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ABSTRACT 

Constrained Motion Particle Swarm Optimization (CMPSO) is a general framework for optimizing Support 

Vector Regression (SVR) free parameters for nonlinear time series regression and prediction.  CMPSO uses 

Particle Swarm Optimization (PSO) to determine the SVR free parameters.  However, CMPSO attempts to 

fuse the PSO and SVR algorithms by constraining the SVR Lagrange multipliers such that every PSO epoch 

yields a candidate solution that meets the SVR constraint criteria.  The fusion of these two algorithms 

provides a numerical efficiency advantage since an SVR Quadratic Program (QP) solver is not necessary 

for every particle at every epoch.  This reduces the search space of the overall optimization problem.  It 

has been demonstrated that CMPSO provides similar (and in some cases superior) performance to other 

contemporary time series prediction algorithms for nonlinear time series benchmarks such as Mackey-

Glass data.  This paper details the CMPSO algorithm framework and tests its performance against other 

SVR time series prediction algorithms and data including the European Network on Intelligent 

Technologies for Smart Adaptive Systems (EUNITE) competition data and the Competition on Artificial 

Time Series (CATS) competition data.   

Keywords: Support Vector Regression, Constrained Motion Particle Swarm Optimization (CMPSO), 

Particle Swarm Optimization, Nonlinear Time Series Prediction. 

1 Introduction 

Nonlinear time series regression and prediction applications range from financial market prediction, 

electrical load forecasting, dynamic control system design, and a vast array of other real world problems.  

There are many methods to solve such problems including Auto Regressive Moving Average (ARMA) 

algorithms (in many different forms), Kalman Filtering (also in many different forms), Artificial Neural 

Networks (ANNs), Support Vector Machines (SVMs) and Support Vector Regression (SVR), and many 

others.  Any of the above algorithms can be applied to real world problems, some with greater success 

than others. In many cases, the success of the algorithm for a given application depends heavily on 

algorithm “tuning” – the process of optimizing the algorithm for the specific problem space.  Some 

examples of “tuning” include model selection (as with Kalman Filtering) and free parameter selection (as 

with SVR).  The employment of some algorithms such as SVR further requires the use of a Quadratic 

Program (QP) to solve for the given algorithmic parameters, thus increasing the computational complexity 

of these kinds of approaches. 
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Although SVMs/SVR algorithms are generally computationally complex, they are effective for time series 

regression and prediction applications [1]. The challenge remains to optimize free (undefined) parameters 

associated with SVR. These parameters are essential to the proper operation of the SVR algorithm and are 

generally user selected in an ad hoc manner. Specifically, three parameters need tuning for proper 

implementation of SVR: 1. A capacity constant (C) that effects scaling and accuracy (which will ultimately 

be factored out and eliminated as a free parameter in the Constrained Motion Particle Swarm 

Optimization (CMPSO) formulation), 2. An error bound (� that will control the data fit, and 3) a kernel 

function parameter (� that is used to help cast data to feature space.  The focus of this paper is to detail 

a unique approach of applying SVR to (almost) any time series regression and prediction problem by using 

a free parameter optimization framework employing Particle Swarm Optimization (PSO).  The CMPSO 

framework is unique in the sense that it does not require the use of a QP for evaluating a candidate SVR 

solution associated with each particle of the PSO swarm for every epoch, thus reducing the computational 

load in solving the problem.  CMPSO has been shown to be effective for nonlinear time series regression 

and prediction problems [2].  As compared to other similar-class algorithmic techniques, CMPSO has met 

or exceeded performance based on experiments using simulated benchmark time series data referred to 

as Mackey-Glass time series data.  Further, CMPSO has the numerical efficiency advantage. The goal of 

this paper is to provide a more thorough performance analysis and to evaluate CMPSO against many 

published benchmark time series data. 

The outline of the paper is as follows: Section II gives a brief overview of SVR and PSO theory. Section III 

details the fusion of SVR and PSO to form CMPSO. Section IV shows how CMPSO improves computationally 

efficient versus using a separate QP solver and associated PSO optimization scheme. Section V provides 

CMPSOs performance against published benchmark time series data and Section VI details the advantages 

of CMPSO and further challenges. This section also provides research areas for future investigations.   

2 Methodology Background 

2.1 Support Vector Regression 

SVR is one of two underlying algorithms used in CMPSO that facilitates the interpolation and extrapolation 

functions of arbitrary one dimensional time series data.  SVR is a supervised learning technique that does 

not assume any specific, underlying model such as found in Kalman filtering.  It has advantages for 

problems that are non-linear in nature and do not have any defined underlying process.  The SVR 

technique is an extension of SVM classifiers developed by Vapnik et al. [3, 4].  This technique has been 

successfully applied for many time series prediction applications [1].   

The fundamental principal behind the SVR approach is to cast the time series data into "feature" space as 

shown in equation (1).  The effect of this process is to transform typically non-linear data (non-linear in 

the sense of a first order linear fit of the time series) into a first order linear regression in the transformed 

space.  The time series estimate, ��, is the weighted combination of a transformed input variable �(x) 

(where x can be multi-dimensional) plus a bias term b.  This is essentially a linear regression model in 

feature space. The primal formulation derived by Vapnik and summarized by Smola and Schölkopf [5] 

attempts to minimize the Euclidian norm of the weights (w) and add a loss function to formulate equation 

(2).  Equation (3), the ε-insensitive loss function in this case, allows for errors within a ε bound around the 

estimate: 
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Where, ϕ(x): Time series cast in feature space; w, b: Weights and bias term, respectively (to be 

determined);  

L: Loss function; : Tube size (free parameter); C: Capacity (free parameter) 

With the use of Lagrange multipliers and some mathematical manipulation [6], the dual of the primal 

quadratic programming (QP) problem for SVR (equation (2)) can be formulated in the Lagrange multiplier 

equation (4) which is called the dual SVR objective function, and the constraints shown in (5): 
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Where, �: Lagrange multiplier (to be solved using QP or other technique); �(�, �): Kernel Function 

(user defined); : Tube size (free parameter); C: Capacity (free parameter) 

 

For the data sets analyzed in this paper, the exponential kernel given in equation (6) is used: 

�(�, �) = ��� �−
1

2��
‖� − �‖��                                                                         (6) 

 

Where, �: Kernel (free parameter); �, �: Input vectors  

The resulting time series approximation function is given in equation (7): 

�� = � ��
∗

�

���

�(�, ��) + �∗                                                                                     (7) 

 

Equation (7) essentially replaces equation (1) because in the dual formation, the weights w in equation 

(1) equal the weighted sum of the Lagrange multipliers times the input data [5].  The star (*) notation 

denotes the data points (and corresponding Lagrange multipliers) that lie on or outside the � tube (and 

for the bias term, the notation refers to some optimal bias value).  Any data points lying inside the tube 

will be set to zero per the loss function defined in equation (3).  This can lead to a “sparse” solution as 

data points with associated zero Lagrange multipliers will not be necessary to estimate the function. 

As mentioned earlier, solving for the Lagrange multipliers requires a quadratic programming algorithm.  

There are many well-known techniques to solve these types of problems such as Gradient Ascent and 

Sequential Minimization Optimization (SMO) [7].  The SMO algorithm described in [6] and [7] is designed 

for SVM classification problems and has been shown to be an efficient method of solving SVM/SVR 

quadratic programs.  CMPSO uses a modified form of SMO specifically designed to solve for the Lagrange 
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multipliers for the SVR formulation. From the given SVR formulation, one can quickly see that there are 

several algorithmic choices required to find a suitable solution to any given time series regression or 

prediction problem.  First, a Kernel function must be selected.  As documented in [1], the exponential 

Kernel function is a primary selection for many SVR applications and has been shown to work well in the 

CMPSO Mackey-Glass benchmark experiment referenced in [2].  Hence, an exponential Kernel was chosen 

for our experiments.  Secondly, there are three free parameters identified in the SVR formulation as user 

defined. The CMPSO framework attempts to tune these parameters using PSO.   

2.2 Particle Swarm Optimization 

The selection of C, �, and � parameters associated with SVR has been a topic of much research.  One 

candidate approach is Particle Swarm Optimization (PSO) and is the focus of this research.  First developed 

by Kennedy and Eberhart [8] in 1995, PSO mimics the real life process of a swarm of animals or insects 

searching for food.  The goal for each individual of the swarm, where each individual is termed a “particle”, 

is to scavenge in their search region for the place that has the most food.  Each particle will remember the 

location in their search region where they have found the highest density of food and further the entire 

swarm will remember collectively where the highest density of food was found in the areas that have 

been searched.  As the particles move in their search region, otherwise known as the “search space”, they 

tend to move based on the force, or pull, in three distinct directions: 

1) In the direction they are already traveling (inertial) 

2) In the direction where the particle remembers the most food being (cognitive) 

3) In the direction where the largest amount of food has been found by the entire swarm (social) 

As time progresses (and as in real life), the particles of the swarm tend to gravitate towards the place 

where they collectively have found the most food, assuming there is only one unique place in the entire 

region that has the most food.  Translated to PSO, one would expect every particle to settle on the spot 

where a maximum (or minimum) solution is found.  It should be noted that PSO technical tutorials are 

found in [9] and [10] with [11] providing a detailed survey of many different PSO applications used in 

solving real world problems. 

The PSO formulation starts with the particle definition, which includes the particles’ position and velocity.  

Each particle definition includes the free parameters and their associated boundaries in the search space.  

Equations (8a, 8b) are the particle position and velocity definitions for the SVR example given in the 

previous section. 

Particle i Position:                                   ��(�, �, �, �� … ��, �)                                                                            (8a) 

   Particle i Velocity:                                  ��(�, �, �, �� … ��, �)                                                                            (8b) 

For CMPSO, each particle i has a position and velocity in search space that includes the three SVR free 

parameters C, �, and �, the N Lagrange multipliers �� thru �� and the bias term b. The boundaries of each 

of the free parameters are determined by the user before the PSO algorithm is executed (the boundary 

values of each of the variables will be discussed further in the next section).  The next step in the process 

is to define a “fitness” function.  This function (also sometimes referred to as an objective function – not 

to be confused with the SVR notation of primal and dual objective functions) is the mechanism by which 
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each particle will evaluate how much food is at its current location in the physical world analogy. Typically 

the fitness function will generate a single value representing the “level” of fitness relative to some ideal 

value.  In some cases, the position of the best level of fitness may not be unique and particles tending 

towards “local maxima/minima” can occur.  There are no general heuristics for defining fitness functions 

as they are designed based on the specific application.  In practice, identifying an adequate fitness 

function can be very challenging and may take several iterations to finalize – this is key to a successful 

optimization process. 

After the particles’ search space, search boundaries and fitness function have been defined, the next step 

in the PSO process is to initialize each particle’s position and velocity.  For each of the variables, a random 

location and velocity is selected within the boundary of each variable.  The random selection is usually 

from a uniform random distribution within the boundary limits.  After particle initialization, the particle 

simulates real world animal or insect migration by moving through the search space using the simple 

kinematic equation (9): 

Particle Position at Epoch k+1: ��,��� = ��,� + Δ���,� (9) 

 

The position of each particle is updated every epoch (indexed by k) by adding the velocity term with each 

updated particle position and setting t equal to unity.  The velocity of each particle i at epoch k is a 

weighted sum of the current velocity times the “inertial” weighting factor, the direction in which the 

particle has found its maximum of the objective function times the “cognitive” weighting factor, and the 

direction in which the maximum is found by all the particles times the “social” weighting factor as given 

in equation (10): 

��,� = �

��,���

���� ∙ ���,���� − ��,��

���� ∙ ������ − ��,��

�

�

∙ �

��

��

��

� (10) 

 

Where, ��, ��, ��: Inertial, Cognitive, and Social Weights; 

����: � �andom number over the closed interval [0,1];  (note the two rand functions in (10) are 

independent); ��,�: Particle i's current position;  

��,����: Particle i's position where it has found its best result over all k epochs ("local" best)  

�����: The position in search space where the swarm's best result was found over all k epochs ("global" best)  

The values of pi,best and gbest are determined by the evaluation of the fitness function for every particle at 

every epoch.  As each particle moves, the location where the highest score for each particle is 

remembered (pi,best) as well as the location where highest score found for the entire swarm (gbest).  There 

are situations where a particle will travel outside the search space for any or all of the variables.  There 

are several techniques available for handling these cases: 

Absorbing walls: The velocity of any variable dimension lying outside that dimensional boundary is set to 

zero.  By zeroing the velocity, the particle tends to be “pulled” back into the search space given the pbest 

and gbest positions will always be inside the search space.  The term “absorbing” for this technique refers 

to the effect of absorbing the velocity at the limit, or “wall” of the boundary. 
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Reflecting walls: The sign of the velocity of any dimension lying outside the boundary is reversed.  The 

velocity vector for that dimension causes the particle to "reflect" back into the search space. 

Invisible walls: Particles that move outside the boundaries of the search space are allowed without any 

changes to their velocities; however, the fitness function will not be evaluated until all dimensions of the 

particles are within the solution boundaries.  Pbest for a particle will not change.  The benefit of using this 

technique is the savings of computational time. Typically, the fitness function is more complex and takes 

longer to calculate than the equation of motion.   

The PSO algorithm is executed until a stopping criterion is reached.  There are several different ways to 

evaluate the completion of the PSO process: 

1. Fitness Function Limit: The PSO algorithm is stopped when the gbest value reaches a user-defined 

and/or pre-calculated limit. 

2. Function Time-Out: The PSO algorithm is stopped after a pre-determined amount of time. 

3. Epoch Limit: The PSO algorithm is stopped after a pre-determined number of epochs. 

As stated earlier, it is possible for the PSO algorithm to “stagnate” such that gbest value settles on a non-

optimal solution (i.e. a “localized” maximum/minimum).  One possible solution can be to re-initialize a 

subset of the particle population to random locations after a certain amount of time or number of epochs 

has passed.  This technique is not guaranteed to succeed as prior knowledge of the search space would 

have to be known. 

2.3  Combining Particle Swarm Optimization and Support Vector Regression 

For the SVR problem as stated in section 2.1, there are essentially two optimization objectives: 

1. Find the Lagrange multipliers and bias term (typically accomplished with a QP program) 

2. Find optimal values for the SVR free parameters (capacity term C, tube size , and kernel free parameter 

) 

Multiple Objective optimization techniques must be used for applications that have more than one 

objective. Multiple Objective Particle Swarm Optimization (MOPSO) is a candidate technique that is 

considered for this application since more than one "fitness" criteria is required.  A survey of MOPSOs can 

be found in [12] along with their implementations and applications.  Reference [13] also details the use 

of MOPSOs and qualitative performance results associated with applications with more than one fitness 

criteria.  Many of the MOPSO techniques reviewed and referenced above were considered for solving this 

specific SVR problem. However, the solution of the QP program is dependent on C, �, and �, making the 

MOPSO techniques cited difficult to implement for this type of problem.  In other words, objective number 

two stated above cannot be found without evaluating objective number one with a candidate set of 

C, �, and �. 

PSO based approaches not based on multiple objectives have been proposed for SVR free parameters 

(C, �, and �,) estimation.  Hong [14] proposed the use of Chaotic PSO in use with SVR for electrical load 

forecasting.  The technique uses a parallel approach in applying PSO to find the SVR free parameters, but 

the technique still requires an SVR solution algorithm for the QP problem.  Guo et al. [15] uses PSO for 

finding the free parameters for a Least Squares Support Vector Machine (LS-SVM) application using 
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medical related data for benchmarking (note that this application was specifically for hyper-parameter 

selection for SVM classification, not SVR based regression).  Other PSO related applications involving SVR 

and linear constraint problems are being studied.  Yuan et al. [16] introduced a modified PSO algorithm 

for SVM training based on linearly-constrained optimization using PSO and techniques proposed by 

Paquet and Engelbrecht [17, 18].  The method presented by Yuan, the "Modified Linear PSO - MLPSO", 

initializes the Lagrange multipliers randomly, but relies on re-initialization of the Lagrange multipliers 

should they go beyond the capacity value boundary C.  The focus of this research is the PSO applied 

process for solving linearly constrained optimization problems. Wang et al. [19] uses PSO to solve for the 

three user-defined SVR parameters (referred to as C, �, and �, respectively) for a real world application 

relating to coal working face gas concentration forecasting.  This is a similar approach to the presented 

research in this paper, although the SVR optimization in this citation still requires a separate QP algorithm.  

Although Wang presents a feasible approach, there is still the computational overhead associated with 

using SVR and PSO in a non-integrated methodology. 

There are many SVR and PSO combined approaches that have been published recently that use PSO to 

optimize SVR free parameters [19-28]. The applications in these publications range from power load 

forecasting, traffic flow optimization, to benchmark data estimation, and many others.  There are also 

other general modifications to the algorithms in the citations, but the core processing algorithms are 

based on both SVM/SVR and PSO.  All of these publications show that a PSO based approach to SVR 

parameter tuning is viable and effective for many different problems.  However, none of the researched 

publications address the computational overhead involved with using a QP solver to find an appropriate 

SVR solution. The examples stated above that combine both PSO and SVR approaches illustrate the utility 

and test validity of this type of technique to solve real world problems.  It should be pointed out that the 

PSO/SVR is relatively new area of research and the work outlined in this paper attempts to advance these 

concepts by using PSO to simultaneously solve the QP problem and optimize the SVR free parameters 

(C, �, and �). 

3 Constrained Motion Particle Swarm Optimization 

Current research has shown examples of how PSO can be applied to SVR applications; however, there are 

many complex design and implementation issues.  One of the biggest challenges associated with 

implementing PSO for optimizing SVR, specifically optimizing C, �, and �, is the requirement to re-compute 

the Lagrange multipliers and bias term via a QP solver for every particle position update.  The requirement 

to execute a QP solver for every particle and for every epoch leads to computational inefficiencies and 

longer optimization times.  Another challenge is adapting a PSO/SVR scheme to different applications.  

Every time series has different numerical bounds, in both the time (independent) and measured value 

(dependent) dimensions.  One could also consider a multiple dimension input to the Support Vector, as 

SVR itself is designed to accommodate such input schemes.  Flexibility in the PSO/SVR design is necessary 

to accommodate a wide variety of applications.  CMPSO is a design that uses PSO as both the SVR free 

parameter optimizer as well as the QP solving algorithm.  Additionally, this optimization framework is able 

to adapt (scale) the data of interest in order to extend its functionality to multiple applications without 

the need for “hand” tuning. 
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3.1 The CMPSO Framework 

The goal of CMPSO is to estimate/predict an arbitrary one-dimensional time series using SVR estimation 

given in equation (7) in section 2.1.  The data inputs to CMPSO are N real valued discrete inputs, x1…xN, 

which represent the independent time samples and a corresponding real valued discrete sample for each 

time step, y1…yN.  Note the difference between each time step does not have to be uniform.  The output 

of CMPSO is the estimate (��) of an arbitrary time sequence.  For a regression application, the minimum 

and maximum values of an arbitrary time variable would lie in the interval [x1, xN] where x1 < x2 < … < xN.  

For a prediction application, the arbitrary time variable would have values greater than xN. 

In order to adapt CMPSO to multiple applications without the need for offline data pre-processing, the 

framework automatically adjusts the input time series such that [min(x), max(x)] lie in the interval [0.0, 

0.9] for time series prediction past the last known time sample.  For prediction applications, time values 

in the interval (0.9, 1.0] are used.  For time series estimation (regression) applications, the input time 

series lies in the interval [0.0, 1.0].  The framework also automatically scales the independent variable 

samples such that |yi| is less than or equal to 1.0.  After CMPSO has optimized the free parameters and 

estimated the scaled time series, the estimate will be re-scaled back to the original x and y dimensions at 

which point statistical analysis can be performed between the input values (or reference values) and the 

CMPSO generated estimate. 

3.2 The PSO Algorithm Parameters 

The PSO parameters are determined (partially) on the computational environment used for this research, 

specifically the number of particles that are used in the optimization process.  More powerful or parallel 

processing systems may allow for more particles, less computational processing time and/or larger time 

series sample sets to be processed at once. A summary of CMPSO computational efficiency and computing 

environment is given in Section 4.  For this research, a summary of PSO specific parameters are given in 

Table I. It should be mentioned that the determination of the three velocity weighting factors can be 

adjusted by the user and these values were chosen empirically for the data researched in this paper. 

3.3 The SVR Algorithm Parameters 

Given the objective of CMPSO to eliminate the need for a QP solver for each epoch k, the Lagrange 

multipliers and the bias term need to be added to the three free parameter for optimization (one Lagrange 

multiplier for each data sample and one bias term as outlined in section 2.1).  Each particle’s position in 

search space was defined in equation (8a) based on the given SVR variables above. One problem 

associated with using PSO to solve the SVR optimization problem is defining the Capacity term C. PSO (for 

CMPSO) requires constant limits for each of the variables, including the Lagrange multipliers.  However, C 

is a variable that constrains the limit of the Lagrange multiplier as seen in the constraint equation in (5).  

This capacity term C can be viewed as a Lagrange multiplier scale factor.  If C is viewed as such, it would 

be advantageous to remove this factor from the SVR constraint equation if possible, and as it turns out, 

the elimination of this variable as a constraint is part of the motivation to establish the CMPSO generic 

framework that scales the data to the same numerical bounds regardless of application. 

 

 



Transact ions on Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume 5,  Issue 5,  Oct 2017 
 

Copyright © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 33 
 

Table 1: CMPSO – PSO Algorithm Specific Parameters 

Parameter Value Notes 

Number of Particles 500 Limited by computational hardware and software implementation 

Number of Particles to Reset 490 Number of particles periodically reset to avoid stagnation 

Inertial Weight wI 0.75 Particle velocity weighting factor based on current particle velocity 

Cognitive Weight wC 0.75 Particle velocity weighting factor based on direction where particle 

found optimal result 

Social Weight wS 0.25 Particle velocity weighting factor based on direction where optimal result 

found for entire swarm 

Epoch Limit 2000 One of two limits that when reached, halt CMPSO 

 

The Capacity term C can be factored out of equation (4) and the constraints in (5) as follows:  

Maximize:  � ∙ �� ����

�

���

− � �|��|

�

���

−
�

2
� � ����

�

���

�

���

����, ���� (11) 

Subject to: − 1 ≤ �� ≤ 1 , � �� = 0, � > 0

�

���

 (12) 

 

As seen in (11), each Lagrange multiplier is scaled by a factor C (illustrated in the equation for 

completeness), and in (12), the constraint limits of the �� variables have been set to constants value of 

+/- 1.0.  This will allow for CMPSO to fix the bounds of the Lagrange multipliers and to treat the Capacity 

value C as a free parameter to optimize in a way that fits the CMPSO framework.  This optimization 

problem is the same as the referenced SVR optimization problem, just with a change in the scaling of the 

Lagrange multipliers.  Note in equations (11) and (12) that the bias term b is not present in solving for the 

Lagrange multipliers.  For CMPSO (and SVR), it is not necessary to have the bias term as part of the free 

parameters to optimize.  Assume from equation (7) that some optimal bias term b* exists.  One 

mathematical model to optimize this free parameter would be to minimize the error mean between the 

training values y and each resulting particle output as seen in equation (13): 

Minimize:      E[y − y��] = b�
∗  (13) 

This now allows for a single calculation for each particle at each epoch for the bias term b.  The equations that define 

each particle position and velocity given in (8a) and (8b) then become equations (14a) and (14b) respectively: 

Particle i Position:           ��(�, �, �, �� … ��) (14a) 

Particle i Velocity: ��(�, �, �, �� … ��)    (14b) 

The last two variables to consider for the SVR parameters are the gap value  and the Kernel Function (an 

exponential kernel function for this research – see equation (6)) free parameter .  Through empirical 

analysis, the boundaries for these parameters as well as the other variables defined in this section are 

detailed in Table II. 
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3.4 Particle Initialization and Constrained Motion 

Each particle position and velocity defined in equations (14a) and (14b) must be initialized to some value.  

For capacity C, gap �, and kernel constant �, the initial values are selected from a uniform distribution 

within the bounds defined in Table II.  However the bounds for the Lagrange multipliers have to be dealt 

with in a separate way.  Although the bounds are set within the [-1.0, 1.0] limits, there is the additional 

constraint that the Lagrange multipliers must sum to zero (see dual constraint equation (5)).  CMPSO will 

randomly select N-1 Lagrange multipliers to initialize. The values will be randomly selected from a uniform 

distribution between the [-1.0, 1.0] limits.  The Nth Lagrange multiplier will be the negative of the sum of 

the N-1 randomly selected Lagrange multiplier values, satisfying the constraint.  The exact same process 

is repeated for the initial velocity values (times a uniform scale value).  For each particle, the candidate 

time series fit is now a feasible (but not necessarily optimal) candidate based on the SVR dual optimization 

constraints in equation (5).  At this point, a fitness function is evaluated (see section E below) and the pbest 

value for each particle is stored.  The maximum pbest value is then selected as the gbest value for the 

optimization. 

As described in section 2.2, each particle must now move in search space searching for an optimal 

solution.  The motion is based on a weighted sum of a particle’s initial velocity, its direction towards its 

pbest value, and its direction towards the optimal place found by the swarm for each variable (gbest).  

The constraint equation in (5) must still hold after a particle moves.  Since a particle’s �� … �� velocity is 

equal to zero, and the pbest and gbest locations for the Lagrange multipliers also sum to zero, any 

movement of the weighted sum of these values also sums to zero.  The particle motion for �� … �� is 

constrained to meet the constraint equation in (5).  Therefore, every particle at every epoch will always 

contain a feasible solution to the SVR optimization problem.  To ensure this constraint holds when a 

particle moves outside the Lagrange multiplier (or other variable) bounds, the Invisible Walls technique is 

used. 

Table 2: CMPSO – SVR Specific Parameters  

Parameter Value Range Notes 

Capacity, C [0.001, 2.0] Set based on the scaling of the input data 

Gap, � [0.02, 0.10] Notional values – can be user defined 

Kernel Constant, � [1e-5, 1e-3] Set based on the scaling of the input data 

Lagrange Multipliers , �� … �� [-1.0, 1.0] Bounded by the factoring of Capacity C 

Bias Term b {unbounded} Can be determined after Lagrange multipliers have been found 

 

3.5 The Fitness Function and Iteration Bounds 

The fitness function can be one of the most difficult tasks to complete in defining a PSO framework.  For 

time series prediction and regression, there are several choices in evaluation metrics to select such as 

error mean or mean squared error, etc.  However, the CMPSO framework is set up not only to find the 

best fit for time series data, but also to be a QP solver.  This research has found that using the dual gap 

measure associated with SVR optimization convergence is sufficient to produce good results as published 
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in [2].  Equation (15) is the ratio of the difference of the primal and dual objectives defined in equations 

(2) and (4) respectively to the primal objective output plus one.  This equation is referenced in [5] and [6] 

as finding the optimal Lagrange multipliers for the SVR problem: 

Fitness: 
������ ��������� − ���� ���������

������ ��������� + 1
 (15) 

As mentioned earlier, one of the iteration stopping points is the number of epochs completed, which is 

set to 2000 for CMPSO (but can be changed based on user needs).  This bound is essentially a 

computational time limit in case there are issues with any particular data series converging.  For CMPSO, 

there are two numeric limits that will stop processing and produce a final output – both are based on the 

fitness function in equation (15).  The ideal limit based on published recommendations in [5] and [6] is set 

to 0.001.  If equation (15) is evaluated at this value or less, the entire optimization process is complete.   

In the results published in [2], it has been found that a value of 0.25 for the fitness function limit is 

sufficient to stop the PSO optimization process in finding the values of C, �, and �.  At this point these 

values are fixed and a separate QP program is executed once.  For this research, Sequential Minimization 

Optimization (SMO) for SVR (an implementation based on  [5] and [6]) is implemented.  Since the Lagrange 

multipliers are feasible at every point in the CMPSO process, the SMO can be initially seeded with these 

values, although there is no guarantee of increased SMO performance between nonzero seeded SMO 

execution vs. zero seeding the Lagrange multipliers.  Nevertheless, the worst case scenario means CMPSO 

will execute a QP program only once.  It turns out that the computational impact is negligible as explained 

in the next section. Figure 1 illustrates the block diagram for the entire CMPSO process. 

4 Computational Efficiency 

One of the CMPSO objectives is to increase computational efficiency by eliminating the need for a QP 

solver.  The CMPSO framework achieves this by constraining the motion of the particles in search space 

such that the SVR objective function constraints are always met for every particle at all times.  This yields 

a feasible candidate result for every particle at every epoch and essentially reduces the search space. A 

simple experiment was set up to illustrate CMPSO computational efficiency.  A small data set was used to 

estimate the best regression fit by a) CMPSO and b) a “separated” PSO and SVR implementation where 

each particle’s Lagrange multipliers were computed to reach the duality gap limit of 0.001 for every epoch.  

The data set is a 41-point sample of the function defined in equation (16): 

�(�) = sin(0.2��) �(�.��) + 0.5�(0,1) (16) 

Where, N(.) is a Normal distribution with zero mean and unit variance. 

The same computing environment and functional software components were used for both CMPSO and 

the PSO/SVR “separated” approach – a Windows 7 (Intel) based stand-alone PC.  The CMPSO framework, 

PSO and SVR functions are written in MATLAB and C (“mex” files called by MATLAB), where the exact same 

software was used for both approaches.  MATLAB has the ability to measure the time to execute any 

particular block of code and this functionality was used in this experiment.  For the “separated” approach, 

the particles would only optimize the SVR free parameters and SMO (for SVR) was  used to solve for the 

Lagrange multipliers.  Also, a range of number of particles, down to a minimum of 25, was used to compare 

results.  A total of 300 runs were executed for both methodologies. Several key metrics were analyzed:   
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1. Time to execute entire algorithm 

2. Number of runs that converged to dual gap value of 0.001 

3. Normalized Mean Square Error (NMSE) of results 

 

Figure 1 CMPSO Functional Block Diagram 

Table III illustrates the results of the experiment. The experimental results show that 99% of the time 

CMPSO converged to a solution in approximately seven seconds, typically with a very small NMSE of less 

than 0.005.  By contrast, running PSO and SVR separately, the solution never converged with the minimum 

number of particles (25) and it took more than five times longer for the PSO+SVR method to settle on 

incorrect results (essentially stagnate).  If more particles are used in this method to try and improve the 

results, the processing time would only increase.  This simple experiment shows that not only is CMPSO a 

viable algorithm for approximating time series functions, it is also more computationally efficient than 

functionally separated methods. 

Table 3: CMPSO – Computational Efficiency 

Measured Parameter CMPSO PSO+SVR Notes 

Mean Algorithm 

Execution Time (sec) 
7.2749 39.0826 PSO+SVR used minimum of 25 particles 

Percentage of Runs that 

Converged 
99.0% 0.0% PSO+SVR never converged to dual gap limit 

NMSE 
Typically less 

than 0.005 
{N/A} 

Since PSO+SVR never converged, NMSE was not 

calculated  

 

5 Performance Results 

CMPSO algorithm performance was measured against benchmark Mackey-Glass time series data as 

referenced in [2].  This data is highly nonlinear, but synthesized.  In this research, we compared the CMPSO 

performance against a real world electrical load forecasting application as well as another nonlinear, 

synthesized data set from the Competition on Artificial Time Series (CATS).  CMPSO performance was 

compared to the original competition contestants as well as more recent SVR and non-SVR based 
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algorithms that used the data sets post-competition.  It is important to note that the CMPSO framework, 

by design, was not altered for both the presented results. 

5.1 EUNITE Competition Data 

In 2001, the European Network on Intelligent Technologies for Smart Adaptive Systems (EUNITE – see 

[29]) initiated a competition [30] to predict maximum electrical loads for the East-Slovakia Power 

Distribution Company.  The goal is to estimate maximum daily power loads for the month of January 1999 

based on the daily values of 1997 and 1998 of electrical load and temperature.  Accurate predictions are 

measured by the Maximum Average Percent Error (MAPE) and Maximum Error (MAXE) as shown in 

equations (17) and (18): 

���� =
100

31
� �

�� − ���

��

�

��

���

 (17) 

 

���� = max (|�� − ���|)���…�� (18) 

Where, 
��= Actual Maximum Load for Month of January 1999 
���= Predicted Maximum Load 
 

For this data set, the maximum number of data points is 31 as there are 31 days in the month of January. 

This data set requires some form of strategy for using CMPSO, as there are many data sets available for 

training (two years of power and temperature data respectively as well as the temperature for January 

1999).  For the purposes of showing the utility of CMPSO, the CMPSO framework not been altered, but 

two simple strategies were used on the input data based on distinct factors associated with the EUNITE 

data set:  

1. There appears to be loading trends based on what day of the week it is.  It is assumed that 

weekends tend to have less power demand than the Monday through Friday work week. 

2. There is a relationship between the temperature and power consumption for any given day.  As 

temperature decreases, power consumption increases.  

Figure 2 shows the January 1997 and January 1998 maximum power loads, time aligned such that the two 

data sets are aligned by day of the week.   There are trends surrounding the weekends vs. the work week, 

as noted by the relative maximums of five days duration at work week vs. the general minimums of two 

days duration at weekend that are clearly visible.  This figure illustrates the first factor in the prediction 

strategy.  To address the second factor, it is necessary to eliminate the trending in the data as a function 

of the day of week (assuming there is a relationship between temperature and day of week).  This can be 

achieved by looking at the daily changes in power load and temperature between 1997 and 1998.  Figure 

3 is an illustration of this relationship.  It is a scatter plot of the change in power load vs. the change in 

temperature for 360 days, time aligned to the day of week.  A correlation coefficient of -0.5041 was 

computed on the 360 data points.  This result means there is a moderate inverse correlation between 

power consumption and temperature.  Given the relationship between power consumption and 

temperature, a simple linear approximation can be generated as shown in equation (19): 

∆�= −3.4668∆� + 9.9573 (19) 
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Where, 

P = Change in maximum load for same day of the week between years (MW) 

T = Change in temperature for the same day of the week between years (C) 

This offset can now be applied to each day of the prediction, if the temperature of Jan 1999 is known (or 

in reality can be predicted reliably in the short term). 

 

Figure 2: Maximum Power Load for January 1997 and 1998 

 

Figure 3: Relationship between changes in Power Load and Temperature for January 1997 and 1998 

To predict the trending of the data, CMPSO was used to fit the mean value of the day-of-week aligned 

maximum power loads of January 1997 and January 1998.  In addition, the output of CMPSO was offset 

by the linear approximation described in equation (19) on a day by day basis based on the difference in 

temperature between 1998 and 1999.  Table IV shows the numerical results of the experiment. 

Table 4: CMPSO – EUNITE Competition Results 

Measured 
Parameter 

CMPSO CMPSO + �P Offset Notes 

MAPE 3.176 2.628 % Error 

MAXE 84.931 66.653 Max Error in MW 

As shown in Table IV, there is significant improvement by using the temperature data to offset the values.  

Figure 4 shows the final results of this experiment.  As can be seen, CMPSO gives a good approximation 
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to the actual January 1999 load data (Blue Curve). The simple linear approximation is shown to improve 

with the offset in power due to temperature (Magenta Curve).  In addition, Figure 5 is an approximation 

of where CMPSO (and the offset addition) would have ranked in the competition based on the values 

shown in Table V (referenced from [30]).  

 

Figure 4: CMPSO EUNITE Results 

As seen in Figure 5, an attempt was made to rank CMPSO and CMPSO with the delta offset with the other 

competitors (in the absence of the actual result values from each competitor).  There are two sets of 

highlighted text boxes and lines for each of the CMPSO results.  Based on MAPE, it appears CMPSO alone 

would have ranked at least sixth.  In the case where the January 1999 temperature is included, CMPSO 

(plus the offset) would have ranked no worse than third based on MAPE.  Note that the MAXE values were 

also close to the other competitors (refer to Table V). The winners of this competition, Chen et al. [31] 

used an SVM/SVR approach with multi-dimensional inputs to predict load.  They also took into 

consideration additional attributes such as if the day being predicted is a holiday.  The authors further 

reported details of their approach in [32], noting that there is no added value in using temperature data 

to predict the load.  Although the weighting of electrical load for a holiday was not taken into 

consideration for this CMPSO benchmark evaluation, there was clearly an improvement in CMPSO 

prediction performance by modeling temperature and including the offset in the results.   
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Figure 5: CMPSO EUNITE Results Compared to Other Contestants 

In addition, CMPSO is compared to other recent SVM/SVR based approaches ([33] through [37]) that used 

EUNITE data as a benchmark.  Table V shows the algorithm comparison by metric. 

Table 5: CMPSO and SVR Based Algorithms – EUNITE Benchmark 

Method 
Metric 

MAPE MAXE MSE 

LS-SVM w/ k-nearest neighbor [37] 1.71 40.99 N/A 

LS-SVM [34] 1.97 39.778 N/A 

EMD-SVR [33] 1.98 N/A 284.3 

CMSPO w/ Linear Offset 2.628 74.663 594.3 

CMPSO 3.176 84.931 908.8 

SVM Model [36] 3.67 N/A N/A 

AR Model [35] 6.69 N/A N/A 

 

5.2 CATS Data 

In 2004 at the International Joint Conference on Neural Networks, a competition was organized to 

compare different prediction methods using a proposed benchmark CATS (Competition on Artificial Time 

Series) time series data of 5000 samples, among which 100 samples are missing [38].  The goal of the 

competition was to predict five sets of 20 missing data points each from the given data of 5000 samples 

and compare the methods using two criteria.  The first was the Mean Square Error (MSE) - E1 for the four 

missing data gaps at sample indices 981 to 1000, 1981 to 2000, 2981 to 3000, and 3981 to 4000 in addition 

to the last omitted 20 data points with sample indices 4981 to 5000.  The second was the MSE - E2 for the 

first four missing data gaps only.  E2 was meant to only evaluate the effectiveness of the interpolation of 

a given algorithm versus the prediction estimate in E1 (the last 20 omitted samples).   

Two different winners were selected based on the lowest E1 and E2 MSE scores.  Sarkka et al. [39] used a 

Kalman Filter based approach with the lowest E1 MSE for all five missing data sets while Wichard and 

Ogorzalek [48] used an ensemble Neural Network based approach with the lowest E2 MSE for the first 

four missing data sets.  The strategy for adapting CMPSO was straight forward for this particular 

application.  For each of the first four data gaps, every tenth data sample was used.  Half of the samples 
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were before the gap and the other half after the gap.  In addition, ten consecutive samples were used just 

before and after the data gap for a total of 94 data points per set.  For the last data set, a similar strategy 

of every 10 data samples was selected prior to the end of the data set along with the last 20 sequential 

samples for a total of 138 samples.  Every sample was estimated between the first and last index of the 

data set and compared to the given results for evaluation.  

CMPSO is compared to the top ten entries in the competition ([39] through [48]) as well as several other 

recent algorithm publications ([49] through [53]) that use CATS data as a benchmark.  In all cases, CMPSO 

outperformed all of the other algorithms for this data set.  Table VI shows the comparison of all the 

algorithms considered.  Note the entries in Table VI with an (*) are recently developed approaches that 

used the benchmark CATS data as a performance indicator.  Figures 6 and 7 illustrate CMPSO performance 

for two of the five data sets for estimation.  Figure 6 is the second data set (gap) and Figure 7 is the last 

data set (prediction). The red curve is the provided competition data, the blue curve is the CMPSO 

estimation and the red circles are the actual CATS missing data for comparison.  As seen from the results, 

CMPSO provides a very close fit to the missing competition data. 

Table 6 CMPSO – CATS Benchmark 

E1 MSE E2 MSE Model 

113 140 CMPSO 

143 129 
ANN and AdaBoost* [50];  

Single Global Model  

262 239 
ANN and AdaBoost* [50];  

Multiple Local Models 

287 N/A 
Variance Minimization  

LS-SVM* [52] 

390 288 Dynamic Factor Graphs* [53] 

408 346 Kalman Smoother [39] 

441 402 Recurrent Neural Networks [40] 

502 418 Competitive Associative Net [41] 

530 370 Weighted Bidirectional Multi-stream Extended Kalman Filter [42] 

577 395 SVCA Model [43] 

644 542 MultiGrid-Based Fuzzy System [44] 

653 351 Double Quantized Forecasting Method [45] 

660 442 Time-reversal Symmetry Method [46] 

676 677 BYY Harmony Learning Based Mixture of Experts Model [47] 

725 222 Ensemble Models [48] 

1215 979 Deep Belief Network with Boltzmann Machines* (best value) [51] 

2510 2450 ANN Based Approach* [49] 
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Figure 6: CMPSO Estimate for CATS Data Set 2 

 
Figure 7: CMPSO Estimate for CATS Data Set 5 

6 Conclusion 

Support Vector Regression has been shown to be an effective algorithm for nonlinear time series 

regression and prediction applications across many different domains [1-2].  One of the major challenges 

associated with SVR is the ability to “tune” SVR to yield adequate results from application to application.  

Constrained Motion Particle Swarm Optimization (CMPSO) is a unique fusion of Support Vector Regression 

and Particle Swarm Optimization algorithms that attempts to optimize SVR free parameters while 

minimizing the need for excess computational resources by ensuring a feasible solution for every particle 

at every epoch.  In addition, CMPSO is a standalone application that does not require user intervention 

regardless of data type.  For the presented data, no algorithmic parameters were ever altered by the user. 

CMPSO has performed well for a wide variety of nonlinear time series regression and prediction 

applications, including benchmark Mackey-Glass time series data [2].  EUNITE and CATS benchmark data 

results offer further proof of CMPSO performance as shown by comparison to other similar techniques.  

Based on the results presented in this paper, CMPSO is a viable, generalized approach to time series 

estimation and regression as compared to both SVM/SVR approaches as well as other Neural Network 

based algorithms. One unique feature associated with CMPSO is the reduction of the optimization space 

as the constraints associated with particle motion ensure a feasible solution for every particle at every 

epoch.  Other PSO based SVR optimization techniques will require some form of QP solver for every 

candidate solution (i.e. every particle) at every epoch.  This is an increase in computational efficiency. 
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Future research should include optimization of the PSO free parameters, choices of SVR Kernel Functions, 

different loss functions (such as used in LS-SVM), and the adaptation to multi-dimensional input data.  It 

could also be conceivable to extend the CMPSO framework to include multiple models beyond SVR, where 

each particle could have sub-particles dedicated to any given regression/prediction algorithm. 
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