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ABSTRACT   

Overfishing of species in the marine life has caused oceans to become deserts at a fast pace. The 

population of specific species such as Cod and Haddock has reduced over the years. This has affected 

countries that hugely depend on them as a source of food. This study used Dynamic Bayesian Network 

(DBN) to predict animal behaviour in a food web. Two independent biomass surveys from the North Sea 

were used to learn predictive models and test them on the Northern Gulf Ocean. The resulting predictive 

model is expected to unveil useful information about what affects the population of fishes in the Northern 

Gulf Ocean. In addition, the predictive model was used to make predictions into the future about the 

effects of tampering with the population of specific species of fish in the same region. The focus was on 

the Cod species in the George’s Bank in relationship to species network in their food web. Looking at their 

biomass states and the effects it has on the hidden dependence when there is a change in their biomass 

states. Also, the different predictive models were used to evaluate species in the George’s Bank based on 

their performance. The result from the experiment shows that there is a hidden dependence, which is 

responsible for the collapse of species (Cod); due to the temperature or salinity of the ocean.  

Keywords: Fisheries management, data mining, Bayesian network and hidden Markov model 

1 Introduction  

"About 20% of the world’s population derives at least one-fifth of its animal protein intake from fish, and 

some small island states depend almost exclusively on fish" [1]. Overfishing of species in the marine life 

has made oceans to become deserts quickly and it has also caused loss of some species as well as entire 

ecosystem. Due to this, the overall ecological unity of the oceans is under stress and at risk of collapse. 

The ocean is at risk of losing a valuable food source many depend upon for social, economical or dietary 

reasons [2]. The over-exploitation and mismanagement of fisheries has already led to some spectacular 

fisheries collapsing. For example, the Cod fishery of Newfoundland, Canada collapsed in 1992, leading to 

the loss of some 40,000 jobs in the industry. Further, the Cod stocks in the North Sea and Baltic Sea are 

now heading the same way and are close to complete collapse [3]. Per Darwin’s description of tangled 

bank, he emphasized that tempering with the population of one species of fish can cause surprising and 

dramatic changes in the population of others [4]. Overfishing of a specific fish has caused increase in the 

population of their competitors because there is less consumer-resource competition between the 
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remaining fishes in the ecosystem. Per the Sequential Population Analysis (SPA), total population of Cod 

in the Northern Gulf declined from 539 million in 1980 to 31 million in 1994, then slowly increasing to 

attain 58 million individuals in 2010 [5]. Cods population in this region remains depleted and the reasons 

behind this remain disputed [6]. Although in the North Sea such collapse in Cod population occurred, the 

population tends to be recovering over the years [7]. The difference between the recoveries of Cod 

population in these regions remains unrevealed. Consequently, ban on fishing Cod species from the 

Northern Gulf Ocean has been introduced but this has not helped in the recovery of these species. 

However, in this changing world, understanding ecosystem stability and fragility is of growing 

importance—yet to do so there must be an understanding of the networks that forms the systems [8]. 

A large amount of data is collected and stored in storage devices every day from business, science and 

engineering and almost every facet of our daily life. This explosive growth of available data volume is a 

result of the automation of our society and the progress achieved in developing powerful data collection 

and storage tools. Therefore, there is desperate need for powerful tools to automatically reveal valuable 

information from the huge amount of data and to transform such data into organized knowledge. This 

necessity has led to the birth of data mining [9]. Data mining can be described as the process of discovering 

patterns in data that are meaningful and can be used advantageously [10]. Although, data collected from 

ecological sources has been less explorative compared to data collected from other sources mentioned 

above [11]. In this paper, we apply data mining tools including dynamic Bayesian network and Hidden 

Markov models to fisheries data to identify species that perform similar functional roles both in the 

George’s Bank and North Sea and these species are used to predict functional collapse in their respective 

fishing communities.  

Bayesian Network (BN) is an exceptional case of a broader class called graphical models, where nodes 

represent random variables, and the conditional independence assumption is represented by the lack of 

arcs. BNs do not deal with time, however the Dynamic Bayesian Network (DBN) does by representing how 

these random variables evolve over time [12]. DBNs are devised to model probability distributions over a 

sequence of random variables to manage sequenced observations that are propagated by some 

fundamental hidden states that evolve in time [13]. DBNs consist of two networks. One of them represents 

the prior probabilities of all variables in the network in the initial time slice (�. � � = 0). This is known as 

the prior network. While the other one represents the probabilities of all the variables in all other time 

slices (�. � � = 1,2, … �). This is known as transition network [14]. 

From the graph below (figure I), X3 is independent of X1 given X2. This explains the first order Markov 

property that the future is independent of the past given the present. Hence, this graph entails the basic 

concept of HMM. HMMs, Kalman Filters, Vector Quantization, etc. are all variants of DBNs [15]. This 

project will implement Hidden Markov Models (HMM) as DBNs. The goal of implementing an HMM as a 

DBN is to infer the hidden state given the observation sequence, which can be represented as �(�� =

�|��:�). Implementing HMM based models as Dynamic Bayesian Networks (DBN) facilitates compact 

representation as well as additional flexibility regarding the model structure [14]. 

 

Figure I - Representation of Dynamic Bayesian Network. Observed nodes are shaded, whereas hidden nodes 
are not shaded  
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Tucker and Duplisea (2013) used bioinformatics techniques to exploit functional equivalence between 

different fisheries datasets and used the identified species in conjunction with a dynamic model that uses 

latent variables to predict functional collapse (and future biomass). The latent variable was used partially 

to represent something’s external to the fish community such as oceanographic conditions. They explored 

this further by using data of likely factors such as temperature, nutrients and fishing mortality. The result 

suggests that changes in conditions external to the fish community may be responsible for collapse in GB 

and ESS. 

2 Material and Methods 

2.1 Data Source 

To conduct the research the data about species biomass and food webs in the studied oceans were used. 

The information about the species and their food webs in the George’s Bank Ocean were provided by the 

Department for Fisheries and Ocean in Canada while the data sets for the North Sea were provided by the 

International Council for the Exploitation of Sea. In the George’s Bank, the data set contains biomass 

surveys of thirty-nine species from 1963 - 2008 and for the North Sea biomass surveys of forty-four species 

from 1967 - 2009 were provided in the data sets. This data is all recorded as typical continuous values. 

Information about the food web was collected by examination of the species stomach content and 

recording the fishes that were found in their stomach. This was done for the species in both oceans. 

Although there are many species, only an overlap of species will be used to carry out the various 

experiments. These species include: Cod, Herring, Cusk, Mackerel, Spiny dogfish and Red Hake. The choice 

of these species was based on their trophic relationships to one another. For example, Herring was chosen 

because it is a prey of Cod. However, the data sets contain missing values, so it was decided to interpolate 

the data to fit in missing values in the data sets. Although, DBNs are capable of handling missing values 

from the data sets. Furthermore, the data will also be discretized into simple discrete values. 

2.2 Experiments 

The experiments undertaken in this paper involve discretization, inference and prediction.  To represent 

the continuous values into a small number of finite values, the data can be discretized. Discretization of 

real data into a typically small number of finite values is often required by Bayesian Net apps [16]. The 

biomass surveys are discretized into two qualitative states as low and high. These states are interpreted 

as the relative weight of species at time slice. For example, if the relative weight of Cod species is 1 at a 

time, then it is in a low state. However, sometimes they are discretized into three qualitative states low, 

medium and high to test how they affect the predictions. Number 1 represents low, number 2 medium 

and number 3 high. Table 1 shows the hypothetical relative weight of species. 

Table 1: Hypothetical relative weight for species 

 

States Low High 

Relative weight 1 2 

 

An important aspect of this paper is trying to predict the behaviour of species over time. To do this, 

�(����|��: �)  needs to be computed where ℎ is how far to predict. Once the future hidden state is known, 
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the information about the future observation state can be retrieved by marginalizing out ���� as shown 

in equation 2.1. 

 �(���� = �|��:�) = ∑ �(���� = �|���� = �)�(���� = �|��:�)�                 (1) 

The goal of inference can be achieved by using the Junction Tree algorithm. The simplest approach to 

applying junction tree algorithm to DBNs for inference is by unrolling the DBN for “T” slices and applying 

the algorithm to each static Bayes net. The disadvantage of this approach is that it takes too long for 

algorithm to run out of memory if the unrolled DBN becomes huge, i.e. there are many time steps. This is 

the approach used for the all experiments because it allows relative weight of species over a period to be 

entered in form of evidence. It was used because the number of time steps involved is not much. However, 

a better approach to applying Junction Tree algorithm to a DBN is by representing the DBN using only the 

first two time slices of a process. This approach is based on the first order Markov property that the 

current time slice is only dependent on the preceding time slice and not any previous time slices. It is 

much faster than unrolling the DBN into several time slices. The Junction Tree algorithm applied to DBNs 

for inference can be outlined as follows [17]: 

1. Initialization 

A. On initialization, Junction Trees, J1 and Jt are created 

I. J1 is the junction tree for the initial time slice and is created from time slice 1 of the 

2TBN 

II. Jt is the junction tree for each subsequent time slice and is created from time slice 2 

of the 2TBN and the outgoing interface of time slice 1 

B. Time is initialized to 0 

2. Queries 

A. Marginals of nodes at the current time slice can be queried 

I. If current time = 0, queries are performed on “_1” nodes in J1 

II. If current time > 0, queries are performed on “_2” nodes in Jt 

3. Evidence Application 

A. Evidence can be applied to any node in the current time slice 

I. If current time = 0, evidence is applied to “_1” nodes in J1 

II. If current time > 0, evidence is applied to “_2” nodes in Jt 

4. Advance 

A. Increment time counter 

B. Use outgoing interface from active time slice to do inference in next time slice 

I. Since the outgoing interface d-separates the past from the future, this ensures that 

when inference is done in the next time slice it takes everything that has occurred “so 

far” into account. 

The detailed biomass state prediction procedure is as follows: 

Step 1: Collect data about biomass surveys of species to use in building the model. 

Step 2: Discretize data sets into qualitative states. For example, into two states: low and high. 
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Step 3: Build the DBN from the collected data and train it. 

Step 4: After training the model, the inference model can be used to compute the future states, 

�(�(���)|�(1: �)) using equation (2.1) 

Step 5: Find the value of ����(�(���)|�(1: �))  using equation 2.1 and return as the most 

probable state. 

The first experiment involves simulating population of species over a certain period. Essentially, specific 

states of biomass of species are entered for certain annual periods and predictions over certain annual 

periods are made based on the built model as to how these populations behave over certain annual 

periods. These states are entered in the form of evidence. For example, the biomass state of Cod is set to 

be low and the remaining species used to build the model are set to be high over a five-year period. So, 

the behaviour given overtime can monitor this information. Experiment 1 tries to predict if Cod species 

can recover in the George’s Bank and identifies the conditions that are responsible for this behaviour. 

Throughout this experiment, four species are used to build the model which includes Cod and Haddock. 

However, the other two species used have a kind of trophic impact be it negative or positive on them. 

While conducting the first experiment, predictions were made. To determine how accurate these 

predictions are, cross validation was used to evaluate the built predictive model. The second experiment 

involves performing cross-validation to ascertain how accurate the predictions are. Cross-validation is a 

statistical method of evaluating and comparing learning algorithm by dividing data into two segments: 

one use to train a model and the other used to validate the model. There are several methods that can be 

used for cross-validation but in this study, 10-fold cross-validation was used because it is the most 

common method in data mining and machine learning [18]. While performing cross-validation, certain 

performance measures can be used. This experiment used sensitivity analysis in the form of confusion 

matrix to effectively compare the performance of predictive models. A confusion matrix is a visualization 

tool used to determine the predictive capability of a model. Each row of the matrix represents the actual 

value while the column of the matrix represents the predicted value. From this, the accuracy of prediction 

can be determined by estimating the proportion of the total number of correct predictions. The equation 

is given below: 

            Accuracy, A = correct / (correct + incorrect)                                                    (2) 

The cross-validation estimation of the overall accuracy can be defined as, 

   ��� =
�

�
∑ ��

�
���               (3) 

Where, CVA is the average accuracy at each fold, k is the number of fold and A is the accuracy at each 

fold. 

The third experiment involves testing the learnt model on an unseen data. This is similar to the second 

experiment however; the difference is that the model is tested on an independent data. In this case, 

several species from the North Sea were used to build a predictive model and this model was tested on 

the same species from the George’s Bank. The main aim of this experiment is to see if the conditions that 

helped Cod species recover in the North Sea can be applied to the Cod species in the George’s Bank.  

The final experiment uses information from the food web to build a model using different species and 

trying to predict the behaviour over their population over time by simulating their populations over 
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certain periods. Different species were used in building a model based on the information about their 

trophic impact on each from the food web. For example, predators or prey of Cod are switched to see 

how Cod relates to them in different conditions. 

3 Results and Discussion 

In the first experiment, an initial model was built using Cod, Haddock, Herring and Cusk from the George’s 

Bank. These species were chosen based on the information that Cusk is the predator of Cod and Haddock, 

Cod is the predator of Haddock and Haddock is the predator of Herring. The entire species nodes were 

represented in the two usual states (low and high). After building the model it was decided to enter 

evidence that for the first-time slices, Cod is set to be low. This is because the major interest is trying to 

simulate recovery of Cod. However, the biomass states of other species are randomly entered. In this 

case, the states of other species are set to be high. 

 

Figure 2: The prediction results of the biomass state of four species 

Given these evidences, the model produced the result in figure II. It is expected for the biomass state of 

Cod to be high because the biomass state of Haddock (prey of Cod) is also high. The biomass state of Cod 

increases almost immediately. After certain time slices, the biomass state of Cod dropped to a low state. 

Notes were taken on the hidden states at each of the time slices. From figure III, it was discovered that 

there was change of state in the hidden dependence immediately the biomass state of Cod dropped. This 

result suggests that there is a hidden dependence, which is involved with the collapse of Cod biomass 

state in the George’s bank.  

 

Figure 3: The plot of the hidden dependence 
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Based on this network, evidences were given that the biomass state of Cod is high, the biomass state of 

Haddock is high and the biomass state of Cusk (the predator of Cod) is low. It is expected that Cod should 

remain high due to high biomass of its prey (Haddock) and low biomass of its predator (Cusk). Given this 

condition, the Cod species remained high for a long number of time slices but later dropped after twelve 

time slices. (See figure IV) 

 

Figure 4: The prediction results of the biomass state of four species 

A new model was constructed but this time the network excluded the predator of Cod. It was replaced 

with a prey of Cod. The prey of Cod used is Spiny dogfish. Evidences were entered that Cod species are in 

a high state as well as other species in the network for five time slices. This favours the Cod species, as 

they remained in a high state most of the time; also, there is no change of state in the hidden dependence. 

(See figure V) 

 

Figure 5: The prediction results of the biomass state of four species 

Following the initial model, where the network comprised of the prey of Cod, a new model was introduced 

to include a predator of Cod, Red Hake. The evidence entered is that the biomass of Cod is low, the 

biomass of Haddock is high, as well as Spiny dogfish and the biomass of Red Hake is low over five time 

slices. Interestingly, Cod rises immediately, however after two time slices it drops into a low state. 

Moreover, all species in the model, dropped immediately, while the hidden dependencies were changing. 

This suggests a possible correlation between the biomass of Cod and the hidden dependencies. The result 

is shown in the figures VI & VII. 
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Figure 6: The prediction results of the biomass state of four species 

 

Figure 7: The plot of the hidden dependence 

In a completely new model, evidence was entered that the biomass state of Cod and Herring were both 

high, with Haddock and Cusk to being low, for the first five time slices. There was no recovery of Cod in 

this network, where changes to the hidden states were again found. 

The models used for prediction were evaluated based on the performance measures described earlier 

using equations 2.2 and 2.3. The results were achieved by using ten-fold cross-validation for each model. 

Each model was built using the same species. For the second experiment, the models were built using 

Cod, Haddock, Herring and Cusk species from the North Sea and the observation sequence is represented 

using two states (low and high). These built models are used to predict the biomass states of Cod species 

over time and the results are validated using the known biomass of Cod species from the George’s Bank 

Ocean.  Table 2 shows the complete set of results for each fold with the overall accuracy calculated based 

on the average results obtained for each fold. The correctly classified states in the datasets are in yellow 

and the incorrect are in white. On average, it was discovered that the Auto-Regressive HMM model 

achieved an accuracy of 0.8150 while the DBN achieved an accuracy of 0.7900. In addition, the standard 

deviation of the accuracy for the Auto-Regressive HMM model is lower than that of the DBNs. This implies 

that the Auto-Regressive HMM model show more consistency while predicting. Overall, the Auto-

Regressive HMM model performed best of both the models used for this experiment. Confusion matrices 

were also created based on the total number of correct and incorrect classifications (after the 10th fold) 

to illustrate the performance of these models.  
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Table 2: Details of accuracy and confusion matrix at each fold of 10-fold Cross-Validation 

Fold 

No. 

Auto regressive HMM 

Dynamic Bayesian 

Network 

Confusion 

Matrix Accuracy 

Confusion 

Matrix Accuracy 

1 0 0 

1.0000 

0 0 

1.0000  0 4 0 4 

2 0 1 

0.6000 

0 1 

0.8000  1 3 0 4 

3 2 1 

0.6000 

0 3 

0.4000  1 1 0 2 

4 0 0 

1.0000 

0 0 

1.0000  0 5 0 5 

5 0 1 

0.8000 

0 1 

0.8000  0 4 0 4 

6 5 0 

1.0000 

5 0 

1.0000  0 0 0 0 

7 1 1 

0.4000 

1 1 

0.4000  2 1 2 1 

8 2 1 

0.7500 

3 0 

0.7500  0 1 1 0 

9 4 0 

1.0000 

4 0 

1.0000  0 0 0 0 

10 4 0 

1.0000 

3 1 

0.7500  0 0 0 0 

Mean  0.8150  0.7900 

St 

Dev.  0.2212  0.2319 

While defining DBNs, assumptions are made as to the number of states used to represent the observation 

sequence of the model. These assumptions are made based on the observed data sets. For this project, 

all models were built using two states based on the biomass for all species (Low and High). However, it 

was decided to increase the number of states to three (low, medium and high) and see what effects it has 

on the accuracies of the models. Same information except for the number of states, which was increased 

to three, was used to perform 10-fold cross-validation. 

As shown in table 3, the accuracies for both the Auto-Regressive HMM model and the DBN dropped to 

0.6250 and 0.5870 respectively. Increasing the number of states does not increase performance in terms 

of accuracy rather it reduces it. Hence, it is concluded that the models should be built using small groups 

of data sets to achieve better performance. 
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Table 3: Accuracies of three state representations 

 

 

 

 

 

 

As earlier described the Cod species suffered overfishing in both the North Sea and the George’s bank. 

However, the Cod species in the North Sea tends to be recovering but it’s a different case in the George’s 

bank. One of the experiments conducted in this project is to see how a predictive model learnt from an 

ocean performs on another independent ocean. The aim of this experiment is to see whether the 

condition that favored cod species in the North Sea can be applied to Cod species in the George’s bank. 

The network was built using species present in both oceans. This includes Cod Haddock, Spiny Dogfish and 

Cusk. The two usual biomass states (low and high) were used based on this network.  

Table 4 shows the result of the experiment. Analysing the confusion matrix, the accuracy of prediction is 

0.50. Also, it tends to predict the high state of biomass for Cod species most of the time. This is expected 

because this is the situation of Cod in the North Sea. This suggests that the model doesn’t fit in and the 

conditions present in both oceans are different. However, to ascertain this, another network was built 

using different species. The species used are Haddock, Red Hake, and Spiny Dogfish. The choice of 

choosing these species was based on the fact that apart from Cod, the other species behave in similar 

ways in both oceans. From this network, an accuracy of 0.53 was achieved. This showed an improvement 

from the previous network. However, it doesn’t still give an encouraging result to draw a conclusion on 

this experiment. 

Table 4: Confusion Matrices for (a) Auto-regressive HMM and (b) Dynamic Bayesian Network 

 

(a) 

 

(b) 

The final experiment is similar to the first, where initially there were four species, now it is reduced to 

two, where the species were switched based upon the food web information. The entire species nodes 

were represented in the two usual states (low and high). The species Cod and Cusk were used to build the 

first model. Cusk is a primary predator of Cod. Evidences were entered that the biomass states of Cusk 

were high for the first time slices, while the biomass state of Cod was set to be low, with a fluctuation 

between the first 5 times slices. Given the evidence, the biomass state of Cod remained high up to the 

ninth time slice, then dropped immediately to a low state thereafter, while the biomass state of Cusk 

Auto-Regressive HMM Dynamic Bayesian Network 

15 0 0 12 3 0 

2 3 10 1 6 8 

1 5 10 0 7 9 

Accuracy = 0.6250 Accuracy = 0.5870 
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remained high, then it dropped after three times slices. However, there was no change in the hidden 

states until after this occurs. The result of this model is shown in the figures VIII & IX below. 

 

Figure 8: The prediction results of the biomass state of two species 

 

Figure 9: Plot of the hidden dependence 

In a second model, using the network of Cod and Haddock (the prey of Cod), the evidence entered that 

the biomass state of Cod fluctuated between high and low, in respect to the biomass state of Haddock 

which was relatively high for the first five times slices. Interestingly, after the evidence was entered, the 

hidden dependences were unchanged for up to ten time slices; even though the biomass state of Cod 

continued to fluctuate. However, when the state of the hidden dependence changes, the biomass state 

of Cod, drops and then remains in a low state, which prior to this had consistently been in fluctuation. The 

result of this model is shown in the figures X & XI below. 
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Figure 10: The prediction results of the biomass state of two species 

 

 

Figure 11: Plot of the hidden dependence 

 

4 Conclusion 

This paper looks at the potential correlation between the biomass state of Cod and the changing or 

unchanging state of the hidden dependencies.  Overall, the Cod species did not recover, however it was 

discovered that there is a change in the state of the hidden dependencies when the biomass state of Cod 

drops, suggesting that there might be other factors affecting the Cod population. Species such Cod have 

suffered overfishing, which appear to cause danger to their biomass state, however it is not a conclusive 

reason for their inability to make a recovery, as they are no longer being fished. New experimentation 

suggests that the biomass state of the Cod and other network species such as Haddock (the prey of Cod) 

and Cusk (a predator of Cod), while observing the state of the hidden dependencies, may all be affected 

by externalities which remain unknown. However, this study investigated this, using data mining 

techniques to model dependencies of fishes in marine life and it was discovered that there is a hidden 

dependence, which is responsible for the collapse of species (in this case Cod); possibly the temperature 

or salinity of the ocean that has affected the species.  
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