SOCIETY FOR SCIENCE AND EDUCATION
UNITED KINGDOM

T(L /A I TRANSACTIONS ON Vo e
MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE SET

Performance Evaluation of Some Selected Sorting Algorithms by
the Use of Halstead Complexity Metrics

A.O Afolabi
Department of Computer Science and Engineering,
Ladoke Akintola University of Technology, Ogbomoso. Nigeria
aoafolabi@lautech.edu.ng

ABSTRACT

Complexity is developed to demonstrate feasible metrics for process obtaining objectives and quantifiable
measurement, which may have numerous valuable applications in schedule and budget planning, cost
estimation and optimal personnel task assignments a particular software. Also it aids the developer and
practitioners in evaluating the software complexity due to its simplicity, which serves both as an analyzer
and as a predicator in quantitative software engineering. In this research work, the Halstead complexity
metrics were applied to three sorting algorithms and C-Sharp programming language was used to
implement them. The results shows the variant performances of sorting algorithms and the best algorithm
that can perform better in a defined system of application.

Keyword: algorithm, Halstead Measure, software metrics, software complexity

1 Introduction

There are a number of important practical and theoretical reasons for analyzing algorithms. The principal
reason is that we need to obtain estimates or bounds on the storage or run time which an algorithm will
need to successfully process a particular input. Computer time and memory are relatively scarce resources
which are often simultaneously sought by many users. It is advantageous to avoid runs that are aborted
because of insufficient time. One would like to predict such things with pencil and paper in order to avoid
disastrous runs. A good analysis is also capable of finding bottlenecks in our programs, that is, sections of
a program where most of the time is spent. Computational complexity theory investigates the problems
related to the amount of resources required for the execution of algorithms (e.g. execution time), and the
inherent difficulty in providing efficient algorithms for specific computational problems. A typical question
of the theory is, “as the size of the input to an algorithm increases, how do the running time and memory
requirements of the algorithm change and what are the implications and ramifications of that change.”
In other words, the theory, among other things, investigates the scalability of computational problems
and algorithms. In particular, the theory places practical limits on what computers can accomplish. The
time complexity of a problem is the number of steps that it takes to solve an instance of the problem as a
function of the size of the input (usually measured in bits), using the most efficient algorithm. Intuitively,
we consider the example of an instance that is n bits long that can be solved in n2 steps. In this case we
say the problem has a time complexity of order n2.

DOI: 10.14738/tmlai.52.2793
Publication Date: 11%" April, 2017
URL: http://dx.doi.org/10.14738/tmlai.52.2793

A.O Afolabi; Performance Evaluation of Some Selected Sorting Algorithms by the Use of Halstead Complexity
Metrics. Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 2 April (2017); pp: 9-17

Most of the available metrics cover only certain features of a language for example, when line of code is
applied, then only size will be considered, When McCabe complexity is applied, the control flow of the
program will not be covered and also determined the complexity base on the number of control paths
created by the code. While Halstead based is approached on the Mathematical relationship among the
number of variables. Most of the available metric consider the cognitive characteristics in calculating the
complexity of the code which directly affect the cognitive of the program.

1.1 Complexity Concepts

In system especially for software, the word complexity was probably first used for what is called
computational or time complexity. For an example, the task of searching for a sorted list of length n for
the single item has complexity O (log n) meaning that any logarithm giving a solution to the task will worst
case needed and the order log n pair wise comparisons to solve the task for large n. The task to sort such
a list has computational complexity O (nlogn) and is thus a more complex task. These complexities
characterize the class of problems to be solved and give the least possible growth in computation times
as a function of the growth in problem size. In addition, to this each method designed to solve problems
belonging to some class has its own complexity which of course cannot be less than the complexity of the
corresponding problem class.

Complexity has also been used to characterize software. According to (McCall, 1977) complexity “relates
to data set relationship, data structures, data flow and the algorithm being implemented”. It measures
the degree of decision making logic within the system. Beizer states that “using only our intuitive notion
of software complexity, we expect that more complex software will cost more to build and test and will
have more bugs”. (Beizer, 1984). (Tourlakis,1984) distinguish between two classes of complexity measure,
that is dynamic and static. Dynamic complexity measures the amount of ‘resources’ consumed during a
computation. Static complexity measures on the other hand may be size e.g. (program length) or the
structural complexity e.g. (level of nesting of do-loops) of an algorithm’s description.

2 Methodology

The technique used in this project is Halstead software metrics and three sorting algorithms were
implemented with Microsoft C sharp programming language. The software science developed by M. H.
Halstead principally attempts to estimate the rate of program errors and the effort invested in program
maintenance. Halstead Metrics are used in project scheduling and reporting, in that they measure the
overall quality of the program and rate the effort invested in its development. They are easy to calculate
and do not require in-depth analysis of program structure. Halstead Metrics are based on the
measurement and interpretation of tokens. A token is the smallest unit of text recognized by the compiler.
The metrics analyzer considers the following tokens as operators of Halstead Metrics:

The following tokens are considered Halstead Operands:

e |dentifiers,
e Typedef name types,
e Numerical constants,

e Strings.

URL:http://dx.doi.org/10.14738/tmlai.52.2793 | 10 |

Transactions on Machine Learning and Artificial Intelligence Volume 5, Issue 2, April 2017

A label and its terminating colon do not count, as they are comments according to Halstead. In addition,
function headings, including the initializations included in them, do not count.

2.1.1 Halstead Parameters
The basic parameters are:

a) Unique operators (n1)the number of unique occurrences of Halstead Operators in the program,
b) Unique operands (n2) the number of unique occurrences of Halstead Operands in the program,
c) Total operators (N1) the total number of Halstead Operators,
d) Total operands (N2) the total number of Halstead Operands.

The derived parameters of Halstead Metrics are of great importance to the interpretation of code
complexity. Basic parameters are used to calculate them.

2.1.2 Halstead Program Length
The total number of operator occurrences and the total number of operand occurrences.

N = N1+ N2 (1)

2.1.3 Halstead Vocabulary
The total number of unique operator and unique operand occurrences.

n=nl+n2 (2)

2.1.4 Program Volume

Proportional to program size, represents the size, in bits, of space necessary for storing the program. This
parameter is dependent on specific algorithm implementation. The parameters V, N, and the number of
lines in the code are shown to be linearly connected and equally valid for measuring relative program size.

V =N =*log2(n) (3)

2.1.5 Program Difficulty

This parameter shows how difficult to handle the program is.

D=()*()= @

2.1.6 Programming Effort

Measures the amount of mental activity needed to translate the existing algorithm into implementation
in the specified program language.

E=V=xD (5)

2.1.7 Language Level

Shows the algorithm implementation program language level. The same algorithm demands additional
effort if it is written in a low level program language. For example, it is easier to program in Pascal than in
Assembler.

Copyright © Society for Science and Education United Kingdom m

A.O Afolabi; Performance Evaluation of Some Selected Sorting Algorithms by the Use of Halstead Complexity
Metrics. Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 2 April (2017); pp: 9-17

r_V _
L'=2/D= (6)

2.1.8 Intelligence Content

Determines the amount of intelligence presented (stated) in the program This parameter provides a
measurement of program complexity, independently of the program language in which it was
implemented.

I = (7)

Ol<

2.1.9 Programming Time

Shows time (in minutes) needed to translate the existing algorithm into implementation in the specified
program language.

T=E/(F*S) (8)

The concept of the processing rate of the human brain, developed by the psychologist John Stroud, is also
used. Stoud defined a moment as the time required by the human brain requires to carry out the most
elementary decision. The Stoud number S is therefore Stoud's moments per second with: 5 <= S <= 20.
Halstead uses 18.

Stroud number S = 18 moments / second seconds-to-minutes factor f = 60

3 Results and Discussion

For the successful implementation of this project, three sorting algorithms were considered and these
algorithms were implemented in Microsoft C# programming language.

1@ E public int[] Bubble(int[] arr)

11 £

12 int i

13 int j;

14 int temp;

15 for (i = arr.lLength - 13 i > ©®; i--)
16 {

17 for (j = ©; j < i; Jj++)

19 if (arr[j] > arr[j + 11)
20 {

21 temp = arr[j];

22 arr[j] = arr[j + 11;
23 arr[j + 1] = temp;

25 T

26 ¥

27 return arr;
28 ¥

Figure 1: Interface describing the implementation bubble sort

29 | = public int[] SelectionSort(int[] arr)

3e {

31 int i, j, temp, pos_greatest;

32 for (i = arr.Length - 1; i > @; i--)

33 {

34 pos_greatest = 9;

35 for (j = @3 j <= i; Jj++)

36

37 if (arr[j] > arr[pos_greatest])
38 pos_greatest = j;

39 }//end inner for loop

ae temp = arr[i];

a1 arr[i] = arr[pos_greatest];

42 arr[pos_greatest] = temp;

43 }//end outer for loop}//end selection sort
a4 return arr;

45 T

Figure.2: Interface describing the implementation selection sort

URL:http://dx.doi.org/10.14738/tmlai.52.2793 | 12 |

Transactions on Machine

Learning and Artificial Intelligence Volume 5, Issue 2, April 2017

as =

public int[] InsertionSort(int[] arr)

{

int i, j, temp:s
for (j = 13 j < arr.Length - 1; J++)
{
temp = arr[51;
i = j; // range © to j-1 is sorted
while (i > © && arr[i - 1] >= temp)
{
arr[i] = arr[i - 17;
i--3
i
arr[i] = temp;

>

return arr;

/7 end outer for loop
} // end insertion sort

Figure 3. Interface describing the implementation insertion sort

Table.1: Table showing the metric value of bubble sort implementation

Metrics Value
LOC 19
nl 5
n2 4
N1 13
N2 22
Program Length 35
Program Vocabulary 9
Control Density 13.75
Program Volume 33.43603
VALUE
40
30
20 A
10 A
0 - W VALUE
o e . ok b o Qﬁ &
é&’ o & = Al éfé q&? Cﬁﬁ Gﬁ?
o S
& &
<« <&

Figure4: Graphical Representation of Bubble sort algorithm

The diagram in figurel is an excerpt of the code implementation of bubble sort. This was then analyzed
with Halstead performance method and that led to table 1 which was then plotted to form the graph on
figure 4

Copyright © Society for Science and Education United Kingdom

A.O Afolabi; Performance Evaluation of Some Selected Sorting Algorithms by the Use of Halstead Complexity
Metrics. Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 2 April (2017); pp: 9-17

Table 2: Table showing the metric value of bubble sort implementation

METRICS VALUE
LOC 18
nl 6
n2 5
N1 13
N2 13
Program Length 26
Program Vocabulary 11
Control Density 7.8
Program Volume 11.177
VALUE
30
25
20
15
10 -
5 4
o | B VALUE
Tt Y R . &
<O o < = J é\% q(®% 02,(\5 AO\\)&
& SR
& & &0
° [Ca

Figure 5: Graphical Representation of Selection sort algorithm

The interface displayed in figure 2 is a code excerpt of the implementation of selected sort algorithms in
C#. This was then analyzed with Halstead method of performance metrics. Then table 3.2 was derived
with respect to the list of equations described in the method, this was later used to plot the graph shown
on figure 3.5.

URL:http://dx.doi.org/10.14738/tmlai.52.2793 | 14 |

Transactions on Machine Learning and Artificial Intelligence Volume 5, Issue 2, April 2017

Table 3.3: Table showing the metric value of bubble sort implementation

METRICS VALUE
LOC 16
nl 6
n2 4
N1 10
N2 24
Program Length 38
Program Vocabulary 10
Control Density 36
Program Volume 38.04271
40
30
20
10 -
0 - m VALUE
< > Q2 S & & T
RS Q NGRS & q}"”é\ & Qé,b@
N DR RS
< o> Q
5 &
<® &

Figure 3.6: Graphical Representation of Insertion sort algorithm

The interface displayed in figure 3 is a code excerpt of the implementation of selected sort algorithms in
C#. This was then analyzed with Halstead f performance metrics. Then table 3 was derived with respect
to the list of equations described in section 3. This was later used to plot the graph shown on figure 6.

Copyright © Society for Science and Education United Kingdom

A.O Afolabi; Performance Evaluation of Some Selected Sorting Algorithms by the Use of Halstead Complexity
Metrics. Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 2 April (2017); pp: 9-17

Table 3.4: Table showing the metric value of bubble sort, selection sort and insertion sort implementation

BUBBLE SORT SELECTION SORT | INSERTION SORT
19 18 16
5 6 6
4 5 4
13 13 10
22 13 24
35 26 38
9 11 10
13.75 7.8 36
33.43603 11.177 38.04271

40

35

30

25

u
20 BUBBLE SORT

W SELECTION SORT

15 -
INSERTION SORT
10 +

Figure 3.7: Graphical Representation of Insertion sort algorithm.

4 Conclusion
Software metrics are numerical data related to software development. Metrics strongly support software
project management activities which help the developers to perform some manage options with respect
to planning, organizing and controlling the basic functional aspect of their code. Therefore, in this
research, Halstead method of software metrics was adopted on some selected sorting algorithms which

were later implemented with C#.

Computer Resource Utilization indicators show whether the software is using the planned amount of
system resources. The computer resources are normally CPU time, 1/0, and memory. Computer resource
utilization is planned during the requirements activity and reviewed during the design activity. Resources
are monitored from the start of implementation activity to the end of the life cycle. However, It is
recommended that performance metrics should be administered before the implementation of any

software.

URL:http://dx.doi.org/10.14738/tmlai.52.2793 | 16 |

Transactions on Machine Learning and Artificial Intelligence Volume 5, Issue 2, April 2017

(1]

(3]

(4]

(5]
(6]
(7]

(8]

(9]

REFERENCES

McCall, M.M (1977) :Art Without A.market: Creating value in a Provincial Artword Sym:Software
System Testing and Quality Assurance. Van Nastraud

Tourslakis. G, (1984) :Theory of Computation, John Wiley & Sons

Ramoorthy, (1985) :Achieving Quality in Software Proceedings of the 3™ International Conference on
Quality In Software.

Zuse (1991): Practicing Software Engineering in the 215t Century, IRM Press, USA
Fenton(1992): Sofware Metrics —A rigorous Approach. Chapman Hall
Akiyama F, ""An example of software system debugging", Inf Processing 71, 353379,1971.

Cusumano, M. A., “Objectives and Context of Software Measurement, Analysis and Control,”
Massachusetts Institute of Technology Sloan School of Management Working Paper 3471-92, October
1992.

Daskalantonakis, M. K., “A Practical View of Software Measurement and Implementation Experiences
Within Motorola,” IEEE Transactions on Software Engineering, Vol. SE-18,1992, pp. 998-1010.

Copyright © Society for Science and Education United Kingdom m

