

medium. If the distance rij between any two fireflies i and j located at Xi and Xj, respectively, is calculated

using the Euclidean norm, then the movement of a firefly i that is attracted to another more attractive

(i.e. brighter) firefly j is determined by

Xi = Xi + 0 exp(-(rij)2)(Xi – Xj) + i.

In this expression of movement, the second term is due to the relative attraction and the third term is a

randomization component. Yang [11] indicates that  is a randomization parameter normally selected

within the range [0,1] and i is a vector of random numbers drawn from either a Gaussian or uniform

(generally [-0.5,0.5]) distribution. It should be explicitly noted that this expression represents a random

walk biased toward brighter fireflies and if 0 = 0, it becomes a simple random walk. The parameter 

characterizes the variation of the attractiveness and its value determines the speed of the algorithm’s

convergence. For most applications,  is typically set between 0.1 to 10 [11][15]. In any given optimization

problem, for a very large number of fireflies n >> k, where k is the number of local optima, the initial

locations of the n fireflies should be distributed relatively uniformly throughout the entire search space.

As the FA proceeds, the fireflies begin to converge into all of the local optima (including the global ones).

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5, Issue 5, Oct 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 61

Hence, by comparing the best solutions among all these optima, the global optima can easily be

determined. Yang [11] proves that the FA will approach the global optima when n   and the number

of iterations t, is set so that t >>1. In reality, the FA has been found to converge extremely quickly with n

set in the range 20 to 50 [10][15].

3 Modelling To Generate Alternatives

Most optimization methods appearing in the mathematical programming literature have concentrated

almost exclusively upon producing single optimal solutions to single-objective problem instances or,

equivalently, generating noninferior solution sets to multi-objective formulations [2][3][5][12][13]. While

such algorithms may efficiently generate solutions to the derived complex mathematical models, whether

these outputs actually establish “best” approaches to the underlying real problems is questionable

[1][2][5]. In most “real world” decision environments, there are innumerable system requirements and

objectives that are never included or apparent in the decision formulation stage [1][3]. Furthermore, it

may never be possible to explicitly incorporate all of the subjective components because there are

frequently many incompatible, competing, design interpretations and, perhaps, adversarial stakeholders

involved. Therefore most of the subjective aspects of a problem necessarily remain unquantified and

unmodelled in the construction of the resultant decision models. This is a common occurrence in

situations where final decisions are constructed based not only upon clearly stated and modelled

objectives, but also upon more fundamentally subjective socio-political-economic goals and stakeholder

preferences [4]. Numerous “real world” examples describing these types of incongruent modelling

dualities are discussed in [5][17][18].

When unquantified issues and unmodelled objectives exist, non-conventional approaches are required

that not only search the decision space for noninferior sets of solutions, but must also explore the decision

space for discernibly inferior alternatives to the modelled problem. In particular, any search for good

alternatives to problems known or suspected to contain unmodelled components must focus not only on

the non-inferior solution set, but also necessarily on an explicit exploration of the problem’s inferior

decision space.

To illustrate the implications of an unmodelled objective on a decision search, assume that the optimal

solution for a quantified, single-objective, maximization decision problem is X* with corresponding

objective value Z1*. Now suppose that there exists a second, unmodelled, maximization objective Z2 that

subjectively reflects some unquantifiable “political acceptability” component. Let the solution Xa,

belonging to the noninferior, 2-objective set, represent a potential best compromise solution if both

objectives could somehow have been simultaneously evaluated by the decision-maker. While Xa might be

viewed as the best compromise solution to the real problem, it would appear inferior to the solution X*

in the quantified mathematical model, since it must be the case that Z1a  Z1*. Consequently, when

unmodelled objectives are factored into the decision making process, mathematically inferior solutions

for the modelled problem can prove optimal to the underlying real problem. Therefore, when unmodelled

objectives and unquantified issues might exist, different solution approaches are needed in order to not

only search the decision space for the noninferior set of solutions, but also to simultaneously explore the

decision space for inferior alternative solutions to the modelled problem. Population-based solution

methods such as the FA permit concurrent searches throughout a feasible region and thus prove to be

particularly adept procedures for searching through a problem’s decision space.

The primary motivation behind MGA is to produce a manageably small set of alternatives that are

quantifiably good with respect to the known modelled objectives yet are as different as possible from

Julian Scott Yeomans; A Computational Algorithm for Simultaneously Creating Alternatives to Optimal Solutions.

Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 5 October (2017); pp: 58-68

URL:http://dx.doi.org/10.14738/tmlai.55.3580 62

each other in the decision space. The resulting alternatives are likely to provide truly different choices that

all perform somewhat similarly with respect to the modelled objective(s) yet very differently with respect

to any unknown unmodelled issues. By generating a set of good-but-different solutions, the decision-

makers can explore desirable qualities within the alternatives that may prove to satisfactorily address the

various unmodelled objectives to varying degrees of stakeholder acceptability.

In order to properly motivate an MGA search procedure, it is necessary to supply a more mathematically

formal definition of the goals of the MGA process [4][6][14]. Suppose the optimal solution to an original

mathematical model is X* with objective value Z* = F(X*). The following maximal difference model can

then be solved to generate an alternative solution, X, that is maximally different from X*:

 Maximize  (X, X*) =
i | Xi - Xi* |

Subject to: X  D

 | F(X) - Z* |  T

where  represents some difference function (for clarity, shown as an absolute difference in this

instance) and T is a targeted tolerance value specified relative to the problem’s original optimal objective

Z*. T is a user-supplied value that determines how much of the inferior region is to be explored in the

search for acceptable alternative solutions. This difference function concept can be extended into a

measure of difference between any set of alternatives by replacing X* in the objective of the maximal

difference model and calculating the overall sum (or some other function) of the differences of the

pairwise comparisons between each pair of alternatives – subject to the condition that each alternative is

feasible and falls within the specified tolerance constraint.

4 FA-based Simultaneous MGA Computational Algorithm

The MGA method to be introduced produces a pre-determined number of close-to-optimal, but maximally

different alternatives, by modifying the value of the bound T in the maximal difference model and using

an FA to solve the corresponding, maximal difference problem. Each solution within the FA’s population

contains one potential set of p different alternatives. By exploiting the co-evolutionary solution structure

within the population of the algorithm, the Fireflies collectively evolve each solution toward sets of

different local optima within the solution space. In this process, each desired solution alternative

undergoes the common search procedure of the FA. However, the survival of solutions depends both

upon how well the solutions perform with respect to the modelled objective(s) and by how far away they

are from all of the other alternatives generated in the decision space.

A direct process for generating alternatives with the FA would be to iteratively solve the maximum

difference model by incrementally updating the target T whenever a new alternative needs to be

produced and then re-running the algorithm. This iterative approach would parallel the original Hop, Skip,

and Jump (HSJ) MGA algorithm [5] in which, once an initial problem formulation has been optimized,

supplementary alternatives are systematically created one-by-one through an incremental adjustment of

the target constraint to force the sequential generation of the suboptimal solutions. While this approach

is straightforward, it requires a repeated execution of the optimization algorithm [4][12][13].

To improve upon the stepwise alternative approach of the HSJ algorithm, a concurrent MGA technique

was subsequently designed based upon the concept of co-evolution [6][8][12][13]. In the co-evolutionary

approach, pre-specified stratified subpopulation ranges within the algorithm’s overall population were

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5, Issue 5, Oct 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 63

established that collectively evolved the search toward the creation of the specified number of maximally

different alternatives. Each desired solution alternative was represented by each respective

subpopulation and each subpopulation underwent the common processing operations of the FA. The

survival of solutions in each subpopulation depended simultaneously upon how well the solutions

perform with respect to the modelled objective(s) and by how far away they are from all of the other

alternatives. Consequently, the evolution of solutions in each subpopulation toward local optima is

directly influenced by those solutions contained in all of the other subpopulations, which forces the

concurrent co-evolution of each subpopulation towards good but maximally distant regions within the

decision space according to the maximal difference model [4].

By employing this co-evolutionary concept, it becomes possible to implement an FA-based MGA

procedure that concurrently produces alternatives which possess objective function bounds that are

somewhat analogous to those created by the sequential, iterative HSJ-styled solution generation

approach. While each alternative produced by an HSJ procedure is maximally different only from the

overall optimal solution (together with its bound on the objective value which is at least x% different from

the best objective (i.e. x = 1%, 2%, etc.)), a concurrent procedure is able to generate alternatives that are

no more than x% different from the overall optimal solution but with each one of these solutions being

as maximally different as possible from every other generated alternative that was produced. Co-

evolution is also much more efficient than the sequential HSJ-style approach in that it exploits the inherent

population-based searches of FA procedures to concurrently generate the entire set of maximally

different solutions using only a single population [6][8].

While a concurrent approach exploits the population-based nature of the FA’s solution approach, the co-

evolution process occurs within each of the stratified subpopulations. The maximal differences between

solutions in different subpopulations is based upon aggregate subpopulation measures. Conversely, in the

following simultaneous MGA algorithm, each solution in the population contains exactly one entire set of

alternatives and the maximal difference is calculated only for that particular solution (i.e. the specific

alternative set contained within that solution in the population). Hence, by the evolutionary nature of the

FA search procedure, in the subsequent approach, the maximal difference is simultaneously calculated

for the specific set of alternatives considered within each specific solution – and the need for concurrent

subpopulation aggregation measures is circumvented.

The steps in the simultaneous co-evolutionary alternative generation algorithm are as follows:

Initialization Step. In this preliminary step, solve the original optimization problem to determine the

optimal solution, X*. As with prior solution approaches [6]-[9][12][13] and without loss of generality, it is

entirely possible to forego this step and construct the algorithm to find X* as part of its solution

processing. However, such a requirement increases the number of computational iterations of the overall

procedure and the initial stages of the processing focus upon finding X* while the other elements of each

population solution remain essentially “computational overhead”. Based upon the objective value F(X*),

establish P target values. P represents the desired number of maximally different alternatives to be

generated within prescribed target deviations from the X*.

Note: The value for P has to have been set a priori by the decision-maker.

Step 1. Create the initial population of size K in which each solution is divided into P equally-sized

partitions. The size of each partition corresponds to the number of variables for the original optimization

problem. Ap represents the pth alternative, p = 1,…,P, in each solution.

Julian Scott Yeomans; A Computational Algorithm for Simultaneously Creating Alternatives to Optimal Solutions.

Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 5 October (2017); pp: 58-68

URL:http://dx.doi.org/10.14738/tmlai.55.3580 64

Step 2. In each of the K solutions, evaluate each Ap, p = 1,…,P, with respect to the modelled objective.

Alternatives meeting their target constraint and all other problem constraints are designated as feasible,

while all other alternatives are designated as infeasible. A solution can only be designated as feasible if all

of the alternatives contained within it are feasible.

Step 3. Apply an appropriate elitism operator to each solution to rank order the best individuals in the

population. The best solution is the feasible solution containing the most distant set of alternatives in the

decision space (the distance measure is defined in Step 5). Note: Because the best solution to date is

always retained in the population throughout each iteration of the FA, at least one solution will always be

feasible. A feasible solution for the first step can always consists of P repetitions of X*.

This step simultaneously selects a set of alternatives that respectively satisfy different values of the target

T while being as far apart as possible (i.e. maximally different as defined in the maximal difference model)

from the other solutions generated. By the co-evolutionary nature of the FA, the alternatives are

simultaneously generated in one pass of the procedure rather than the P implementations suggested by

the necessary increments to T in the maximal difference problem.

Step 4. Stop the algorithm if the termination criteria (such as maximum number of iterations or some

measure of solution convergence) are met. Otherwise, proceed to Step 5.

Step 5. For each solution k = 1,…, K, calculate Dk, a distance measure between all of the alternatives

contained within solution k.

As an illustrative example for determining a distance measure, calculate

Dk =
1i toP 1j toP  (Ai, Aj).

This represents the total distance between all of the alternatives contained within solution k.

Alternatively, the distance measure could be calculated by some other appropriately defined function.

Step 6. Rank the solutions according to the distance measure Dk objective – appropriately adjusted to

incorporate any constraint violation penalties for infeasible solutions. The goal of maximal difference is to

force alternatives to be as far apart as possible in the decision space from the alternatives of each of the

partitions within each solution. This step orders the specific solutions by those solutions which contain

the set of alternatives which are most distant from each other.

Step 7. Apply appropriate FA “change operations” to the each of the solutions and return to Step 2.

5 Computational Testing Of Simultaneous MGA Algorithm

As described earlier, “real world” decision-makers generally prefer to be able to select from a set of “near-

optimal” alternatives that significantly differ from each other in terms of the system structures

characterized by their decision variables. The ability of the FA MGA procedure to simultaneously produce

such maximally different alternatives will be demonstrated using a non-linear spring design optimization

problem taken from [16]. The design of a tension and compression spring has frequently been employed

as a standard benchmark test problem for constrained engineering optimization algorithms [16]. The

problem involves three design variables: (i) x1, the wire diameter, (ii) x2, the coil diameter, and (iii) x3, the

length of the coil. The aim is to essentially minimize the weight subject to constraints on deflection, stress,

surge frequency and geometry. The mathematical formulation for this multimodal problem is:

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5, Issue 5, Oct 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 65

 Minimize F(X) =  2
1 2 32x x x

Subject to: g1(X) = 1 –
3
2 3

4
171785

x x

x
  0

 g2(X) =
 

2
2 1 2

3 4
1 2 1

4

12566

x x x

x x x




 +

2
15108

1

x
 – 1  0

 g3(X) = 1 – 1
2
2 3

140.45x

x x
  0

 g4(X) =
5.1
21 xx 

 – 1  0

 0.05  1x  2.0 0.25  2x  1.3 2.0  3x  15.0

The optimal solution for the specific design parameters employed within this formulation is F(X*) = 0.0127

with decision variable values of X* = (0.051690, 0.356750, 11.287126) [16].

In order to create the set of different alternatives, extra target constraints that varied the value of T by up

to 1.5% between successive alternatives were placed into the original formulation in order to force the

generation of solutions maximally different from the initial optimal solution (i.e. the values of the bound

were set at 1.5%, 3%, 4.5%, etc. for the respective alternatives). The MGA maximal difference algorithm

described in the previous section was run to produce the optimal solution and the 10 maximally different

solutions shown in Table 1.

Table 1. Objective Values and Solutions for the 11 Maximally Different Alternatives

Julian Scott Yeomans; A Computational Algorithm for Simultaneously Creating Alternatives to Optimal Solutions.

Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 5 October (2017); pp: 58-68

URL:http://dx.doi.org/10.14738/tmlai.55.3580 66

As described earlier, most “real world” optimization applications tend to be riddled with incongruent

performance requirements that are exceedingly difficult to quantify. Consequently, it is preferable to

create a set of quantifiably good alternatives that provide very different perspectives to the potentially

unmodelled performance design issues during the policy formulation stage. The unique performance

features captured within these dissimilar alternatives can result in very different system performance with

respect to the unmodelled issues, hopefully thereby addressing some of the unmodelled issues into the

actual solution process.

The example in this section underscores how a co-evolutionary MGA modelling perspective can be used

to simultaneously generate multiple alternatives that satisfy known system performance criteria

according to the prespecified bounds and yet remain as maximally different from each other as possible

in the decision space. In addition to its alternative generating capabilities, the FA component of the MGA

approach simultaneously performs extremely well with respect to its role in function optimization. It

should be explicitly noted that the cost of the overall best solution produced by the MGA procedure is

indistinguishable from the one determined in [16].

6 Conclusion

“Real world” decision-making problems generally possess multidimensional performance specifications

that are compounded by incompatible performance objectives and unquantifiable modelling features.

These problems usually contain incongruent design requirements which are very difficult – if not

impossible – to capture at the time that supporting decision models are formulated. Consequently, there

are invariably unmodelled problem facets, not apparent during the model construction, that can greatly

impact the acceptability of the model’s solutions to those end users that must actually implement the

solution. These uncertain and competing dimensions force decision-makers to integrate many conflicting

sources into their decision process prior to final solution construction. Faced with such incongruencies, it

is unlikely that any single solution could ever be constructed that simultaneously satisfies all of the

ambiguous system requirements without some significant counterbalancing involving numerous

tradeoffs. Therefore, any ancillary modelling techniques used to support decision formulation have to

somehow simultaneously account for all of these features while being flexible enough to encapsulate the

impacts from the inherent planning uncertainties.

In this paper, an MGA procedure was presented that demonstrated how the population structures of a

computationally efficient FA could be exploited to simultaneously generate multiple, maximally different,

near-best alternatives. In this MGA capacity, the approach produces numerous solutions possessing the

requisite structural characteristics, with each generated alternative guaranteeing a very different

perspective to the problem. The computational example has demonstrated several important findings

with respect to the simultaneous FA-based MGA method: (i) The co-evolutionary capabilities within the

FA can be exploited to generate more good alternatives than planners would be able to create using other

MGA approaches because of the evolving nature of its population-based solution searches; (ii) By the

design of the MGA algorithm, the alternatives generated are good for planning purposes since all of their

structures will be maximally different from each other (i.e. these differences are not just simply different

from the overall optimal solution as in an HSJ-style approach to MGA); and, (iv) The approach is

computationally efficient since it need only be run a single time in order to generate its entire set of

multiple, good solution alternatives (i.e. to generate n solution alternatives, the MGA algorithm needs to

run exactly once irrespective of the value of n). Since FA techniques can be modified to solve a wide variety

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5, Issue 5, Oct 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 67

of problem types, the practicality of this MGA approach can clearly be extended into numerous disparate

planning applications. These extensions will be studied in future research.

REFERENCES

[1] Brugnach, M., A. Tagg,, F. Keil, and W.J. De Lange, Uncertainty matters: computer models at the science-

policy interface. Water Resources Management, 2007. 21: p. 1075-1090.

[2] Janssen, J.A.E.B., M.S. Krol, R.M.J. Schielen, and A.Y Hoekstra, The effect of modelling quantified expert

knowledge and uncertainty information on model based decision making. Environmental Science and

Policy, 2010. 13(3): p. 229-238.

[3] Walker, W.E., P. Harremoes, J. Rotmans, J.P. Van der Sluis, M.B.A. Van Asselt, P. Janssen, and M.P. Krayer

von Krauss, Defining uncertainty – a conceptual basis for uncertainty management in model-based

decision support. Integrated Assessment, 2003. 4(1): p. 5-17.

[4] Yeomans, J.S., and Y Gunalay, Simulation-Optimization Techniques for Modelling to Generate

Alternatives in Waste Management Planning. Journal of Applied Operational Research, 2011. 3(1): p.

23-35.

[5] Brill, E.D., S.Y. Chang, and L.D Hopkins, Modelling to generate alternatives: the HSJ approach and an

illustration using a problem in land use planning. Management Science. 1982. 28(3): p. 221-235.

[6] Imanirad, R., and J.S. Yeomans, Modelling to Generate Alternatives Using Biologically Inspired

Algorithms. in Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, X.S. Yang,

Editor 2013. Amsterdam: Elsevier (Netherlands). p. 313-333.

[7] Imanirad, R., X.S. Yang, and J.S. Yeomans, Modelling-to-Generate-Alternatives Via the Firefly Algorithm.

Journal of Applied Operational Research. 2013. 5(1): p. 14-21.

[8] Imanirad, R., X.S. Yang, and J.S. Yeomans, A Concurrent Modelling to Generate Alternatives Approach

Using the Firefly Algorithm. International Journal of Decision Support System Technology. 2013, 5(2): p.

33-45.

[9] Imanirad, R., X.S. Yang, and J.S. Yeomans, A Biologically-Inspired Metaheuristic Procedure for Modelling-

to-Generate-Alternatives. International Journal of Engineering Research and Applications. 2013, 3(2): p.

1677-1686.

[10] Yang, X.S., Firefly Algorithms for Multimodal Optimization. Lecture Notes in Computer Science. 2009,

5792: p. 169-178.

[11] Yang, X.S., Nature-Inspired Metaheuristic Algorithms 2nd Edition 2010, Frome: Luniver Press (United

Kingdom).

[12] Imanirad, R., X.S. Yang, and J.S. Yeomans, A Computationally Efficient, Biologically-Inspired Modelling-

to-Generate-Alternatives Method. Journal on Computing. 2012, 2(2): p. 43-47.

[13] Imanirad, R., X.S. Yang, and J.S. Yeomans, A Co-evolutionary, Nature-Inspired Algorithm for the

Concurrent Generation of Alternatives. Journal on Computing. 2012, 2(3): p. 101-106.

Julian Scott Yeomans; A Computational Algorithm for Simultaneously Creating Alternatives to Optimal Solutions.

Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 5 October (2017); pp: 58-68

URL:http://dx.doi.org/10.14738/tmlai.55.3580 68

[14] Yeomans, J.S., An Efficient Computational Procedure for Simultaneously Generating Alternatives to an

Optimal Solution Using the Firefly Algorithm, in Nature-Inspired Algorithms and Applied Optimization,

Yang, X.S. Editor 2018. Heidelberg (Springer), Germany. Forthcoming.

[15] Gandomi, A.H., X.S. Yang, and A.H Alavi, Mixed Variable Structural Optimization Using Firefly Algorithm.

Computers and Structures. 2011, 89(23-24): p. 2325-2336.

[16] Cagnina, L.C., C.A. Esquivel, and C.A Coello, Solving Engineering Optimization Problems with the Simple

Constrained Particle Swarm Optimizer. Informatica. 2008, 32: p. 319-326.

[17] Baugh, J.W., S.C. Caldwell, and E.D Brill, A Mathematical Programming Approach for Generating

Alternatives in Discrete Structural Optimization. Engineering Optimization. 1997, 28(1): p. 1-31.

[18] Zechman, E.M., and S.R. Ranjithan, An Evolutionary Algorithm to Generate Alternatives (EAGA) for

Engineering Optimization Problems. Engineering Optimization. 2004,. 36(5): p. 539-553.

