

An Android Malware Detection Architecture based on Ensemble
Learning

Mehmet Ozdemir, Ibrahim Sogukpinar
Department of Computer Engineering, Gebze Institute of Technology, Gebze, Kocaeli, Turkey;

mehmet.ozdemir@tubitak.gov.tr, ispinar@bilmuh.gyte.edu.tr

ABSTRACT

 In the scope of anomaly based Android malware detection, different type of features has
been used to represent applications and lots of algorithms have been applied to evaluate these
features. Although researchers have reported accurate results, in order to improve accuracy,
sensitivity and generalization, we suggest using an ensemble learning approach for Android
malware detection. In this study, we propose to use an ensemble learning system whose base
learners are built with different feature subsets which are extracted and processed with
multiple methods, and selected with a proposed selective ensemble approach which is based
on three criteria: Accuracy, sensitivity and diversity.

Keywords: Ensemble Learning, Multiple Classifier Systems, Mixture of Experts, Selective
Ensemble, Malware Detection, Android Malware.

1 INTRODUCTIN
Detection of malware using data mining techniques requires representing applications as

features. These features are then used to build mining models which provide predictions about
maliciousness of applications. However, selecting most suitable features among lots of feature
types and processing the selected features with correct algorithms is not a simple task.

In order to represent applications completely, selected feature types must be carefully
decided. Choosing few features types may not represent all applications sufficiently. For
instance, network activity of an application can be recorded by executing that application and
can be used as features in order to represent that application. However, it can't be guaranteed
that these features will enough to distinguish malware and benign applications because there is
a good chance of being malware without network activity. On the other hand, feature types
which are complement of each other must be considered. For example, if API calls are used as

DOI: 10.14738/tmlai.23.261
Publication Date: 9th June 2014
URL: http://dx.doi.org/10.14738/tmlai.23.261

mailto:mehmet.ozdemir@tubitak.gov.tr
mailto:ispinar@bilmuh.gyte.edu.tr

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 3, June 2104

features, these calls must be gathered from both native code and byte code because it isn't
known where the malicious intent would be in advance.

Analysis type of extracted features may be another complementing factor of features
because static and dynamic analyses are generally considered as complement of each other.
For instance, it is hard to gather useful information from obfuscated code via static analysis but
dynamic analysis can reveal that code's behavior. On the other hand, dynamic analysis may not
reveal some malware intentions (e.g. time bomb attacks) because of limited execution time but
static analysis may catch some pattern about these kinds of intentions.

Choosing the mining algorithms are also important as well as chosen feature types. Once
the features are extracted, feature selection algorithms are generally applied before providing
these features to the learning algorithms. There are kinds of feature selection and learning
algorithms whose assumptions are different from each other. None of these algorithms have
been proven to be best for a specific problem and thus, several methods should be compared
before making predictions. Additionally, comparison of chosen algorithms may be crucial. For
example, two different learning models may have the same accuracy but their predictions may
be totally different.

Contribution of this paper is twofold. First one is to show benefits of ensemble learning for
malware detection problem. Second one is to increase accuracy and sensitivity of malware
detection operation with proposed architecture. In order to do this, we propose to use an
ensemble learning system whose base learners are generated using different kind of features
which are extracted from different aspects of applications, and processed using different kind
of selection and learning algorithms. After that, some of the generated base learners are
selected with a proposed heuristic algorithm to improve accuracy and sensitivity. Finally,
selected base learners are combined via stacking or majority voting to build an ensemble
system.

The rest of the paper is organized as follows. Related works are described in Section 2.
Overview of ensemble learning and feature selection is presented in Section 3. Architecture of
proposed method is explained in Section 4. Experimental results and evaluation are given in
Section 5. Conclusions and future work are described in the last section.

2 RELATED WORKS
Misuse and anomaly detection are two general approaches to reveal malware applications.

In misuse detection, signatures are generated for each specific kind of malware and once a
signature is generated, that specific malware can be found precisely [10]. However, this method
fails to detect novel malware. On the other hand, anomaly based systems build a general model
using an application dataset and applications that don't fit to this model are considered as
anomalous [23]. Although novel malware can be detected by anomaly based systems, false
predictions may be problem for this method.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 91

Mehmet Ozdemir, Ibrahim Sogukpinar; An Android Malware Detection Architecture based on Ensemble Learning,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 3 June (2014); pp: 90-106

Features are extracted from applications by applying two general approaches: Dynamic and
static analysis. In dynamic analysis, applications are run on a device or emulator and behavior of
the application or system is watched. System calls [4], sensitive data tracking [9], system logs
[22], messaging & call information, CPU load etc. [23] are some dynamically extracted features.
In static analysis, features are extracted without running the application. API calls [32], opcodes
and operands [30], class hierarchies, used packages [32] and control flow graphs of applications
[20] are some statically extracted features from compiled source of applications. Also it is
possible to extract static features from Android application package (apk) content such as
resource locations and Android permissions [32]. Also, meta information such as description,
download count and price of application [26] can be statically extracted from marketplace.

Zhou and Jiang [31] collected 1260 malware samples and used these samples to test
existing mobile security tools. Best accuracy rate was reported as 79.6%. After this study,
researchers have reported better accuracies from their studies. However, sensitivities of some
studies were considerably low. Sensitivity1 is the measure of ability to identify positive
(malware) samples correctly. It is very important for malware detection tools because labeling a
malware application as benign (false negative) will cause malware application to be added to
the application market, which is not acceptable, while false positives can be fixed by security
experts of the application market. Hence, this situation motivated us to create a detection tool
both accurate and sensitive.

3 OVERVIEW

3.1 Ensemble Learning

Ensemble learning2 is a machine learning method which is used to improve accuracy of
learning systems by generating a set of base learners and then combining outputs of these base
learners. Effectiveness of ensemble learning has been proven in several studies [7] when the
base learners have error rates less than random guessing and their errors are uncorrelated (i.e.
base learners are diverse).

There are three stages for constructing ensemble systems [25]. First one is to generate
accurate and diverse base learners. Diversity is a term which is used to define variation among
outputs of learning models. It is an important factor for effective ensemble systems because if
base learners are identical, obviously, combining them wouldn't provide any information gain.

Although the importance of diversity over effective ensemble systems is clear, there is not a
common explanation for diversity in literature. Though, there are several investigations to
explain diversity among learning models for regression and classification problems [3].

1 Recall rate, true positive rate and hit rate are other terms used for sensitivity.

2 This term is also known as multiple classifier systems, mixture of experts, committees of learners.

URL: http://dx.doi.org/10.14738/tmlai.23.261 92

http://dx.doi.org/10.14738/tmlai.23.261

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 3, June 2104

Diversity measures are one of the proposed methods to measure diversities among base
learners and it fall into two categories, the pair wise measures and the non-pair wise measures.
In the pair wise measures, firstly, diversity is measured for each pair of base learners and then
diversity of the ensemble system is calculated by averaging these pair wise diversities. In the
non-pair wise measures, diversity of the ensemble is measured directly without considering
divergence between pair of base learners. In order to construct better ensemble systems,
Kuncheva and Whitaker [16] compared several diversity measures for classification problems in
terms of correct/incorrect outputs. As a result, they reported that existing divergence
generation methods are valid but measuring diversity in order to build better ensemble systems
is an open problem.

Since there is not a general acceptance about diversity, diverse base learners are tried to be
generated intuitively with different methods including, using different learning algorithms [15],
using different parameters of the same learning algorithm [13], using different subsamples in
the training set [11], using different feature subsets of the training set [14], manipulating the
output targets [6], injecting randomness into algorithms [17].

Selecting appropriate base learners is the second stage to construct ensemble systems.
Instead of using all generated base learners, optionally, a subset of them is selected.
Investigations show that such a stage improves the performance of the ensemble system [19].

There are two strategies for the concept of base learner selection as the “direct strategy3”
and the “overproduce and choose strategy4”. Direct selection of base learners is done internally
by learning algorithm itself at the training phase such as selecting base learners with pruning
functions in boosting. In overproduce and choose strategy, firstly, lots of base classifiers are
generated and then a subset of them is selected by applying search algorithms or rules. These
rules or search algorithms evaluate base learners based on one or more evaluation criteria like
accuracy or diversity measure. Selecting best ones [18], selecting via heuristics [24], selecting
with genetic algorithms [21] are some selection techniques in literature.

Final stage of constructing ensemble systems is to combine selected base learners. In order
to combine base learners' outputs for final decision, a simple majority voting may be used (or a
simple averaging for regression). Or, another learning model5 may be constructed using base
learners' outputs (i.e. stacking [28]). Actually, many combination schemes have been proposed
which are based on different theories. Studies that convert class labels to continuous values
and apply regression to the converted values for combining classifier outputs even exist. More

3 This strategy is also known as dynamic selection, or, test and select methodology.

4 Static selection or selective ensemble terms are also used for this strategy.

5 This learning model is called as meta or strong learner.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 93

Mehmet Ozdemir, Ibrahim Sogukpinar; An Android Malware Detection Architecture based on Ensemble Learning,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 3 June (2014); pp: 90-106

details can be found Tulyakov et al.'s study which gives a comprehensive review of combination
schemes for classification problems under different categorizations [27].

In conclusion, main purpose of ensemble learning is to improve generalization of learning
models in general, not to find best accuracy for a specific dataset. Hence, accuracy of an
ensemble system may be lower than its best base learner but commonly are expected to be
higher than average. Though, ensemble systems' accuracies may be as high as their best base
learner's. For instance, Saso and Bernard constructed an ensemble system using stacking
scheme and they compared performance of their ensemble system with a best classifier chosen
from a cross validation. They reported that results were comparable [8].

3.2 Feature Selection

Representing applications as features may produce very high dimensional data. Number of
the features may be as high as tens of thousands. Running learning algorithms with this data
would increase time and space complexity. Instead of taking into account all of the produced
features; a subset of them is selected using a feature selection algorithm. Several studies
showed that, using such an algorithm may remove irrelevant and redundant feature and also
increase accuracy [2].

Guyon and Elisseeff presented a detailed review about feature selection [12]. Although
feature selection for unsupervised learning was mentioned, main focus of their study is
supervised learning. In the following part, feature selection for supervised learning will be
discussed briefly.

There are two general approaches for feature selection algorithms: The wrapper approach
and the filter approach [29]. The wrapper approach evaluates different feature subsets'
usefulness testing them on a specific learning algorithm. In a typical wrapper approach, a
feature subset is selected via a search algorithm and learning models are generated with
selected features by applying a cross validation, then accuracies of these models are measured.
After these operations, a new feature subset is selected by the search algorithm and previous
steps are repeated until the search algorithm terminates. Finally, features that have been used
to generate most accurate model are treated as selected features.

Different search algorithms can be used to traverse feature space including, exhaustive
search, greedy forward/backward search or genetic algorithms. Although exhaustive search can
find the optimum feature subset, other algorithms are generally preferred because multiple
models must be generated within a cross validation for each selected feature subset, and this
takes a large amount of time. If the number of features is very high, this approach would be
infeasible regardless of the selected search method. On the other hand, this approach is
multivariate which means presence of different features together is considered. This may be
important because some variables that are useless individually may be useful with other
features [12].

URL: http://dx.doi.org/10.14738/tmlai.23.261 94

http://dx.doi.org/10.14738/tmlai.23.261

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 3, June 2104

In the filter approach, features are selected by performing some statistical analysis on
features and labels. This approach doesn’t require generating learning models as in wrappers
and thus filters work faster than wrappers in general. Although it is possible to filter features
either individually (univariate6) or in subsets (multivariate), most of the filters are univariate.
Additionally, selected features by filters can be used on different learning algorithms.

In addition to the filter and the wrapper approaches, some authors mention another
method, the embedded approach. In this approach, selection operation is done at the training
phase by an internal function of learning algorithm (e.g. decision trees). This approach may
seem like the wrapper approach at first glance since selection operation is done on a specific
learning algorithm. In fact, they are different because embedded approach doesn't include
cross validation and repeated learning model generation for different feature subsets as in
wrappers.

4 DETECTION ARCHITECTURE
In this section, we present detection architecture in order to make predictions about

maliciousness of applications with high accuracy and high sensitivity. As discussed in previous
sections, instead of evaluating one aspect of applications with one algorithm, considering
different aspects with multiple algorithms may be useful. Discussed architecture has been
designed to serve such a purpose. Discussed architecture is component based and each
component represents a different type of evaluation in the problem. For example, feature
extraction/preprocessing/selection and base learner generation/selection/combination
operations can be done using different methods so that each instance of these methods are
implemented in different components. For example, static API call and static opcode are two
instances of feature extraction components.

There is a dependency among components of discussed architecture. Outputs of some
components may be inputs of other components. For example, base learner generation
components uses outputs of feature selection components and provides inputs for base learner
selection components. Steps to create an ensemble system for proposed architecture are
presented in Figure 1. Each step represents a component of the system and dependencies of
components can be observed from this Figure.

6 Also known as feature ranking or weighting.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 95

Mehmet Ozdemir, Ibrahim Sogukpinar; An Android Malware Detection Architecture based on Ensemble Learning,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 3 June (2014); pp: 90-106

Figure 1: Android malware detection architecture.

URL: http://dx.doi.org/10.14738/tmlai.23.261 96

http://dx.doi.org/10.14738/tmlai.23.261

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 3, June 2104

As seen in Figure 1, it is possible to extract features via static and dynamic analysis. Although
applications can be analyzed directly in static analysis, some preparation may be required
before dynamic analysis. In this study, API calls of byte code were collected by repacking and
hooking the API calls in byte code. API calls of native code were collected by using a trick on
Linux library loader (i.e. LD_PRELOAD trick).

Dynamic analysis is made on an emulator by sending random events via Android monkey and
also a tool is developed (ape) which sends fixed predetermined events such as touch and key
events. Additionally, some system events are sent like incoming call, sms and geo location
change events during dynamic analysis to reveal malicious intents.

An important point to consider for feature extraction process in Figure 1 is presence of
multiple datasets. Assume that, an application set is being analyzed with two static feature
extraction components: native API calls and Dalvik Byte API calls. Number of samples in outputs
of these two components may not be same because all Android applications have to contain
Dalvik byte code but native code is optional. Hence, sample count for native API call will be
smaller. Similar situation is valid for dynamic analysis. It can't be possible to repack and run all
applications on emulator, or even if they can be run, enough information may not be gathered.

If the number of extracted features per application is very high, a preprocessing operation can
be used to decrease feature size to an acceptable value. Although only univariate filters are
displayed in Figure 1 for preprocessing step, it is also possible to use multivariate filters.

Feature selection operations may be used to select most informative features or to increase
efficiency and effectiveness.

Feature extraction and selection operations prepare the datasets. In order to build learning
models from these datasets, samples for training and testing learners must be specified. For
this purpose, datasets are divided into three parts. First part is used to train and validate base
learners (60%). Second part is used to test base learners (25%). It is also used for
training/validating the meta learners when stacked generalization is used as combination
scheme. And third part is used to test meta learners (15%) which are generated using second
part's data. If the majority voting is chosen as combination scheme, only third part is used for
testing.

Base learners are also known as experts or weak learners. However, they can be as strong as
they can. For example, in order improve generalization, a cross validation is often applied and it
is a kind of ensemble method. So that weak learners aren't actually weak. Also, it is possible to
use another ensemble learning algorithm (e.g. adaboost) to create base learners as well.

There can be different datasets in the system as discussed previously. Base learners which are
generated using the same dataset are called in the same expert group. For instance, base
learners which are generated using the dynamic native API call dataset are called as native API
call experts and their group is called as native API call expert group.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 97

Mehmet Ozdemir, Ibrahim Sogukpinar; An Android Malware Detection Architecture based on Ensemble Learning,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 3 June (2014); pp: 90-106

Selection of base learners is an optional operation and all base learners may be chosen
directly instead of selecting some of them. However, if there are too many learners in the
system, selection may improve time efficiency, accuracy etc. Depending on number of learners,
different search algorithms and evaluation functions can be used.

Finally, in order to construct ensemble systems, selected base learners are combined. Only
majority voting and stacking displayed in Figure 1 but other techniques can be used too.

5 EXPERIMENTAL RESULTS AND EVALUATION
Proposed solution in this study is based on supervised learning. In general, a dataset 𝐷 is

given, which contains samples of the form 𝐷 = {(𝒙1,𝑦1), … , (𝒙𝑚,𝑦𝑚)} where 𝐱i values are
vectors like < 𝑥1, 𝑥2, … , 𝑥𝑛 > , and 𝑦𝑖 values are the set of possible
labels 𝑦 = {𝑏𝑒𝑛𝑖𝑔𝑛,𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠} . A hypothesis 7 ℎ:𝒙 → 𝑦 is generated using a learning
algorithm 𝐿 and the samples in 𝐷 . Then, generated hypothesis is used to identify new
applications whether they conform to a specific class.

In order to construct an ensemble system, a set of hypotheses 𝐻 will be generated using a set
of datasets 𝑫 and a set of learning algorithms 𝐿. Steps to create these sets are described in the
following sections.

5.1 Data Representation

1225 malware samples were used in this study which was collected by Zhou and Jiang [31].
Additionally, 1225 popular applications from different categories were downloaded from
Google Play via Google Play Crawler [5] and these applications considered as benign.

In order to provide a complete evaluation, 4 different feature type were extracted from
applications which are believed to complement of each other: Static and Dynamic Native API
calls, Static and Dynamic Dalvik Byte API calls.

Static Native API calls to Linux glibc and Android functions were extracted from applications
which contain one or more shared objects. Firstly, a vocabulary of used native functions was
created (𝑥 = {𝑙𝑜𝑔, 𝑠𝑒𝑛𝑑, … }) and then presence information of these functions per application
was recorded as a vector like 𝑥 = < 0, 1, … >. Static Dalvik Byte API calls to Java Core and
Android methods were also extracted similar way.

Dynamic analysis produces a sequence of API calls like log, log, send,.... In order to create a
vocabulary from sequence of calls, 2-gram representation was used, whose sliding window was
incremented by 1 (𝑥 = {𝑙𝑜𝑔 + 𝑙𝑜𝑔, 𝑙𝑜𝑔 + 𝑠𝑒𝑛𝑑, … }) . Presence information of 2-gram
sequences was stored in vectors as in static analysis.

7 I.e. classifier or learning model.

URL: http://dx.doi.org/10.14738/tmlai.23.261 98

http://dx.doi.org/10.14738/tmlai.23.261

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 3, June 2104

Although most of the methods for Dalvik Byte code were hooked, only a limited native
function was hooked for dynamic analysis because hooking all native functions brought an
enormous burden to the system since these calls are watched for a system process named
Zygote8. Hence, a limited native functions were chosen by considering static analysis results
(write, getuid, getenv, dup, etc.).

As discussed before, the number of samples in different datasets may not be same (e.g.
each application doesn’t have to contain a native code). Sample count of each created database
and the number of features within these datasets is presented in Figure 2. This figure gives a
summary of feature extraction, feature filtering, feature selecting and base learner generation
steps of proposed architecture. For instance, after the static native (sn) analysis, a dataset was
produced which contains 988 samples and 1.147 features. These features were processed with
two filtering algorithms and feature size was reduced to 1000. After that, feature selection
operations were applied to the filtered features. Information gain and chi square filters were
also used as selection algorithms and top 50 features were selected. Additionally, a wrapper
approach was applied for two filtered datasets, using forward search as search algorithm and
CART as learning algorithm. 3 and 4 features were selected by the wrapper approach based on
the error rates for information gain and chi square datasets respectively. Finally, a set of static
native dataset was created 𝐷 = {𝐷𝑆𝑁1,𝐷𝑆𝑁2,𝐷𝑆𝑁3,𝐷𝑆𝑁4}.

Figure 2: Data representation and base learner generation overview.

8 Zygote manages all system applications by forking child processes for each one.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 99

Mehmet Ozdemir, Ibrahim Sogukpinar; An Android Malware Detection Architecture based on Ensemble Learning,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 3 June (2014); pp: 90-106

Similar steps were applied for the other analysis types. Although most of the steps are
identical, number of selected features in dynamic dalvik (dd) analysis was 200 because when 50
features were selected divergence of learning models was very low. At the end, a set of
datasets was created which contains all type of dataset sets 𝑫 = {𝐷𝑠𝑛,𝐷𝑠𝑑 ,𝐷𝑑𝑛,𝐷𝑑𝑑}.

5.2 Generating Base Learners

Base learners were generated using the learning algorithms 𝑘-NN, NNet, SVMLinear,
SVMPoly, SVMRadial and CART. 𝑘-NN, NNet and SVM algorithms were used to generate base
learners from datasets which were created via filters. On the other hand, CART algorithm was
used for datasets that were created using wrapper approach (Fig. 2). General steps for creating
base learners are given in Algorithm 1.

Algorithm 1: Steps to generate base learners.

An important point in Algorithm 1 is the parameters of Train function. “k” parameter is used
in 𝑘-fold cross validation. And, “tune” parameter is used to try different meta parameter values
for the learning algorithm 𝐿. For example, default 𝑘 value for 𝑘-NN is 5 and when this algorithm
is used with a tune parameter value 5, 𝑘 = {5, 7, 9, 11, 13} values will be tried for each fold.

After generating base learners, diversities between each base learner pair were calculated
using disagreement measure with the formula in Equation 1 assuming K and M are two
classifiers, and a is the number of samples labeled as malicious by K while they were labeled as
benign by M, and b is the number of samples labeled as benign by K while they were labeled as
malicious by M, S is the total sample count. Disagreement measure values which close to 0
means less divergent pairs.

URL: http://dx.doi.org/10.14738/tmlai.23.261 100

http://dx.doi.org/10.14738/tmlai.23.261

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 3, June 2104

𝑑𝑖𝑠𝐾𝑀 =
𝑎 + 𝑏
𝑆

(1)

Disagreement measure is a pair wise measurement and it is possible to display produced
diversities between base learner pairs. Figure 3 presents diversity-error rate and diversity-
sensitivity diagrams using the Equations 2 and 3 for error rate and sensitivity respectively. This
figure shows that diverse base learner generation approaches were successful (e.g. using
different learning algorithms). For example, there are some base learner pairs whose diversity
measure is almost 0.1 in the static Dalvik byte code dataset. Considering the number of samples
in this dataset (2.449), diversity measurement value 0.1 of a base learner pair means that pairs
have 244 different predictions.

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
FP + FN

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

(a) Static Native

(b) Static Dalvik Byte

(c) Dynamic Native

(d) Dynamic Dalvik Byte

Figure 3: Diversity-Error Rate and Diversity-Sensitivity diagrams for each type of dataset. Error rate and
sensitivity were denoted by y-axis while diversity was denoted by x-axis.

5.3 Constructing Ensemble Systems

In order to construct ensemble system, three types of combination scheme were applied.
First one was a simple majority voting. When number of votes was equal for the majority voting,
the final output was produced as malicious in order to increase sensitivity. Second scheme was
stacking which evaluates all base learners' outputs with multiple learning algorithms. And the
third scheme was stacking too but instead of using all base learners, a subset of them was
selected before combination using a simple heuristic as in Algorithm 2.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 101

Mehmet Ozdemir, Ibrahim Sogukpinar; An Android Malware Detection Architecture based on Ensemble Learning,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 3 June (2014); pp: 90-106

Algorithm 2 proposes a base learner selection approach based on selecting most and least
learners considering their accuracy and sensitivity. Since predictions of selected experts will be
used to build meta learning models (i.e. stacking), learning the least cases as the most cases
would be useful. Hence, base learner pairs were selected using the FindMost*Pair and
FindLeast*Pair methods considering the produced values in Figure 3. When there are multiple
pairs with the same accuracy, the most accurate pair was selected by considering the most
divergent and the most sensitive pair in order.

Algorithm 2: Base learner selection algorithm.

Accuracy and sensitivity results are given in Table 1 for discussed three schemes. As seen,
majority voting produced 100% sensitive output for both cases. However, its accuracy was not
high as expected. Although selecting a base learner subset hasn't an obvious gain over using all
base learners, it can be seen that the two most accurate (97.87%) and the two most sensitive
(99.46%) outputs for stacking were obtained from the selected learners.

In Table 1, only accuracy and sensitivity values were given since the motivation of this study
is to increase these metrics for malware detection problem. Other metrics can be inference
intuitively from these values (e.g. specifity).

Table 1: Accuracy and sensitivity results of combination schemes

Use All Base Learners Use Selected Base Learners

Accuracy Sensitivity Accuracy Sensitivity

𝒌-NN 97.33 98.91 97.07 98.91

NNet 97.33 98.91 97.87 99.46

SVMLinear 94.67 93.48 93.60 93.48

SVMPoly 96.80 98.91 97.07 99.46

SVMRadial 97.07 98.37 97.87 97.83

CART 96.00 97.28 96. 00 97.28

Majority Voting 91.47 100.0 90.40 100.0

URL: http://dx.doi.org/10.14738/tmlai.23.261 102

http://dx.doi.org/10.14738/tmlai.23.261

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 3, June 2104

Combining base learners’ outputs for stacking requires a missing value handling operation
because there will be extra samples in some base learners' outputs since different type of
datasets were used. For instance, it isn't sensible to force a native code expert to produce a
prediction about an application that doesn't have native code. Hence, we have applied a global
constant replacement policy for such missing values to indicate that this expert doesn't have an
opinion about related sample. “0” and “1” values were used to indicate benign and malicious
predictions respectively, and “2” was used to indicate no opinion.

5.4 Evaluation

As seen in Figure 3, static native analysis gives very accurate and sensitive results. However,
only less than half of the applications contain native code. Hence, main point for comparison
must be Dalvik byte analysis. Static native Dalvik analysis' best accuracy was 97.22% and best
sensitivity was 98.67% which are produced from different base learners. On the other hand,
dynamic Dalvik analysis' best sensitivity was 100.0% but best accuracy was only 85.35%.

Ensemble system with the proposed selection algorithm was produced 97.87% accuracy and
99.46% sensitivity. This value is higher than static Dalvik, dynamic Dalvik and dynamic native
analyses and also comparable with static native analysis. Furthermore, ensemble system
provides more complete solution since different aspects was considered.

As seen from the evaluation results, ensemble learning provided more accurate and
complete solution by considering different aspects of applications. On the other hand, since
ensemble systems are constructed with lots of base learner, time needed to construct an
ensemble system is larger than generating a single learner. However, once features are
extracted and selected, base learners can be generated in parallel.

Feature extraction process for dynamic analyses generally takes much longer time than
static analyses. In this study, static features were extracted within minutes but dynamic feature
extraction took about a week using a single emulator. However, using more than one emulator
or device can easily solve this problem.

6 CONCLUSION AND FUTURE WORK
The objective of this study was to solve malware detection problem by proposing

architecture based on ensemble learning. For this purpose, different types of features were
extracted with multiple methods and these features were processed by multiple mining
algorithms in order to generate diverse base learners. Then, results of these base learners were
combined in the scope of ensemble learning. Results show that using such architecture
increases accuracy and sensitivity of detection operation.

Researchers have proposed lots of Android malware detection studies so far. However, a
direct comparison of our results with these studies wasn’t supplied for several reasons. First of

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 103

Mehmet Ozdemir, Ibrahim Sogukpinar; An Android Malware Detection Architecture based on Ensemble Learning,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 3 June (2014); pp: 90-106

all, one of the objectives of this study was to show benefits of ensemble learning for malware
detection. Secondly, this study isn’t a competitor of other detection tools; some tools can be
adapted to this study as a feature extraction component so that they can be used to create new
expert groups (e.g. [9]).

Since this study showed benefits of ensemble learning for malware detection problem, we
will continue to add and try new components. For example, different evaluation criteria can be
used in mining algorithms to improve accuracy and sensitivity. Or, different diversity
measurements can be tried. We are also studying to improve accuracy by selecting a subset of
benign applications among half a million applications.

7 ACKNOWLEDGMENT
We collected benign applications using “Google Play Crawler”, which is developed by Ali

Demiroz to support this study, thanks Ali. We also thanks to Zhou and Jiang for sharing their
malware collection with us.

“apktool”, “smali” and “baksmali” applications were used as reverse engineering tools.
Additionally, “R” and its various packages were used for data mining algorithms.

REFERENCES

[1]. Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Ma-chine Learning). The
MIT Press (2004)

[2]. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. ARTIFICIAL
INTELLIGENCE 97, 245-271 (1997)

[3]. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: A survey and categorisation.
Journal of Information Fusion 6, 5-20 (2005)

[4]. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-based mal-ware detection system
for android. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices. pp. 15-26. SPSM '11, ACM, New York, NY, USA (2011)

[5]. Demiroz, A.: Google Play Crawler (2013), https://github.com/Akdeniz/ google-play-crawler, [Online;
accessed 1-April-2014]

[6]. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research 2, 263-286 (1995)

[7]. Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Sys-tems, Lecture Notes
in Computer Science, vol. 1857, pp. 1{15. Springer Berlin Heidelberg (2000)

[8]. Deroski, S., enko, B.: Is combining classifiers with stacking better than selecting the best one?
Machine Learning 54(3), 255-273 (2004)

URL: http://dx.doi.org/10.14738/tmlai.23.261 104

http://dx.doi.org/10.14738/tmlai.23.261

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 3, June 2104

[9]. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.: Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones. In: Proceedings of
the 9th USENIX conference on Operating systems design and implementation. pp. 1-6. OSDI'10,
USENIX Association, Berkeley, CA, USA (2010

[10]. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification. In:
Proceedings of the 16th ACM Conference on Computer and Com-munications Security. pp. 235-245.
CCS '09, ACM, New York, NY, USA (2009)

[11]. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting.
Annals of Statistics 28, 2000 (1998)

[12]. Guyon, I.: An introduction to variable and feature selection. Journal of Machine Learning Research 3,
1157-1182 (2003)

[13]. Hansen, L., Salamon, P.: Neural network ensembles. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 12(10), 993-1001 (Oct 1990)

[14]. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal.
Mach. Intell. 20(8), 832-844 (Aug 1998)

[15]. Kantardzic, M.: Data Mining: Concepts, Models, Methods and Algorithms. John Wiley & Sons, Inc.,
New York, NY, USA (2002)

[16]. Kuncheva, L., Whitaker, C.: Measures of diversity in classifier ensembles and their relationship with
the ensemble accuracy. Machine Learning 51(2), 181-207 (2003)

[17]. Kwok, S.W., Carter, C.: Multiple decision trees. In: Proceedings of the Fourth Annual Conference on
Uncertainty in Artificial Intelligence. pp. 327-338. UAI '88, North-Holland Publishing Co., Amsterdam,
The Netherlands, The Netherlands (1990)

[18]. Partridge, D., Yates, W.B.: Engineering multiversion neural-net systems. NEURAL COMPUTATION 8,
869-893 (1995)

[19]. Petrakos, M., Benediktsson, J.A., Kanellopoulos, I.: The effect of classifier agree-ment on the accuracy
of the combined classifier in decision level fusion. IEEE T. Geoscience and Remote Sensing 39(11),
2539-2546 (2001)

[20]. Sahs, J., Khan, L.: A machine learning approach to android malware detection. In: Intelligence and
Security Informatics Conference (EISIC), 2012 European. pp. 141-147 (Aug 2012)

[21]. dos Santos, E., Sabourin, R., Maupin, P.: Single and multi-objective genetic al-gorithms for the
selection of ensemble of classifiers. In: Neural Networks, 2006. IJCNN '06. International Joint
Conference on. pp. 3070-3077 (2006)

[22]. Schmidt, A.D., Schmidt, H.G., Clausen, J., Yksel, K.A., Kiraz, O., Camtepe, A., Albayrak, S.: Enhancing
security of linux-based android devices. In: in Proceedings of 15th International Linux Kongress.
Lehmann (Oct 2008)

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 105

Mehmet Ozdemir, Ibrahim Sogukpinar; An Android Malware Detection Architecture based on Ensemble Learning,
Transactions on Machine Learning and Artificial Intelligence, Volume 2 No 3 June (2014); pp: 90-106

[23]. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: andromaly: a behavioral malware detection
framework for android devices. Journal of Intelligent Information Systems 38(1), 161-190 (2012)

[24]. Sharkey, A.J., Sharkey, N.E.: Combining diverse neural nets. THE KNOWLEDGE ENGINEERING REVIEW
12, 231-247 (1997)

[25]. Tang, E., Suganthan, P., Yao, X.: An analysis of diversity measures. Machine Learning 65(1), 247-271
(2006)

[26]. Teu, P., Kraxberger, S., Orthacker, C., Lackner, G., Gissing, M., Marsalek, A., Leibetseder, J.,
Prevenhueber, O.: Android market analysis with activation pat-terns. In: Prasad, R., Farkas, K.,
Schmidt, A., Lioy, A., Russello, G., Luccio, F. (eds.) Security and Privacy in Mobile Information and
Communication Sys-tems, Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol. 94, pp. 1-12. Springer Berlin Heidelberg (2012)

[27]. Tulyakov, S., Jaeger, S., Govindaraju, V., Doermann, D.: Review of classifier com-bination methods. In:
In Machine Learning in Document Analysis and Recognition. Informatica 34 (2010) 111118 S.
Vemulapalli et al (2008)

[28]. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241-259 (1992)

[29]. Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. pp.
856-863 (2003)

[30]. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone applica-tions in third-party
android marketplaces. In: Proceedings of the second ACM con-ference on Data and Application
Security and Privacy. pp. 317-326. ACM (2012)

[31]. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: Security and
Privacy (SP), 2012 IEEE Symposium on. pp. 95-109 (May 2012)

[32]. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious apps in
official and alternative android markets. Proceedings of the 19th Annual Network and Distributed
System Security Symposium pp. 5-8 (2012)

[33]. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial
Intelligence 137(12), 239-263 (2002)

URL: http://dx.doi.org/10.14738/tmlai.23.261 106

http://dx.doi.org/10.14738/tmlai.23.261

	An Android Malware Detection Architecture based on Ensemble Learning
	Abstract
	1 Introductin
	2 ReLATED WORKS
	3 Overview
	3.1 Ensemble Learning
	3.2 Feature Selection

	4 detection Architecture
	5 Experimental Results and Evaluation
	5.1 Data Representation
	5.2 Generating Base Learners
	5.3 Constructing Ensemble Systems
	5.4 Evaluation

	6 Conclusion and FUTURE work
	7 Acknowledgment
	References

