

DOI: 10.14738/tmlai.54.3225
Publication Date: 15th August, 2017
URL: http://dx.doi.org/10.14738/tmlai.54.3225

VOLUME 5 NO 4, 2017

Computing	on	Encrypted	Data	into	the	Cloud	though	Fully	

Homomorphic	Encryption	

Samiha Jlilab, Hassan Satori, Khalid Satori
LIIAN, Department of Mathematics and Computer Science, FSDM, USMBA,

Fez, Morocco
Department of Mathematics and Computer Science, FPN, UMP

Nador, Morocco
samihajlilab00@gmail.com, hsatori@yahoo.com

 ABSTRACT

Securing Data in the cloud based on Fully Homomorphic Encryption (FHE) is a new and potential form of

security that allows computing on encrypted data without decrypted it first. However, a practical FHE

solution is not available for implementation today. In this work, we propose a platform based on open

source solutions to perform data computations (addition and multiplication) on encrypted form. In

addition, taking account of efficiently and the security component, the most popular partially

homomorphic encryption algorithms (RSA, Paillier and ElGamal) are studied to analyze the process times

of encryption, decryption and computation of each algorithm. Furthermore, to compromise between

performance and security, we need to study different key sizes and different data sizes as parameters.

Keywords: Cloud Computing, ThirdParty;Data Privacy, Fully Homomorphic Encryption, Partially

Homomorphic Encryption, RSA, ElGamal, Paillier, Gentry’s scheme.

1 Introduction	

Cloud computing holds enormous potentials (cost reduction, shared computingresources, elasticity, good

performance, etc.). As a matter of fact, the cloud has few challenges like any other innovative technology.

Data security is a key challenge when moving to the cloud[1]. In fact, when you move your data to the

cloud, you are losing control. Cloud gives access to data, but you have no way to make sure that someone

else does not have access to it as well. In addition, exposing your data in a public cloud environment

shared with other companies may put your data at risk and may you lose the confidentiality of your

sensitive data.The key solution is tostore and perform computations on ciphertext over a public area.

This goal can be achieved using the homomorphic encryption proprieties[2]. Homomorphic encryption is

the mathematical process of performing calculations on encrypted data which cannot be read or analyzed

by anyone other than the client who retains the encryption and decryption keys. This kind of cryptography

is an efficient solution to protect from internal and externals threats (curious cloud administrator,

malicious cloud users, attackers).

Recently, many researchers are interested in fully homomorphic encryption solutions to improve data

privacy and eliminate trusted third parties i.e. performing computational operations on encrypted data

without learning anything about it by a third party. Naveed Islam et al[3] have exploited the multiplicative

Samiha Jlilab, Hassan Satori, Khalid Satori. Computing on Encrypted Data into the Cloud though Fully

Homomorphic Encryption. Transactions on Machine Learning and Artificial Intelligence, Vol 5 No 4 August (2017);

p: 509-523

URL:http://dx.doi.org/10.14738/tmlai.54.3225 510

and the additive homomorphic proprieties of RSA and Paillier algorithms to secure image sharing between

players. M.Tebaa et al. [45] have implemented the two previous asymmetric algorithms, on a VMware

vSphere environment, to secure computations on sensitive data (bank data). A.Chantterjee and

I.Sengupta [6]applied FHE technique to search and store encyrpted data on the cloud environnement and

they have reused the homomorphic modules proposed in scarab library [7]to perform search and store

over encrypted data.

Our contribution is to develop a practical, efficient and secure platform based on different homomorphic

algorithms (Paillier, RSA and ElGamal) to allow performing calculations, by a third party, with encrypted

data. The performance of our platform is analyzed by studying the processing time of encryption,

computation and decryption phases.

The rest of this paper is divided into seven sections. In the 2nd section, we start by introducing cloud

computing concept and the security component as issue for cloud adaptation by companies and users. In

the 3rd section, we define the homomorphic encryption propriety, its types and some examples of

homomorphic cryptosystems. In the 4th section, we present the system conception. The experimental

platform is described in the 5th section. In the 6th section we present our simulation procedure and

results. Finally, the conclusion and perspectives will be mentioned in 7th section.

2 Cloud	Computing	

Cloud Computing is the new form of Information Technology (IT) outsourcing that provides its solutions

as an ondemand consumable services. It consists of using applications, platforms or distributed virtual

infrastructures which are not necessarily located in the company’s premises. The value of Cloud

computing is to introduce a new way of managing IT, providing better control of Direction of information

systems (DIS) expenses and allowing enterprises to renovate the core of their business without worrying

about time and money constraints related to the integration of new technologies.

2.1 Official	Definition	of	Cloud	Computing	

The National Institute of Standards and Technology (NIST)defined cloud computing as a model for

enabling ubiquitous, convenient, ondemand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction[8].

The NIST definition lists five essential characteristics of Cloud Computing: ondemand selfservice, broad

network access, resource pooling, rapid elasticity or expansion, and measured service. It also lists three

service models (IaaS, PaaS and SaaS), and four deployment models (public, private, community and

hybrid).

2.2 Security	issue	in	cloud	computing	

The NIST’s cloud definition did not include security such as an essential characteristic of the cloud

computing however security is a potential concept which must intervene for preserving and protecting

the confidential and sensitive data of each enterprises. In fact, every technology has a flaw so does cloud

computing. The client has also participate to protect his data from harm (attackers, malicious

administrator…). So, cloud security should be a shared responsibility between cloud provider and cloud

users.

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 511

Cloud security requires a profound questioning of corporate security policies. They must go beyond the

narrow managing passwords and login privileges (access control). It is necessary to take the next step and

think safety in terms of use and data types [9]. For this, Fully Homomorphic Encryption will be a good

solution to protect the data and an efficient way to take advantage of cloud services.

3 Homomorphic	Encryption	

In traditional encryption schemes, Bob encrypts a plaintext message to obtain a cipher text. Alice decrypts

the ciphertext to find the plaintext. So, with this standard encryption, we can only secure the following

steps: establishment of communication and data transfer. In Homomorphic Encryption, parties that do

not know anything about the plaintext data can perform computations on it by performing computations

on the corresponding ciphertext.

Definition of Homomorphic Encryption:

The encryption algorithm E () is homomorphic if given E(x) and E(y), one can obtain E (x□y) without
decrypting x; y for some operation □ (+, ×...) [10].

3.1 Partially	Homomorphic	Encryption	(PHE):	

 A cryptosystem is partially homomorphic if it supports adding or multiplying of ciphertexts but not both
operations at the same time. The GoldwasserMicali [11] and Paillier [12] schemes supported addition
operations, while the RSA [13] and ElGamal [14]schemes supported multiplication operations.

3.1.1 Additive Homomorphic Encryption (AHE):
A scheme is an additive Homomorphic Encryption (AHE) if you give only the publickey and the encryption
of m1 andm2, one can compute the encryption ofm1 + m2.

Mathematically, E is an AHF if:

�(� + �) = �(�) × �(�)

� �� ��

�

���

� = � �(��)

�

���

3.1.2 Multiplicative Homomorphic Encryption (MHE):
A scheme is a Multiplicative Homomorphic Encryption (MHE) if you give only the publickey and the
encryption of m1 andm2, one can compute the encryption ofm�m�.

Mathematically, E is a MHE if:

�(� × �) = �(�) × �(�)

� �� ��

�

���

� = � �(��)

�

���

3.2 Asymmetric	Homomorphic	Encryption	Algorithms	

3.2.1 Paillier Scheme; an AHE:
Paillier cryptosystem is an asymmetric algorithm for public key cryptography and it is an AHE.The
algorithm consists of three components: the key generator, the encryption algorithm and the decryption
algorithm. The three components work as follow:

Samiha Jlilab, Hassan Satori, Khalid Satori. Computing on Encrypted Data into the Cloud though Fully

Homomorphic Encryption. Transactions on Machine Learning and Artificial Intelligence, Vol 5 No 4 August (2017);

p: 509-523

URL:http://dx.doi.org/10.14738/tmlai.54.3225 512

Table 1. Paillier Cryptosystem

Paillier’s algorithm realizes the property of additive homomorphic encryption.

Proof: suppose we have two ciphers �(��) = �����(��) = ��

�(��) = �� = ���.��
������

�(��) = �� = ���.��
� ��� ��

So:

 ��.�� = ���.��
� × ���.��

� ��� �� = ������.(����)� ���

i.e.

�(��).�(��) = �(�� + ��)

3.2.1 Paillier cryptosystem can be a MHE?
Suppose we have two plaintexts m� et m�:

�(��) = ���.��
������.

�(��)�� = ��� ��.��
� ��� �� = �(����).

So with this trick, we can realize multiplicative operation with Paillier cryptosystem.

3.2.2 RSA Scheme, a MHE:
RSA is an asymmetric cryptosystem. It was described in 1977 by Ron Rivest, Adi Shamir and Leonard

Adleman. The scheme summarizes in three steps: the key generator, the encryption algorithm and the

decryption algorithm.The three components work as follow:

Key Generator : KeyGen(p, q)
Input: �,� ∈ ℤ,���(�,�) = �

Compute � = � × � , � = ���(� − �,� − �) =
(���)(���)

���(���,���)

Choose � ∈ ℤ�²
∗ such that

��������������,�� = ������(�) =
� − �

�

Output: (��,��)
Public key: �� = (�,�)
Secret key: �� = (�,�)

Encryption: E(m, pk)
Input: � ∈ ℤ������ < �

Choose � ∈ ℤ�²
∗

Compute � = �������(��)
Output: � ∈ ℤ�²

Decryption: D(c, sk)
Input: � ∈ ℤ�²

Compute � =
�(������²)

�(�������)
����

Output: � ∈ ℤ�

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 513

Table 2 RSA cryptosystem

Key Generations : KeyGen(p, q)
Input: �,� ∈ ℤ,���(�,�) = �

Compute � = � × �
�(�) = (� − �)(� − �)

Choose � ∈ ℤ� such that ��� (�,�(�)) = �
Determine � ∈ ℤ�such that � × � = � ���(�(�))

Output: (��,��)
Public key: �� = (�,�)
Secret key: �� = �

Encryption: E(m,pk)
Input: � ∈ ℤ������ < �

Compute � = �����(�)

Output: � ∈ ℤ�

Decryption: D(c. sk)
Input: � ∈ ℤ�

Compute � = ������

Output: � ∈ ℤ�

RSA realizes the property of Multiplicative Homomorphic encryption.

Proof: Suppose we have two hers �(��) = �����(��) = ��

�(��) = �� = ��
����(�)

�(��) = �� = ��
����(�)

�(��) × �(��) = ��
���

����(�) = (����)����(�)

And �(����) = (����)����(�)

So: �(��) × �(��) = �(����)

3.2.3 ElGamal cryptosystem; a MHE:
The ElGamal encryption system is an asymmetric key encryption algorithm for publickey cryptography

which is based on the DiffieHellman key exchange. It was described by Taher ElGamal in 1985.

The scheme summarizes in three steps which are described in table3.

Samiha Jlilab, Hassan Satori, Khalid Satori. Computing on Encrypted Data into the Cloud though Fully

Homomorphic Encryption. Transactions on Machine Learning and Artificial Intelligence, Vol 5 No 4 August (2017);

p: 509-523

URL:http://dx.doi.org/10.14738/tmlai.54.3225 514

Table 3 ElGamal cryptosystem

Key Generator : KeyGen(p, g, s)
Input: � ∈ ℤ,� ∈ ℤ�

Choose � ∈ ℤ,���� � < � < � − �
Choose � ∈ ℤ�
Compute � = ��

Output: (��,��)
Public key: �� = (�,�,�)
Secret key: �� = �

Encryption: E(m, pk)
Input: � ∈ ℤ�

Compute �(�) = (��,��) =

(��,���) ���(�)
Output: ��, �� ∈ ℤ�

Decryption: D(c, sk)
Input: ��, �� ∈ ℤ�

Compute � =
��

��� �����.�. � =

��
�����.������

Output: � ∈ ℤ�

The scheme realizes the property of MHE.

Proof: Suppose we have two ciphers �(��)���(��)

�(��) = (���,��ℎ��)

�(��) = (���,��ℎ��)

So: �(��) × �(��) = ����,��ℎ��� × ����,��ℎ���

= (������,���� × ℎ�����).

And: �(����) = (��,���� × ℎ�).

 �(��) × �(��) = �(����).
3.2.4 ElGamal cryptosystem can be an AHE?

If we practice some modifications on ElGamal scheme such as replacing the plaintextmbyg�, this scheme

will be realized the property of an additive homomorphic cryptosystem.

Proof: Suppose we have two ciphers�(��)���(��):

�(��) = (���,���.ℎ��)

�(��) = (���,���.ℎ��)

So:

�(��) × �(��) = ����,���ℎ��� × ����,���ℎ���

= (������,������ × ℎ�����)

 �(��) × �(��) = �(�� + ��)

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 515

3.3 Fully	Homomorphic	Encryption(FHE)	

Fully Homomorphic Encryption (FHE) allows performed arbitrary operations on encrypted data without

actually observing the raw data.

Being fully homomorphic means that whenever f is a function composed of additions and multiplications

in the ring, then Dec(f(C�,… ,C�) = f(m�,… ,m�) . So, if the cloud provider can efficiently

compute f(m�,… ,m�) from ciphertexts C�,… ,C� , without learning any information about the

corresponding plaintextsm�,… ,m� , then the system is efficient and secure [15].

In 2009, Craig Gentry has invented the first fully homomorphic encryption scheme (based on ideal lattices

and LWE) that evaluates an arbitrary number of additions and multiplications and thus calculate any type

of function on encrypted data [16].

Gentry’s Algorithm contains the following four steps:

Key-generator: three keys (��,��,��)

Encryption: Enc (pk, m) �

Evaluation:������
(�,�)

Decryption: Dec(��,�) f(m)

Gentry’s model includes several steps. The first one is constructing the Somewhat Homomorphic

Encryption (SWHE) that supported a limited number of additions and multiplications on ciphertext in

order to limit the noise component. The next step is squashing the decryption function to be expressed

as a low degree polynomial. Then, using the Bootstrapping technique to refresh the ciphertexts before

every homomorphic operation. Using this technique, the number of homomorphic operations becomes

unlimited and we get a FHE scheme.

Gentry’s solution improves the efficiency of secure multiparty computation. But, until today, his

theoretical solution has a practical problem: it is complicated and imposes a large public keys size. Also,

perform computations on encrypted data is too slow than on raw data[17].

3.3.1 DGHV Scheme;a FHE over integer
Based on Gentry’s construction, V. Dijk et al[18] have proposed a simple algorithm applying simple

addition and multiplication in order to reduce size of keys by using subset of the original public key. The

table 5 as below, describe the various steps of DGVH scheme.

Table 4 DGVH scheme

Parameters

�: ������ ���,� �� � ����� ��� �������
��� = {�� = ��� + ��}

Encryption

Input : � ∈ {0,1}
������� ∶ � = �� + 2� + �
Evaluation

������� ∶ ���� = (�� + ��) ��� ��
������� ∶ ���� = (����) ��� ��

Decryption

�����: �
������� ∶ � ���� ���2 = (2� + �)���2 = �
������ : �

Samiha Jlilab, Hassan Satori, Khalid Satori. Computing on Encrypted Data into the Cloud though Fully

Homomorphic Encryption. Transactions on Machine Learning and Artificial Intelligence, Vol 5 No 4 August (2017);

p: 509-523

URL:http://dx.doi.org/10.14738/tmlai.54.3225 516

3.3.2 BGV Scheme; FHE without bootstrapping

Z. Brakerski et al.[19] have proposed a new approach without gentry’s bootstrapping technique. For

managing the noise component of ciphertext as homomorphic operations are performed, the BGV is

based on new techniques developed by Brakerski and vaikuntanathan[20]. The table 6 as below, describes

the BGV scheme.

Table 5 BGV scheme

Parameters
�:������� ���������
�,�:��������� ��������
� ∶ ��� �������
�:�����
�:� × � ����� ∈ ��

�×�

�: ������ ���
� = �� + 2�:������ ���
Encryption

Input : � ∈ {0,1}, r ∈ {0,1}�
Compute: �� = �������� = �� + �
Output: (��,��) ∈ ��

���

Decryption

Input : (��,��)
Compute: � = ��− < �,� >

� = ����2
Output: � ∈ ��

All these algorithms can be applied on several domains and applications (evoting System, Cloud

Computing services, banking and Financial Applications, Medical Applications, Securing Treatment of

Personal data, etc.)[21]–[24]

4 System	conception	

As we previously mentioned, this work focus on finding a scheme to treat encrypted data and perform

complex calculations, in a cloud environment, without first decrypted it. So, the main goal is to create an

algorithm on which we can use both cryptosystems when we have arbitrary operations. We can

summarize our approach on three principal steps:

4.1 Encryption	

 we create, locally, a program based on PHE schemes to create an encrypted files or encrypted databases.

In this program, we take into account the concept of parallelism because a parallel calculation is

performed on more computing units. I.e. the computation is divided into parts that can run concurrently

in order to reduce the processing time, solve problems of large size and to be able to handle multiple

things at one time. Then, we send encrypted data into the cloud provider to store them.

4.2 Treatment	

includes three substeps:

 Sends a request to cloud to perform calculations on encrypted data.

 Cloud’s compute server has a function f for doing computations of ciphertexts. This computations
are performed in order of priority.

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 517

 Send the result, of the request, which will be decrypted by Client Company.

4.3 Decryption:	

Decrypts the result using the private key and comparing the results obtained with our results performed

on raw data.

The Figure.1 presents the architecture of our conception system.

Storage node

Secret key=Sk

Cryptosystem:
- keyGen(Sk,Pk)

- Encryption (Enc)

- Decryption(Dec)

Cloud provider

Compute node

f>
<

(Enc(a),Enc(b),Pk)

Enc (f (a,b))
f=operation(+,x,…)

Dec(Enc(f(a,b))=f(a,b)

Encrypted
data

Client Company

Raw data
(a,b)

Figure 3. The proposed architecture of computing on encrypted data.

5 Experimental	setup	

The execution results are taken on Dell laptop having Intel® core ™ i54310M (2.70 GHz) Processor, 8 GB

DDR3L (RAM), 320GB HDD, and Ubuntu 16.04 LTS Desktop (64bits) operating system.

Concerning the platform of this work, our implementation is divided into two main parts:

5.1 Cloud	platform:	

using a cloud environment is a main part of our thesis. So, we implement a virtual cloud platform based

on opensource solutions: OpenStack and KVM. The installation and the configuration of OpenStack’s

services implemented on four nodes (controller node, compute node, networking node and storageSwift

node). Each node is a VM under KVM having minimums material characteristics and the Ubuntu server

14.04 LTS 64 bits as operating system. We had tested our cloud functionality by creating network devices,

creating images and instances, uploading and downloading raw data (files and images).

5.2 Java	platform:

we use java language to test various homomorphic encryption algorithms in order to analyze and compare

between them. This way, we’re going to take account of the process times of encryption, computation

and decryption time, size of keys and size of data. In addition, java platform provides an excellent base for

writing secure applications by integrating JCA and JCE frameworks, and Bouncy Castle provider to

implement the algorithms easily and with few lines of code. In this work, we implemented manually the

cryptosystems in order to do some modifications on the encryption equations of Paillier and ElGamal

algorithms.

Samiha Jlilab, Hassan Satori, Khalid Satori. Computing on Encrypted Data into the Cloud though Fully

Homomorphic Encryption. Transactions on Machine Learning and Artificial Intelligence, Vol 5 No 4 August (2017);

p: 509-523

URL:http://dx.doi.org/10.14738/tmlai.54.3225 518

The experiment is diagrammed as follow:

Figure 4. Diagram of homomorphic encryption operations processing.

6 Simulation	procudure	and	results	

6.1 Procedure		

Our experimental starts by generating a set of data with different size (from 32bytes up to 1MB). In

addition we are using digital data type to perform our mathematical calculations. In fact, the type of the

data doesn’t affect our results because encryption depends only on data size and not data type.

Depending on the input parameters and the security component, the simulation execution of our

cryptosystem algorithms was on two experiments:

 In the 1st experiment: we fixed data size and varied key length in order to analyze the efficiently
of the most popular asymmetric homomorphic algorithms (RSA, Paillier and ElGamal) by analyzing
the process times of each algorithm’s phases (encryption, computation and decryption).

 In the 2nd experiment, we fixed the key size i.e. we used the default key length recommended by
NIST to preserve the security component for each algorithm, and we varied the data length.

After a successful execution, encrypted and decrypted files are created. To make sure that all the data are

processed in the right way, we made a comparison between the original data file and the decrypted data

file. Thus, we execute the mathematic operations performed on encrypted data for the previous

cryptosystems in order to achieve our goal (efficient computations with encrypted data).

6.2 Results	

6.2.1 The 1st experiment:

the simulation results of the encryption step are shown in fig.2, fig.3, table 8 and table 9, and those of the

decryption step are shown in fig.4, fig.5, table 10 and table 11. The results show that the process time of

RSA is less than the one of Paillier and ElGamal algorithms. For more clarification, bellow is a statistic

study:

 For small data (1KB): the process time of the previous schemes cannot exceed a few milliseconds
with a keylength less than 1024 bits. With a key >= 2048 bits, the process time of Paillier system
can reach more than 4 seconds.

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 519

 For large data (1MB): The process time (key= 2048) of the encryption step can reach more than
42 minutes for Paillier, more than 12 minutes for ElGamal and 5 second for RSA. Concerning the
process time of the decryption step, it can reach more than 72 minutes for Paillier, more than 18
minutes for ElGamal and 9 minutes for RSA.

6.2.2 The 2nd experiment

The simulation results of the encryption step are shown in table 12 and fig. 6, and those of the decryption

are shown in table 13 and fig. 7. As the first execution, the results show that the time process of RSA is

very less than the other Algorithms. However, with a large key, the process time take a long time to

execute the steps (encryption and decryption).

6.2.3 Computations

For the mathematic operations performed on encrypted data, we multiplied/added two data cipher

blocks of 32 with different key sizes:

 The simulation results of Multiplication encryption and decryption steps are shown on table12,
table13, fig. 6 and fig.7.

 The additive homomorphic results for Paillier are shown in fig.8 for the encryption step and in
fig.9 in the decryption step.

Table 6 The process time (ms) of the encryption / decryption of small data (1KB).

Scheme

\ Key

size

Encryption step Decryption step

256 512 1024 2048 256 512 1024 2048

Paillier 32 74 391 2520 39 90 589 4381

RSA 4 5 43 67 20 22 95 567

ElGamal 18 40 156 1213 30 70 309 786

Figure 3. Encryption of small data using various
schemes and different size of key

Figure 4. Decryption of small data using
various scheme with different size of key

Table 7 The process time (ms) of the encryption / decryption of large data (1MB)

Key \

scheme

Encryption step Decryption step

256 512 1024 2048 256 512 1024 2048

Paillier 17936 63054 236350 2633354 26030 81857 552725 4340671

RSA 711 663 1195 4855 4855 12192 76930 555541

ElGamal 12789 30082 174039 1099392 7156 15992 87118 745873

Samiha Jlilab, Hassan Satori, Khalid Satori. Computing on Encrypted Data into the Cloud though Fully

Homomorphic Encryption. Transactions on Machine Learning and Artificial Intelligence, Vol 5 No 4 August (2017);

p: 509-523

URL:http://dx.doi.org/10.14738/tmlai.54.3225 520

Table 8 Time of encryption of different data size with a fixed key size (key= 2048).

Scheme \
data

32B 1KB 10KB 100KB 1MB

Paillier 79 2520 22131 243235 2633354

RSA 1 9 67 558 4855

ElGamal 43 1213 11847 109040 1099392

Figure 6. Time of encryption of different data size with a fixed key=2048 bits

Table 9 Decryption time of different data size with a fixed key length (key= 2048 bits).

Scheme \
data

32B 1KB 10KB 100KB 1MB

Paillier 0 4381 42129 416205 4340671

RSA 25 567 5598 56912 555541

ElGamal 19 786 6423 67532 745873

Figure 7. Time of decryption of different data sizes with a fixed key length (key= 2048)

Figure 5. Encryption of large data using partially

HE schemes with different sizes of key
Figure 5. Decryption step of large data using
various scheme with different size of key

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 521

Table 10 Time of multiplication encryption of a data block of 32B using PHE schemes.

Scheme \
Key

256 512 1024 2048

Paillier 0 0 1 4

RSA 1 1 2 2

ElGamal 1 1 1 2

Figure 8. Time of Multiplication Decryption of a data block of 32 bytes using PHE schemes.

Table 11 Time of Multiplication Decryption of a data block of 32 bytes using PHE schemes.

Cryptosystems 256 512 1024 2048

Paillier 2 3 23 145

RSA 1 2 5 25

ElGamal 2 3 6 26

Figure 9. Time of Multiplication Decryption of a data block of 32B using PHE schemes.

Figure 10. Addition time of encryption/decryption steps of a data block (32B) for Paillier cryptosystem.

As an analytical study of our results, RSA is faster than ElGamal and Pallier algorithms but it’s less secure

than the previous cryptosystems. In fact, RSA is a deterministic algorithm (we get the same ciphertext

when we execute the same plaintext for many time). Contrary to ElGamal and Paillier, they are

probabilistic algorithms i.e. using a random variable, you can get different ciphertexts for the same

plaintext.

Paillier RSA ElGamal

0

50

100

150

200

Ti
m

e
o

f
M

u
lt

ip
lic

at
io

n

D
ec

ry
p

ti
o

n
(m

s)

256

512

1024

2048

Samiha Jlilab, Hassan Satori, Khalid Satori. Computing on Encrypted Data into the Cloud though Fully

Homomorphic Encryption. Transactions on Machine Learning and Artificial Intelligence, Vol 5 No 4 August (2017);

p: 509-523

URL:http://dx.doi.org/10.14738/tmlai.54.3225 522

7 Conclusion	

In this work, we described the basic concept of cloud computing and how security becomes a major issue

of the delay in the widespread adoption of this technology. In addition, we presented the concept of

homomorphic encryption and various encryption algorithms: additive, multiplicative and fully

homomorphic encryption as well a good solution to secure data stored and computed by a third party.

This paper provides an analytic study of the most popular homomorphic encryptions schemes (RSA,

Paillier and ElGamal). RSA is the faster algorithm but Paillier and ElGamal are the most efficient on term

of security.

 Finally, and as a reminder, our objective is how to store and enable computation on encrypted data using

homomorphic encryptions proprieties in a cloud environment.

The next work is to optimize our tests of homomorphic programs by storing encrypted data on swift node

and perform both of additions and multiplications operations on the cloud platform.

REFERENCES

[1] R. Chow, Ph. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Msuoka and J. Molina, “Controlling Data in the

Cloud : Outsourcing Computation without Outsourcing Control,” pp. 85–90, 2009.

[2] P. V. Parmar, S. B. Padhar, S. N. Patel, N. I. Bhatt and R. H. Jhaveri, “Survey of Various Homomorphic

Encryption algorithms and Schemes,” vol. 91, no. 8, p. 8887, 2014.

[3] N. Islam, W. Puech, K. Hayat and R. Brouzet, “Application of Homomorphism to Secure Image Sharing To

cite this version :,” OPTICS, vol. 284, no. 19, pp. 4412–4429, 2013.

[4] M. Tebaa, S. El Hajji, and A. El Ghazi, “Homomorphic Encryption Applied to the Cloud Computing Security,”

vol. I, pp. 8–11, 2012.

[5] M. Tebaa, K. Zkik, and S. El Hajji, “Hybrid Homomorphic Encryption Method for Protecting the Privacy of

Banking Data in the Cloud,” vol. 9, no. 6, pp. 61–70, 2015.

[6] A. Chatterjee and I. Sengupta, “Searching and Sorting of Fully Homomorphic Encrypted Data on Cloud,”

pp. 1–14.

[7] “https://github.com/hcryptproject/libScarab” .

[8] P.Mell and T.Grance, The NIST Definition of Cloud Computing,” vol. 145, no. September, p. 6028, 2011.

[9] A. A. Atayero and O. Feyisetan, “Security Issues in Cloud Computing : The Potentials of Homomorphic

Encryption,” vol. 2, no. 10, pp. 546–552, 2011.

[10] V. Vaikuntanathan, “Computing Blindfolded : New Developments in Fully Homomorphic Encryption,”

1978.

[11] S. Goldwasser, “Probabilistic Encryption *,” pp. 270–299, 1984.

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 523

[12] P. Paillier, “PublicKey Cryptosystems Based on Composite Degree Residuosity Classes,” pp. 223–238,

1999.

[13] M. Seetha and A. K. Koundinya, “Comparative Study and Performance Analysis of Encryption in RSA , ECC

and Goldwasser Micali Cryptosystems,” vol. 3, no. 1, pp. 111–118, 2014.

[14] T. ElGamal, “A public key cryptosystem and a signature scheme based on the discrete logarithm,” springer,

1985.

[15] C. Gentry, “Computing Arbitrary Functions of Encrypted Data.”

[16] C. Gentry, “A FULLY HOMOMORPHIC ENCRYPTION SCHEME,” no. September 2009.

[17] R. Meissen, “A Mathematical Approach to Fully Homomorphic Encryption ”.

[18] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully Homomorphic Encryption over the

Integers,” pp. 1–28, 2010.

[19] Z. Brakerskiand C. Gentry, “Fully Homomorphic Encryption without Bootstrapping.”

[20] Z. Brakerski and V. Vaikuntanathan, “Efficient Fully Homomorphic Encryption from (Standard) LWE,” pp.

97–106, 2011.

[21] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can Homomorphic Encryption be Practical ?,” pp. 1–18,

2011.

[22] J. W. Bos, K. Lauter, and M. Naehrig, “Private Predictive Analysis on Encrypted Medical Data.”

[23] E. Magkos, M. Burmester, and V. Chrissikopoulos, “Receiptfreeness in Largescale Elections without

Untappable Channels.”

[24] S. Iftene, “General Secret Sharing Based on the Chinese Remainder Theorem with Applications in,”

Electron. Notes Theor. Comput. Sci., vol. 186, no. 3, pp. 67–84, 2007.

