

DOI: 10.14738/tmlai.54.3192
Publication Date: 15th August, 2017
URL: http://dx.doi.org/10.14738/tmlai.54.3192

VOLUME 5 NO 4, 2017

A	Comparative	Study	Between	Operating	Systems	(Os)	for	the	

Internet	of	Things	(IoT)	

Aberbach Hicham, Adil Jeghal, Abdelouahed Sabrim, Hamid Tairi
LIIAN, Department of Mathematic & Computer Sciences, Sciences School, Sidi Mohammed Ben Abdellah

University,
aberbachhicham@gmail.com, adil.jeghal@usmba.ac.ma, abdelouahed.sabri@gmail.com,

htairi@yahoo.fr

 ABSTRACT

Abstract : We describe The Internet of Things (IoT) as a network of physical objects or "things" embedded

with electronics, software, sensors, and network connectivity, which enables these objects to collect and

exchange data in real time with the outside world. It therefore assumes an operating system (OS) which

is considered as an unavoidable point for good communication between all devices “objects”. For this

purpose, this paper presents a comparative study between the popular known operating systems for

internet of things . In a first step we will define in detail the advantages and disadvantages of each one ,

then another part of Interpretation is developed, in order to analyze the specific requirements that an OS

should satisfy to be used and determine the most appropriate .This work will solve the problem of choice

of operating system suitable for the Internet of things in order to incorporate it within our research team.

 Keywords: Internet of things , network, physical object ,sensors,operating system.

1 Introduction		

The Internet of Things (IoT) is the vision of interconnecting objects, users and entities “objects”.

Much, if not most, of the billions of intelligent devices on the Internet will be embedded systems equipped

with an Operating Systems (OS) which is a system programs that manage computer resources whether

tangible resources (like memory, storage, network, input/output etc.) or intangible resources (like running

other computer programs as processes, providing logical ports for different network connections etc.), So

it is the most important program that runs on a computer[1].

Every general­purpose computer must have an operating system to run other programs and applications.

Computer operating systems perform basic tasks, such as recognizing input from the keyboard, sending

output to the display screen, keeping track of files and directories on the disk, and controlling peripheral

devices such as printers. For large systems, the operating system has even greater responsibilities and

powers. It is like a traffic cop — it makes sure that different programs and users running at the same time

do not interfere with each other. The operating system is also responsible for security, ensuring that

unauthorized users do not access the system, the most of these operating systems are used by the

internet of things in several applications which are translate into many concrete uses ­ new or improved­

significantly impacting the daily lives of individuals, businesses and communities for example[2] : Cities :

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 281

the Internet of things will allow better management of the various networks that feed our cities (water,

electricity, gas, etc.) by allowing continuous real­time and precise control, Energy : power grid

management will be improved by telemetry, enabling real­time management of the energy distribution

infrastructure ,Transport : in this field the Internet of Things will support the current efforts around

intelligent vehicles for road safety and driving assistance ,Health : in the field of health, the Internet of

things will allow the deployment of personal networks for the control and monitoring of clinical signs,

especially for the elderly, The industry : in the Internet the Industry of Objects will allow a total tracking

of the products, from production chain, up the supply chain and distribution by overseeing the supply

conditions. Because the problem of choice between different operating systems presents an obstacle in

our context. The main objective of this work is to solve it in a definitive way. This work contains a detailed

study of the existing operating systems for the Internet of things, and this through an evaluation of each

one with its advantages and disadvantages, and the final part will be devoted to defining and examine the

appropriate Operating system to be used in the Internet of Things.

2 Operating	Systems		

The set of operating systems designed for the internet of things are presented under the architecture

shown in Figure below (Figure1) : A hard­ware layer and drivers, a second layer that contains Kernel /

scheduler and network stack, The choice of Kernel is to have a complete control over everything that

occurs in the system and the choice of the scheduling strategy is tightly bound to real­time and different

task priorities support .Finally the last layer is for applications or user interface for supporting degree of

user interaction[3] :

Figure1: architecture of operating systems

2.1 TinyOS		

TinyOS [4] is an open source, BSD­licensed operating system designed for low­power wireless devices,

such as those used in sensor networks, ubiquitous computing, personal area networks, smart buildings,

and smart meters.

2.1.1 Architecture:

TinyOS follow a monolithic architecture based on a combination of components, reducing the the size of

the code needed to set it up. This is in line with the constraints of Memories that are observed by sensor

networks; however, the TinyOS component library is particularly complete since it includes network

protocols, sensor drivers and acquisition tools of data. All of these components can be used as they are,

they can also be adapted to a precise application.

Aberbach Hicham, Adil Jeghal, Abdelouahed Sabrim, Hamid Tairi, A Comparative Study Between Operating

Systems (Os) for the Internet of Things (IoT). Transactions on Machine Learning and Artificial Intelligence,

Vol 5 No 4 August (2017); p: 280-290

URL:http://dx.doi.org/10.14738/tmlai.54.3192 282

2.1.2 Programming Model:

The previous versions of TinyOS do not provide multithreading support; building applications were based

on the event­driven programming model. TinyOS version 2.1 supports multithreading. and these TinyOS

threads are called TOS Threads[5].

2.1.3 Suported plateforms:

TinyOSTinyOS supports the following sensing platforms: Mica [6], Mica2 [6], Micaz [6] and a few others.

2.1.4 Advantages

TinyOS is a system mainly developed and Supported by the American University of Berkeley, which offers

it in download Under the BSD license and monitors it. Thus, all the sources are Available for many physical

targets[7].

Based on event­driven operation, TinyOS offers to the user a precise management of the sensor's

consumption and makes it possible to adapt better to the Random nature of wireless communication

between physical interfaces.

Compatibility with at least 9 hardware platforms, and the simplicity of adding or modifying platforms.

TinyOS follows a hierarchical abstraction of the material in three layers.

The preemptive nature of an operating system specifies if this one allows the interruption of a task in

progress. TinyOS does not manage this Preemption between tasks but gives priority to hardware

interruptions.

Energy management: TinyOS is designed to optimally manage energy consumption: it puts the node into

standby when there are no tasks to perform, and thus allows the deactivation of the radio device or its

setting in ' Listening only and low energy consumption (low power listening). TinyOS also generates a small

code, which decreases the energy used to store the data in the RAM.

2.1.5 Disadvantages

a) Support for Real-Time Applications

TinyOS [7]does not support real­time application operations. It provides a process planning algorithm

based on priorities, but once a process is scheduled to run to completion. This may result in a missed

deadline for a high priority process that enters the Preparation queue once a low priority process has

been scheduled

TinyOS is not an operating system in the current sense. It does not offer, for example, a notion of

multitasking, users or file system. There are no user mode and kernel mode notions. In fact, TinyOS is a

set of routines made available to the programmer to simplify the development.

2.2 Contiki		

Contiki [8] is an open source operating systems for sensor nodes. It was developed at the Swedish Institute

of Computer Science by Dunkels et al. [3], it is a lightweight open source OS written in C for WSN sensor

nodes Contiki connects tiny lowcost, low­power microcontrollers to the Internet .

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 283

Contiki is a highly portable OS and it is build around an event­driven kernel. Contiki provides preemptive

multitasking that can be used at the individual process level. A typical Contiki configuration consumes 2

kilobytes of RAM and 40 kilobytes of ROM. A full Contiki installation includes features like : multitasking

kernel, preemptive multithreading, proto­threads, TCP/IP networking, IPv6, a Graphical User Interface, a

web browser, a personal web server, a simple telnet client, a screensaver, and virtual network computing.

2.2.1 Advantages:

a) Internet Standards : Contiki provides powerful low­power Internet communication. Contiki

supports fully standard IPv6 and IPv4, along with the recent low­power wireless standards: 6lowpan, RPL,

CoAP. With Contiki's ContikiMAC and sleepy routers, even wireless routers can be battery­operated.

b) Rapid Development: With Contiki, development is easy and fast: Contiki applications are written

in standard C, with the Cooja simulator Contiki networks can be emulated before burned into hardware,

and Instant Contiki provides an entire development environment in a single download.

c) A Selection of Hardware : Contiki runs on a range of low­power wireless devices, many of which

can be easily purchased online.

d) Open Source Software: Contiki is open source software: it can be freely used both in commercial

and non­commercial systems and the full source code is available.

2.2.2 Architecture

Contiki is based on a modular architecture, with respect to its kernel that follows the event driven model,

but it provides threading capabilities to processes. The Contiki kernel includes a light event scheduler that

dispatches events to running processes. The execution of the process is triggered by events sent by the

kernel to processes or by a query mechanism.

2.2.3 Disadvantages

a) Scheduling : Contiki is an event­driven OS, therefore it does not employ any sophisticated scheduling

algorithm. Events are fired to the target application as they arrive.

Contiki does not support multicast. Therefore Contiki does not provide any implementation of group

management protocols such as the Internet Group Management Protocol (ICMP), or Multicast Listener

Discovery (MLD) protocol

b) Possibility of Real-Time support applications : Contiki does not support deployment of real­time

applications, So there is no implementation of any real­time process scheduling algorithm in this OS.

2.3 Nano-RK	

Nano­RK [9] is a fully preemptive reservation­based real­time operating system (RTOS) from Carnegie

Mellon University with multi­hop networking support for use in wireless sensor networks.Nano­RK

currently runs on the FireFly Sensor Networking Platform as well as the MicaZ motes. It includes a light­

weight embedded resource kernel (RK) with rich functionality and timing support using less than 2KB of

RAM and 18KB of ROM.

Nano­RK supports fixed­priority preemptive multitasking for ensuring that task deadlines are met, along

with support for CPU, network, as well as, sensor and actuator reservations. Tasks can specify their

resource demands and the operating system provides timely, guaranteed and controlled access to CPU

Aberbach Hicham, Adil Jeghal, Abdelouahed Sabrim, Hamid Tairi, A Comparative Study Between Operating

Systems (Os) for the Internet of Things (IoT). Transactions on Machine Learning and Artificial Intelligence,

Vol 5 No 4 August (2017); p: 280-290

URL:http://dx.doi.org/10.14738/tmlai.54.3192 284

cycles and network packets. Together these resources form virtual energy reservations that allow the OS

to enforce system and task level energy budgets[8].

2.3.1 Advantages

One of the goals for Nano­RK[9] was to facilitate application developers by allowing them to work in a

familiar multitasking paradigm. This results in a short learning curve, rapid application development, and

improved productivity

a) Resource Sharing: For shared resources such as memory, Nano­RK provides semaphores for serialized

access. To circumvent the priority inversion problem, Nano­RK provides an implementation of the Priority

Ceiling algorithm. In addition, Nano­RK provides APIs to reserve system resources like CPU cycles, sensors,

and network bandwidth.

b) Possibility of Real-time Applications support : Nano­RK is a real­time operating system; hence it

provides rich support for real­time applications. It supports real­time processes and its offline admission

control procedure guarantees to meet deadline associated with each admitted real­time process.

Nano­RK provides an implementation of real­time preemptive scheduling algorithms and tasks are

scheduled using a rate monotonic scheduling algorithm. Moreover, Nano­RK provides bandwidth

reservations for delay­sensitive flows and it claims to provide end­to­end delay guarantees in multi­hop

wireless sensor network.

Nano­RK is a suitable OS for use in multimedia sensor networks due to its extensive support provided to

real­time applications.

2.3.2 Disadvantages

Nano­RK only provides support for static memory management; it does not support dynamic memory

management. In Nano­RK, both the OS and applications reside in a single address space and to the best

of authors’ knowledge Nano­RK does not provide any support to safeguard co­located OS and process

address spaces.

Nano­RK is a preemptive multitasking OS, it needs to save the context of the current task before

scheduling the new task. Saving the state of each task results in large memory consumption and frequent

context switches result in reduced performance and higher energy consumption.

2.4 LiteOS	

LiteOS [10] is an open source, interactive, UNIX­like operating system designed for wireless sensor

networks. With the tools that come with LiteOS, you can operate one or more wireless sensor networks

in a Unix­like manner, transferring data, installing programs, retrieving results, or configuring sensors. You

can also develop programs for nodes, and wirelessly distribute such programs to sensor nodes.

2.4.1 Architecture

LiteOS [10] follows a modular architecture design. LiteOS is partitioned into three subsystems: LiteShell,

LiteFS, and the Kernel. LiteShell is a Unix­like shell that provides support for shell commands for file

management, process management, debugging, and devices.

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 285

2.4.2 Advantages

a) Scheduling

LiteOS provides an implementation of Round Robin scheduling and Priority­based scheduling. Whenever

a task is added to the ready queue, the next task to be executed is chosen through priority­based

scheduling. The tasks run to completion or until they request a resource that is not currently available.

When a task requires a resource that is not available, the task enables interrupts and goes to sleep mode.

b) Memory Protection and Management

Inside the kernel, LiteOS supports dynamic memory allocation through the use of free functions. User

applications can use these APIs to allocate and de­allocate memory at run­time. Dynamic memory grows

in the opposite direction of the LiteOS stack. The dynamic memory is allocated from the unused area

between the end of the kernel variables and the start of the user application memory blocks. This allows

adjusting the size of dynamic memory as required by the application.

c) Communication Protocol Support

liteOS provides communication support in the form of files. LiteOS creates a file corresponding to each

device on the sensor node. Similarly, it creates a file corresponding to the radio interface. Whenever there

is some data that needs to be sent, the data is placed into the radio file and is afterward wirelessly

transmitted. In the same manner, whenever some data arrives at the node it is placed in the radio file and

is delivered to the corresponding application using the port number present in the data .

2.4.3 Disadvantages

a) Possibility of Real-time Applications support

LiteOS does not provide any implementation of networking protocols that support real­time multimedia

applications. It provides a priority­based process scheduling algorithm but once a process is scheduled it

runs to completion.This can result in a missed deadline of a higher priority process that enters the ready

queue once a low priority process has been scheduled.

The LiteOS documentation does not provide enough detail on how system resources are shared among

multiple executing threads.

2.5 FreeRTOS	

“FreeRTOS [11] is a market leading RTOS from Real Time Engineers Ltd. that supports 35 architectures

and received more than 113000 download during 2014. It is professionally developed, strictly quality

controlled, robust, supported, and free to embed in commercial products without any requirement to

expose your proprietary source code. FreeRTOS has become the de facto standard RTOS for

microcontrollers by removing common objections to using free software, and in so doing, providing a truly

compelling free software model.”

2.5.1 Advantages [11]

• FreeRTOS is downloaded every 260 seconds (on average).

• FreeRTOS offers lower project risks and a lower total cost of ownership than commercial

alternatives because:

• It is fully supported and documented.

Aberbach Hicham, Adil Jeghal, Abdelouahed Sabrim, Hamid Tairi, A Comparative Study Between Operating

Systems (Os) for the Internet of Things (IoT). Transactions on Machine Learning and Artificial Intelligence,

Vol 5 No 4 August (2017); p: 280-290

URL:http://dx.doi.org/10.14738/tmlai.54.3192 286

• Most people take products to market without ever contacting us, but with the complete

peace of mind that they could opt to switch to a fully indemnified commercial license (with

dedicated support) at any time.

• Some FreeRTOS ports never completely disable interrupts.

• For strict quality control purposes, and to remove all IP ownership ambiguity, official

FreeRTOS code is separated from community contributions.

• FreeRTOS has a tick­less mode to directly support low power applications.

• FreeRTOS was downloaded >113000 times in 2014.

• FreeRTOS is designed to be simple and easy to use: Only 3 source files that are common to

all RTOS ports, and one microcontroller specific source file are required, and its API is

designed to be simple and intuitive.

2.5.2 Disadvantages

a) Limited Tasks

There are only limited tasks run at the same time and the concentration of these system are on few

application to avoid errors and other task have to wait. Sometime there is no time limit of how much the

waiting tasks have to wait.

b) Use heavy system resources

FreeRTOS used lot of system resources which is not as good and is also expensive.

c) Low multi-tasking

Multi­tasking is done few of times and this is the main disadvantage of FreeRTOS because this system runs

few tasks and stay focused on them. So it is not best for systems which use lot of multi­threading because

of poor thread priority.

d) Complex algorithms

FreeRTOS uses complex algorithms to achieve a desired output and it is very difficult to write that

algorithms for a designer.

e) Device driver and interrupt signals

FreeRTOS must need specific device drivers and interrupt signals to response fast to interrupts.

f) Thread Priority

Thread priority is not good as FreeRTOS do less switching of tasks.

2.6 RIOT		

RIOT [12] or the friendly Operating System for the Internet of Things is a lightweight operating system for

networked systems with memory constraints, focused on devices with low power consumption for

Internet of things. It is a free software, released under the GNU General Public License (LGPL)[5] , It was

originally developed by the Free University of Berlin, the National Institute for Research in Computer

Science and Automation (INRIA) and the University of Applied Sciences of Hamburg (HAW Hamburg). The

core of RIOT is largely inherited from FireKernel1, which was originally developed for sensor networks.

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 287

2.6.1 Architecture

The microkernel architecture written in ANSI C and support for full multithreading enables a developer­

friendly API. POSIX compliance is partly already available and full POSIX compliance is planned for the near

future. Since RIOT is completely written in C, it also allows for the usage of C++ and the utilization of the

GNU Compiler Collection (GCC) in the latest version.

2.6.2 Modularity

To ensure minimal memory usage, the system is based in a modular way. Thus, the configuration of the

system can be customized to meet the particular specification. The size of the kernel itself is minimized,

thus requiring only a few hundred bytes of RAM and program storage. Dependencies between the

modules are reduced to an absolute minimum .

2.6.3 Advantages

RIOT [12] an operating system designed for the particular requirements of Internet of Things (IoT)

scenarios. These requirements comprise a low memory footprint, high energy efficiency, real­time

capabilities, a modular and configurable communication stack, and support for a wide range of lowpower

devices.

RIOT provides a microkernel, utilities like cryptographic libraries, data structures (bloom filters, hash

tables, priority queues), or a shell, different network stacks, and support for various microcontrollers,

radio drivers, sensors, and configurations for entire platforms. There are no new programming

environments.,C or C++ can be used directly with existing tools like gcc, gdb, etc, Less hardware dependent

code, Supports 8­,16­ and 32­bit microcontroller platforms, Energy efficiency is maintained, Less interrupt

latency, so real­time capability is ensured, Multi­threading is enabled .

2.6.4 Network Stack

Supports the entire network stack of IoT (802.15.4 Zigbee, 6LoWPAN, ICMP6, Ipv6, RPL, CoAP, etc) , Both

static and dynamic memory allocation, POSIX compliant (partial), All output can be seen in the terminal if

hardware is not available.

RIOT is of course free and its code is available online. It is a fundamental prerequisite for developing a

robust and sustainable technology and protocols on a global scale. Open source makes it possible to

constantly improve a program due to a large community of contributors.

Aberbach Hicham, Adil Jeghal, Abdelouahed Sabrim, Hamid Tairi, A Comparative Study Between Operating

Systems (Os) for the Internet of Things (IoT). Transactions on Machine Learning and Artificial Intelligence,

Vol 5 No 4 August (2017); p: 280-290

URL:http://dx.doi.org/10.14738/tmlai.54.3192 288

Figure 2: architecture and Driver support for RIOT

Table 1: comparison of OS’s

3 Comparison	of	IOT	OS’S	

As we can see in the following table (table1), the RIOT system supports the most communication

technologies over other systems, supports multi­threading and real­time media with a GNU GPL license,

which allows [13] the user several rights On a computer program.

1. The freedom to run the software for any purpose.

2. The freedom to study the functioning of a program and to adapt it to its needs, which

requires access to source codes.

3. Freedom to redistribute copies.

4. The obligation to provide the community with modified versions.

Since Our goal is to discover and compare in a detailed way the characteristics of each operating system

in order to detect the most suitable for the Internet of things. For this we have based on the characteristics

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Vol 5 No 4, Aug 2017

Copyright © Socie ty for Sc ience and Educat ion Uni ted Kingdom 289

detailed in section2: OSs to conclude that the RIOT operating system is the most appropriate especially in

our search axis since it is free to be run in any domain, adaptable To the needs of the user with simple

access to source codes, it aims exactly to fulfill the requirements to should satisfy an operating system for

internet of things .

4 Requirements	of	an	OS	for	IOT		

In summary the main requirements for an operating system are:

• Memory Requirements: To ensure proper memory management for an operating system the

minimum memory requirement of the software must be very low. This concerns RAM as well

as persistent program storage.

• Limited resources: The hardware platforms offer very limited resources so the operating

system should use them eciently.

• Concurrency: The operating system should be able to handle diferent tasks at the same time.

• Flexibility: Since the requirements for deferent applications vary wildly, the operating system

should be able to be flexible to handle those.

• Low Power: Energy conservation should be one of the main goals for the operating system.

• Error Free: Error free that mean it has no chances of error in performing tasks.

• Platform support: The software part of the IOT should have the ability to support the

different hardware platforms, but also the ability to exploit their capabilities.

• Reliability: The operating system must function reliably because it is deployed in critical

applications where the access is linked to a high costs

5 Conclusion		and	Future	Work	

In this work we have defined the notion of the Internet of things and its different fields of applications.

We have also compared the current (IoT) operating systems in a detailed way to see their advantages and

disadvantages as well as their characteristics and architectures. Through this comparison we have

deduced that the RIOT is the most appropriate system for the Internet of things since most of its Strengths

correspond exactly to the Requirements that an operating system must satisfy to be used in the internet

of things .So this article helps to better choose which operating systems to adapt for the internet of the

things .This paper analyzed these parts in a single conclusion: RIOT is an operating system designed for

the particular requirements of Internet of Things (IoT) Scenarios.

The future work well includes complete and compliant implementations of RIOT, on the most known

platforms for the IoT.

RÉFERENCES

[1] ITU­T (2012). Overview of the Internet of things. ITU­T. Retrieved from http://www.itu.int/rec/T­REC­

Y.2060­201206­I on 2016, Jan.

[2] Cisco IBSG © 2011 Cisco et/ou ses filiales. Tous droits réservés.

[3] Padmini Gaur, Mohit P. Tahiliani .Wireless Information Networking Group (WiNG)

Aberbach Hicham, Adil Jeghal, Abdelouahed Sabrim, Hamid Tairi, A Comparative Study Between Operating

Systems (Os) for the Internet of Things (IoT). Transactions on Machine Learning and Artificial Intelligence,

Vol 5 No 4 August (2017); p: 280-290

URL:http://dx.doi.org/10.14738/tmlai.54.3192 290

[4] A. Dunkels, B. Gr¨onvall, T. Voigt Contiki ­ a Lightweight and Flexible Operating System for Tiny Networked

Sensors In Proceedings of the First IEEE Workshop on Embedded Networked Sensors, Tampa, Florida, USA,

2004

[5] Klues K, Liang CJM, Paek J, Musaloiu R, Levis P, Terzis A, Govindan R. TOSThread: Thread­Safe and Non­

Invasive Preemption in TinyOS. Proceedings of the 7th ACM Conference on Embedded Networked Sensor

Systems; Berkeley, CA, USA. 4–6 November 2009; pp. 127–140.

[6] PtolemyProject. Availableonline http://ptolemy.eecs.berkeley.edu/ (accessed on 17 April 2011)

[7] Akyildiz IF, Melodia T, Chowdhury KR. A Survey on Wireless Multimedia Sensor Networks. Comput. Netw.

2007;51:921–960

[8] Dunkels A, Gronvall B, Voigt T. Contiki a Lightweight and Flexible Operating System for Tiny Networked

Sensors. Proceedings of the 9th Annual IEEE International Conference on Local Computer Networks;

Washington, DC, USA. October 2004; pp. 455–462.

[9] Eswaran A, Rowe A, Rajkumar R. Nano­RK: An Energy­Aware Resource­Centric RTOS for Sensor Networks.

Proceedings of the 26th IEEE Real­Time Systems Symposium; Miami, FL, USA. 5–8 December 2005.

[10] Cao Q, Abdelzaher T, Stankovic J, He T. The LiteOS Operating System: Towards Unix Like Abstraction for

Wireless Sensor Networks. Proceedings of the 7th International Conference on Information Processing in

Sensor Networks (IPSN 2008); St Louis, MO, USA. 22–24 April 2008.

[11] Julien Le Sech, thirsday 5 january 2012. FreeRTOS sur ATmega328 .

[12] RIOT (2015). RIOT ­ The friendly Operating System for the Internet of Things. RIOT­OS.org. Retrieved from

www.riot­os.org/ on 2016, Jan.

[13] Free Software Foundation https://www.gnu.org/licenses/lgpl­3.0.en.html .

