

DOI: 10.14738/tmlai.51.2549
Publication Date: 12th February, 2017
URL: http://dx.doi.org/10.14738/tmlai.51.2549

Kannada Named Entity Recognition and Classification using

Support Vector Machine

1S Amarappa, 2S V Sathyanarayana
1Department of TCE, Jawaharlal Nehru National College of Engineering, Shimoga - 577 204, India;

2Department of E & C, Jawaharlal Nehru National College of Engineering, Shimoga - 577 204, India;
amarappas@yahoo.com; svs.tce@gmail.com

ABSTRACT

Named Entity Recognition and Classification (NERC) is a process of identification of proper nouns in the

text and classification of those nouns into certain predefined categories like person name, location,

organization, date, time etc. Kannada NERC is an essential and challenging work which aims at developing

a novel model based on Support Vector Machine. In this paper, tf-idf and POS features are used, which

are extracted from a training corpus created manually. Furthermore, the model is trained and tested with

different kernels: polynomial, rbf, sigmoid and linear kernels. The details of implementation and

performance evaluation are discussed. The experiments are conducted on a training corpus of size 1,

51,440 tokens and test corpus of 7,000, 11,000, 15,000, 20,000, 30,000, 40,000 and 50,000 tokens. It is

observed that the model works with an average precision, recall and F1-measure of 87%, 88% and 87.5%

respectively for a linear kernel SVM on the test corpus of 7,000 tokens.

Keywords: Natural Language Processing; Hyperplane; Support vectors; Named Entity Recognition;

Classification; Support vector machine; Training Corpus; Test Corpus.

1 Introduction

Natural Language Processing (NLP) has two major tasks: Natural Language Understanding (NLU) and

Natural Language Generation (NLG) [1]. NLU deals with machine reading comprehension, i.e., the level of

understanding of a text or message. NLG is the task of generating natural language from a machine

representation system such as a knowledge base. Apart from NLG and NLU, the other tasks to be done in

NLP include automatic summarization, Information Extraction (IE), Information Retrieval (IR), Named

Entity Recognition (NER) etc.

In NLP, the primary goal of IE and IR is to automatically extract structured information. NERC is a typical

subtask of IE [2]. NERC involves processing of structured and unstructured documents and identifying

proper names that refer to persons, organizations, locations (cities, countries, rivers, etc.), date, time, etc.

The aim of NERC is to automatically extract proper names that are useful to address many problems such

as Machine Translation, Information Extraction, Information Retrieval, Question Answering, and

Automatic Text Summarization etc., [3].

India has more than 1,652 mother tongues of which 22 are scheduled languages included in the

Constitution. Among the 22 scheduled languages, Kannada is one of the major Dravidian languages of

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 44

India, spoken predominantly in the state of Karnataka. The Karnataka official language Act 1963

recognized Kannada as its official language. Kannada, whose native speakers are called Kannadigas

(Kannadigaru) number roughly 40 million, making it the 33rd most spoken languages in the world (”Census

2001: Languages by state”. censusindia.gov.in. Retrieved on 12 February 2013).

1.1 Kannada language features

The language uses forty-nine phonetic letters, divided into three groups: swaragalu (vowels – thirteen

letters); vyanjanagalu (consonants – thirty four letters); and yogavaahakagalu (neither vowel nor

consonant - two letters: the anusvara and the visarga), similar to the vowels and consonants of English.

The character set is almost identical to that of other Indian languages. This language is inflected with three

genders (masculine, feminine, and neutral) and two numbers (singular and plural). The Noun is inflected

by various factors such as case, number and gender. It is a free-word order language with rich heritage

and large grammar.

1.2 Challenges and Issues specific to Kannada language

Kannada is one of the many Indian languages, presenting a large set of complications. Processing of

Kannada language and extraction of named entities on the phrasal semantics basis is challenging because

of the reasons:

o Kannada is a highly agglutinating and inflected language.

o Kannada language has no capitalization.

o It has a Brahmi script with high phonetic characteristics that could be utilized by NERC system.

o There is non-availability of large gazetteer, lack of annotated data, lack of standardization and

spelling.

o There are a number of frequently used words (common nouns), which can also be used as names.

o These nouns act as adjectives in many contexts and handling these nouns carefully is very much

essential. Phrasal semantic analysis of these nouns is interesting.

o As there is lack of annotated data, the whole corpus is annotated by hand. While annotating, care

is taken on overlaps among types of Named Entities (NEs). NE overlaps of this kind are carefully

tagged based on the phrasal context.

Examples of NE overlaps are:
o Common noun vs. proper noun: ‘surya’ which means sun may be person’s name.

o Organization vs. person name: ‘TaTa’, person name as well as an organization name.

o Organization vs. place name: Mumbai meets Chennai at Bangalore. Here ‘Mumbai’ and ‘Chennai’

are names of playing teams rather than the names of cities.

o Person name vs. place name: The word ‘kashi’ is used as a person name as well as the name of a

place.

1.3 Motivation

From the survey carried out in Section 2, it is observed that a lot of work on NERC has been done in English

and other foreign languages. NERC work in Indian languages is still in its initial stage. As far as Indian

languages are concerned, some works related to NERC are found in Hindi, Bengali, Telugu, Tamil, Oriya,

Manipuri, Punjabi, Marathi and Assamese languages. But in Kannada language, NERC work is not yet

reported except our former works using Hybrid approach [27], Hidden Markov Model (HMM) [28],

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 45

Multinomial Nave Bayes (MNB) classifier [29] and Continuous Random Fields (CRF) [30]. The experimental

results of all the methods are encouraging; nevertheless the works on NERC in Kannada are to be

investigated and implemented with different statistical approaches apart from HMM, MNB and CRF. This

has motivated us to take up NERC in Kannada using Support Vector Machine (SVM) classifier as the

projected research paper.

1.4 Novelty in this work

With the challenges and issues in Kannada language, we propose the application of Support Vector

Machine to resolve the problem of the NERC for Kannada language. We find the work carried out has

novelty factors in many respects as mentioned here under:

o The main contribution is that there has been no SVM method available for Kannada language;

therefore we ought to deal with the problem from the scratch. This is the first solution of its kind

to the problem of NERC using SVM for Kannada language.

o Support Vector Machine model was already used to solve the NERC problem in other languages,

but we have to deal with the effort of creating an annotated dataset for the previously neglected

language.

o As the annotated Kannada corpus (Unicode) is not available, the whole raw corpus that we have

shaped is manually tagged and is checked by local linguistic experts. While annotating we have

used fine-grained tags as mentioned in IJCNLP-2008 NERSSEAL shared task data set.

o The work is explained in detail and furthermore, it provides an interesting view over the status of

the art with respect to NLP solutions for Indian languages.

o The essence of this work is, tuning up of the SVM idea to the Kannada language NERC.

o The language text is not transliterated (unlike the NERC in other Indian languages) to Roman;

instead it is honestly taken from Unicode text files typed by us and trained our model. The test

data is also taken from Unicode text files.

o We have used the document classification perception for individual tokens, treating them as

independent documents. The features extracted from the training corpus include ‘tf-idf’ features

and parts of speech tags. From these features Support Vector Machine hyperplane is estimated.

This contribution towards Kannada NLP is expected to be a motivation for young researchers and for the

readers interested in Information Extraction from natural languages. The application of the results of this

work is relevant mostly to research, dealing with Indian languages. So, the work is definitely relevant as it

boosts up the scientific developments related to the processing of the Kannada language. Furthermore,

the proposed solution was experimentally tested with a variety of test-set sequences and the results are

encouraging.

The paper presents in detail the implementation and evaluation of a solution for Named Entity

Recognition based on Support Vector Machine for the Kannada language. The results obtained from the

proposed model are quite encouraging with an average accuracy of 87% for a linear kernel. The rest of

this paper is organized as follows: Section 2 discusses about the details of existing work. Section 3 deals

with Support Vector Machine principles which are used for NERC in the paper. The proposed methodology

and implementation details are dealt in Section 4. The SVM classifier’s evaluation measurements are

discussed in Section 5. Finally the results are evaluated and discussed in Section 6 followed by conclusions

in Section 7.

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 46

2 Existing work

The NLP started way back in the 1940s and from then to 1980s, the NLP systems were based on complex

sets of hand-made rules. After 1980s, machine learning algorithms were used in NLP research and recent

NLP algorithms are based on statistical machine learning. The term Named Entity was introduced in the

sixth Message Understanding Conference (MUC-6) [4]. The different techniques for addressing the NERC

problem include: Hidden Markov Models (HMM) (D.Bikeletal, 1997), Decision Trees (S.Sekine, 1998),

Maximum-Entropy Models (ME) (A.Borthwick, 1998), Support Vector Machines (SVM) (M.Asahara &

Matsumoto, 2003), and Conditional Random Fields (CRF) (A.McCallum & Li, 2003) [31].

A lot of NLP work has been done in English, as there is an enormous amount of data available in it. A

voluminous work is done in most of the other European languages, some of the Asian languages like

Chinese, Japanese, Korean and other foreign languages like Arabic, etc. NLP research in Indian languages

is at the initial stage, as annotated corpus and other lexical resources have started appearing recently. In

computational linguistics, Kannada is lagging far behind, compared to other Indian languages. In the

following paragraphs, we present a brief survey of research on NERC in Indian languages including

Kannada. This is not a comprehensive and thorough survey, but is an indication of current status in NERC

research.

Few works on NER in English language are: In [12] the authors have built a CRF based NER system that

achieves 91.02% F1-measure on the CoNLL 2003 dataset. An overview of the techniques employed to

develop domain specific NER systems is dealt in [13]. In [14] the authors have devised an unsupervised

NER by generating Gazetteers and resolving ambiguity.

In [5] the authors have developed an algorithm for rule based NER in Urdu. In [6] the authors carried out

a work on Person Name Entity Recognition for Arabic. Reference [7] discusses about SVM based language

independent NER. Reference [8] discusses about the first step towards Assamese NER. In [9] the authors

have developed a system using CRF approach for NER in Bengali and Hindi. In [10] the authors have

developed NER system for Bengali. Reference [11] discussed about Bengali NER using SVM.

In [15] the authors have developed a system for NER in Hindi using Max-Entropy and Transliteration. In

[16] the authors have developed Hindi NER by aggregating rule based heuristics and HMM. Reference [17]

discusses a composite kernel for NER. In [18] the authors have experimented NER using HMM on Hindi,

Urdu and Marathi languages. Reference [19] gives introduction to the CoNLL- 2003 shared task a language-

independent NER. Reference [20] discussed about a language independent NER system for Bengali & Hindi

using SVM. Reference [21] deals with a model on CRF based NER in Manipuri. Reference [22] deals with

SVM based NER for Manipuri. Reference [23] presents the construction of a hybrid, three stages NER for

Tamil. In [24] the authors have developed a tourism domain focused NER for Tamil using CRF. Reference

[25] describes a Max-Ent, NER system for Telugu. Reference [26] discusses about Telugu NER using

language dependent features and rule based approach.

In Kannada language, the only papers available are [27], [28], [29] and [30]. In [27] the authors have

carried out Named Entity Recognition Classification and Extraction (NERCE) for Kannada language using

hybrid approach, which combines man made rules and Hidden Markov Model (HMM) on a small training

corpus of 10,000 tokens and text corpus of 1000 tokens and the experimental results are good with an

average F1-measure of 94.85%. In [28] the authors have carried out NERC using Hidden Markov Model

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 47

(HMM) on a small training corpus of 10,000 tokens and text corpus of 1000 tokens and the experimental

results are encouraging with an average F1-measure of 86%. In [29] we have carried out Kannada NERC

based on Multinomial Naïve Bayes (MNB) Classifier and achieved an average F1-measure of 81% on a

training corpus of 95,170 tokens and test corpus of 5,000 tokens. In [30] we have carried out Kannada

NERC based on Conditional Random Fields (CRF) and achieved an average F1-measure of 82% on a training

corpus of 95,127 tokens and test corpus of 5,000 tokens.

3 Support Vector Machine

Although the details of Support Vector Machine (SVM) are well established in the literature, we reiterate

the information essential to our research. Support Vector Machine (SVM) is a supervised learning method

used for binary classification, regression and outlier’s detection. SVM has a simple structure and is derived

from statistical learning theory by Vladimir Vapnik and his colleagues in 1992. Given some data points,

each belonging to one of two classes and the goal is to decide to which class a new data point belongs. In

SVM, a data point is viewed as an n-dimensional vector in n-dimensional space V = Rn and we want to

know whether we can separate such points with an (n - 1) dimensional hyper plane (canonical plane).

There are many hyperplanes that might classify the data but, the best one is with the largest margin. A

hyperplane is a subspace of one dimension less than its ambient space. A hyperplane of an n-dimensional

space V is a subset with dimension n-1 in V that separates the space into two half spaces. The hyper plane

is found by using a subset of training points in the decision function called support vectors, and the margin.

To find the margin, two parallel supporting planes are constructed, one on each side of the canonical

plane.

3.1 Multi-class SVM

Multiclass classification aims at classifying data points belonging to more than two classes with the

assumption that each sample is assigned to one and only one label.

The dominant approach for multiclass classification is to reduce the single multiclass problem into

multiple binary classification problems. Common approaches of reducing a multiclass problem into

multiple binary classifiers include:

o One-versus-the-rest also known as one-versus-all strategy aims at fitting one classifier per class.

If there are n-classes of data points then for each classifier, the class is fitted against all the other

n-1 classes and hence it requires n classifier models to be trained. Since each class is represented

by one and one classifier only, it is possible to gain knowledge about the class by inspecting its

corresponding classifier. This is the most commonly used strategy and is a fair default choice.

o One-versus-one approach (Knerr et al., 1990) constructs one classifier per pair of classes. At

prediction time, the class which received the most votes is selected. If n is the number of data

classes, then n * (n - 1) / 2 classifiers are to be constructed and each one trains data from two

classes. Since it requires to fit n * (n - 1) / 2 classifiers, this method is usually slower than one-vs-

the-rest approach. The basic principle of a binary SVM classifier is derived from the geometrical

equation of a straight line y = mx+b, thus defining a linear discriminant function,
 () Tg x w X b  (1)

In the Equation (1), w = [w1, w2]; w1 and w2 are weights of x and y respectively, with ‘b’ being the intercept

to y-axis. The weights w1 and w2 may be positive or negative. X is a vector in two-dimensional space. The

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 48

line wT X + b = 0, is used as a hyperplane in two class classification problems. In SVM, the hyperplane

should be found such that it maximizes the margin separating the positive training points from the

negative training data points. The Lagrange multiplier of Equation (2) is used to obtain optimized

hyperplane, where the term ½||w||2 should be minimized, subject to the constraints Yi (wT X + b) ≤ 1.

n
2 T

P i i i

i=1

1
L (w, b,)= ||w|| - (Y (w +b)-1)

2
  (2)

Such that αi ≥ 0. Solving the Equation (2), gives w1, w2, b, and αi. These parameters determine a unique

maximal margin solution. The two parallel positive class and negative class supporting planes are

constructed, one on each side of the hyperplane by the constraints:

 = +1Tw X b (3)

 = -1Tw X b (4)

4 Proposed work and Methodology

The main aim of this work is to develop a supervised statistical machine learning NERC system for Kannada

language based on SVM. NERC involves identification of proper names in texts, and classification of those

names into a set of pre-defined categories of interest such as: person names (names of people),

organization names (companies, government organizations, committees, etc.), location names (cities,

countries etc.), and miscellaneous names (date, time, number, percentage, monetary expressions,

number expressions and measurement expressions). The functional block diagram of the proposed

system is as shown in Figure 1.

Text Corpus

NE Tagged

Training-set

Test-set

NE Tagged

Dev-test-set

(validation-set)

Training-set

X=Words (Symbols)

Tokenize the training

corpus and separate

words and tags

Y = Tags (Labels)

SVM

Model estimation

tf-idf vecorizer

hyper plane wT x + b = 0

SVM Predictor

Cosine-similarity

or

sign(y(wT x + b))

Predicted Tags of

Dev-test-set

Dev-test-set

Unknown Entities

Untagged

Test-set

Actual Tags of

Dev-test-set
Model Evaluation

Metrics for

development set

Actual Tags of

Test-set (manual)

FINAL Tagged

OUTPUT

Predicted Tags of

Test-set

Model performance

for test data

Preprocessing stage

Validation stage

Testing stage

Training stage

Development-set

Figure 1: SVM model for Kannada NERC

This Section deals with the design and development of NERC system based on the SVM model. We resent

the details of the methodology, design, and development of the proposed system. The machine learning

used in the work is fully supervised SVM. The features extracted from the training corpus include POS tag

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 49

features, term frequency features and inverse document frequency features. The model is trained and

tested with different kernels: polynomial, rbf, sigmoid and linear kernels.

4.1 Corpus creation and usage

Kannada NERC is very hard without tagged corpus and hence we manually tagged about 150K Kannada

words. This Kannada corpus is used to build the NERC Model. The manually tagged corpus includes: Part

of EMILLE (Enabling Minority Language Engineering) corpus [http://www.ciil.org/Schemes.aspx (Linguistic

Data Consortium for Indian Languages (LDCIL))], a part of the corpus taken from web articles and part of

the corpus extracted from Kannada books. The entire corpus is tagged based on the phrasal semantics

taking the text context into consideration. The whole corpus is divided into two sets: Development-set

and Test-set as shown in Figure 1. First, select the Development-set and then subdivide it into the Training-

set and development test set (Dev-test- set). The Training-set is used to train the model and the Dev-test-

set is used to perform error analysis. The Test-set serves for the final evaluation of the system. The

machine learning used in the work is fully supervised SVM.

The data set is annotated by four annotators with a common agreement. Tag set is chosen exactly similar

to that of tag set used in IJCNLP-2008 NERSSEAL shared task data set. While annotating the corpus

manually, Named Entity (NE) overlaps are carefully tagged based on the phrasal context. Examples of NE

overlaps are mentioned in Section 1.2. The corpus created is having 70% to 80% of distinctive words of

Kannada language.

For a binary SVM classifier the input training-set consists of ‘N’ number of data points in the form (Xi, yi)

where, Xi Є (X1, X2 … XN) and yi Є (+1, −1). Moreover Xi is a point in two dimensional vector space (Xi Є R2)

and represents the contextual information of the tagged word.

In this paper we have used thirteen Named Entities (NEs) with twenty two tags as indicated in Table 1. A

non-named entity is tagged as ’NONE’ with label ’22’. Person name has 4 tags, where the tag NEP is used

for person names having only one word in it. If person name is of two words, first word is tagged with

NEPB and second word with NEPE and further if person name is of more than two words, first word is

tagged with NEPB, last word is tagged with NEPE and intermediate words are tagged with NEPI. The same

rules are followed for locations and organizations also (Table 1).

The sample of training corpus is: Training-set X = [(amar, NEP), (jnnce, NEO), (shimoga, NEL), (shimoga,

NEL), (jnnce, NEO), (Davanagere, NEL), (shimoga, NEL), (pesitm, NEO), (sathyanarayana, NEP)].

4.2 Pre-processing stage

The tagged training text corpus is tokenized into words (symblols) and tags (states / classes). The

separated words are X = [w1, w2, w3 … wN] and separated tags are Y = [y1, y2, y3 … yN]. Each tag in Y is

assigned a number called label, i.e., yi Є (0, 1, 2 … 22) (or yi Є (c0, c1 … c22)) as given by:

[’NEP:0’, ’NEPB:1’, ’NEPI:2’, ’NEPE:3’, ’NEL:4’, ’NELB:5’, ’NELI:6’, ’NELE:7’, ’NEO:8’, ’NEOB:9’, ’NEOI:10’,

’NEOE:11’, ’NED:12’, ’NETE:13’, ’NETP:14’, ’NETO:15’, ’NEB:16’, ’NEM:17’, ’NEN:18’, ’NETI:19’, ’NEA:20’,

’NE:21’, ’NONE:22’].

For the sample training-set mentioned in Step 1, tokenize and separate words and tags/labels: Separated

words: X = [amar, jnnce, shimoga, shimoga, jnnce, davanagere, shimoga, pesitm, sathyanarayana] and

Separated tags/labels: Y = [NEP:0, NEO:8, NEL:4, NEL:4, NEO:8, NEL:4, NEL:4, NEO:8, NEL:4].

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 50

Table 1. Named Entity Tag set

We are using the concept of document classification where, each input word is treated as a document

and tag as its class: for the above example we have the details as mentioned in Table 2.

Table 2. Each word is a document

Document

No.

word (x)

tag (y)

D1 amar NEP

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 51

D2 jnnce NEO

D3 shimoga NEL

D4 shimoga NEL

D5 jnnce NEO

D6 davanagere NEL

D7 shimoga NEL

D8 pesitm NEO

D9 sathyanrayana NEP

4.3 Training stage

The various steps of training the model are as given below:

3.1 Input to the training stage are X and Y

3.2 The model finds important words (vocabulary features) by removing repeated words and stop

words from X. The model also finds unique tags/ labels from Y. The vocabulary feature words are

W = [w1, w2, w3 … wn] and unique tags are Y = [y1, y2, y3 … yk].

For the sample training-set mentioned in Step 1, the important words (vocabulary features) by

removing repeated words and stop words are: W = [w1: amar, w2: jnnce, w3: shimoga, w4:

davanagere, w5: pesitm, w6: sathyanarayana] and the unique tags/labels are Y = [NEP: 0, NEO: 8,

NEL: 4].

3.3 Find raw count of each vocabulary word of W in Training-set, i.e., term frequencies tf.

3.4 The term-frequency is a measure of how many times a particular term of W, is present in the

document of Training-set X=[x1, x2 … xN] (or D= [d1, d2 … dN]). In our model, each word of X is

treated as a document (word x1 = document D1). The term-frequency is defined as a counting

function and is given in Equation (5).

tf(t, d) = ∑ fr(x, t)x ∈ d (5)

Where fr(x, t) is a simple function, defined by Equation (6).

fr(x, t) = {
1, if x = t

 0, otherwise
 (6)

The tf(t, d) returns count of t in document d. The tf(t, d) in matrix form is denoted by Equation

(7).

M|D|×F = (Mtrain) (7)

3.5 Find inverse document frequency idf(t) of training corpus defined by the function P(t|d) =
|{d:t∈d}|

|D|
 , so idf is define as Equation (8).

idf = − logP(t|d)

 = log
1

P(t|d)

 idf(t) = ln (
|D|+1

1+ |{d:t∈d}|
) + 1

 (8)

Here |{d: t ∈ d}| is the number of documents where the term t appears; when the term-

frequency function satisfies tf(t, d) ≠ 0. It should be noted that adding 1 into the formula above

avoids zero division.

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 52

3.6 Now to find tf-idf use the following steps tf-idf is found using Equation (9).

3.6.1. tf − idf = tf(t, d) × idf(t) (9)

3.6.2. Find idf for each feature present in the feature matrix with the term frequency
and idf weights can be represented by a vector as given by Equation (10).

𝑖𝑑𝑓→
𝑡𝑟𝑎𝑖𝑛 = [𝑖𝑑𝑓(𝑡1), 𝑖𝑑𝑓(𝑡2) … 𝑖𝑑𝑓(𝑡𝑘)] (10)

3.6.3. tf-idf matrix of training set in un-normalized form is found by:

Now the tf matrix, M|D|×F = Mtrain of Equation (7) and the idf matrix idf →
train of

Equation (10) are multiplied to calculate the tf-idf weights.

3.6.4. And then multiply Midf to the term frequency matrix, so the final result can be
defined as Equation (11).

[𝑀𝑓𝑡−𝑖𝑑𝑓]𝑖𝑥𝑘 = [𝑀𝑡𝑟𝑎𝑖𝑛]𝑖𝑥𝑘 × [𝑀𝑖𝑑𝑓]𝑘𝑥𝑘 (11)

3.6.5. tf-idf matrix of Training-set in normalized form is given in Equation (12).

𝑀𝑓𝑡−𝑖𝑑𝑓 =
𝑀𝑓𝑡−𝑖𝑑𝑓

‖𝑀𝑓𝑡−𝑖𝑑𝑓‖
2

 (12)

tf−idf vectors are the actual trained parameters/features of the SVM model (Scikitlearn version 0.14

documentation). The tf−idf vectors and POS tags are the main features that are used to determine the

hyperplane weight vectors w1, w2 and the intercept ‘b’.

As already mentioned in Table 1, we have used 13 named entities with 22 classes and a non-named entity

is assigned a tag ’NONE’, and hence 23 classifiers are trained: [SVMm0, SVMm1 … SVMm21, SVMm22].

The SVMm0 is trained such that it assigns positive value (≥ +1) for class c0 and negative value (≤ -1) for

remaining classes. In general SVMmi is trained to give positive result for class ci and negative result for rest

of the classes.

To predict the class of an unknown (test) feature vector ‘p’, the classifier uses the separating hyperplane

wi
T p + bi = 0. If wi

T p + bi ≥ +1, then feature vector ‘p’ belongs to class ci. Else if wi
T p + bi ≤ -1, then feature

vector ‘p’ does not belongs to class ci.

4.4 Validation stage

A fold of the tagged training corpus is reserved as Dev-test-set and multiple evaluations are performed on

various Dev-test-sets. The scores thus obtained from those evaluations are combined to get the average

score. A fold of the annotated training data is taken from the Development-set as Dev-test-set and the

following computations are performed:

a) Pre-processing and tf-idf computations are done for Dev-test-set as explained in Steps 2 and

3.

b) The tf-idf vector of each sample of Dev-test-set is given to classifier SVMm0. The classifier

SVMm0 assigns a positive value (≥ +1) if the sample belongs to class c0. If the sample doesn’t

belong to class c0 it assigns a negative value (≤ -1), and then sample is fed to SVMm1. The

classifier SVMm1 says whether the sample belongs to class c1 or not. If not the sample is fed

to next classifier, and this process is continued till the sample is classified for a right class.

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 53

Figure 2 shows the tree of SVM decoding. Here values ≥ +1 are normalized to +1 and values ≤

-1 are normalized to -1.

c) From the actual class labels and predicted class labels of Dev-test set, find precision, recall

and F1-measure. Repeat this process on all folds of Dev-test-set and calculate average F1-

measure thus validating the model.

4.5 Testing stage

Test-set is taken from the corpus set. The computations are performed similar as in validation stage:

Figure 2. Multi-class SVM for named entity classification

The following algorithm gives the implementation procedure of the SVM Model:

Algorithm:

1. Reading the tagged corpus from the directory and dividing into 10-folds

corpus ← read tagged corpus

corpus size ← count of tokens in whole corpus

folds ← divide the corpus size into ten equal folds

2. 10-fold cross validation of the model

tag_set = [NEP, NEL, NEO, NED, NETE, NETP, NETO, NEB, NEM, NEN, NETI, NEA, NE, NEPB,

NEPI, NEPE, NELB, NELI, NELE, NEOB, NEOI, NEOE, NONE]

tag_set_labels = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

Begin

(i) Preprocessing

development test set ←reserve ith fold of training

corpus training set ← take the remaining nine folds as training set

words ← separate words of training set

tags ← separate tags of training set

labels ← assign labels to the tags of training set

(ii) Feature extraction and training of SVM model

vectorizer ← TfidfVectorizer

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 54

time0 ← read system time

training words ← transform words of step (i) into vectors using vectorizer

classifier ← svm.SVC(kernel=’linear’)

(kernels used are: linear, rbf, sigmoid and poly)

SVM classifier ← input training words and labels to the classifier

time1 ← read system time

training time ← time1 – time0

(iii) Testing with reserved fold of the development test set

development test set (DTS) ← take reserved ith fold of training corpus

words of DTS ← separate words of development test set

actual tags of DTS ← separate tags of development test set

actual labels of DTS ← assign labels to the tags of development test set

time0 ← read system time

test words of DTS ← transform words of DTS into vectors using vectorizer

SVM predicted labels of DTS ← SVM classifier receives test words of DTS as input

time1 ← read system time

fold test time ← time1 – time0

(iv) Evaluation metrics

precision ← precision score from actual labels & SVM predicted labels of DTS

recall ← recall score from actual labels & SVM predicted labels of DTS

f1 ← f1 score from actual labels & SVM predicted labels of DTS

class report ← class report from actual labels & SVM predicted labels of DTS

End

Combine the scores of all the ten folds for the cross validation.

3. Testing of the SVM model

(i) Train the SVM model for all the 10 folds of training corpus as explained in (ii) of Step 2

(ii) Testing with Test-set

test set ← read untagged test corpus from test corpus root directory

words of test set ← words of test set

actual tags of test set ← find actual tags of test set (manually)

actual labels of test set ← assign labels to the tags of test set

time0 ← read system time

test words of test set ← transform words of test set into vectors using vectorizer

SVM predicted labels ← SVM classifier receives test words of test set as input

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 55

time1 ← read system time

test time ← time1 – time0

(iii) Evaluation metrics and classification report are found similar to (iv) of Step 2

5 Performance Evaluation Metrics

It is important to know the quality of the SVM machine learning algorithm. Several statistical

measurements can be used to estimate the performance of the algorithm. These measurements are

collected from a confusion matrix show in Table 3, which contains information about the real and

predicted classifications done by the algorithm (https://en.wikipedia.org/wiki/Precision_and_recall).

True positives (TP) - the number of correct predictions that an instance is positive

True negatives (TN) - the number of correct predictions that an instance is negative

False positives (FP) - the number of incorrect predictions that an instance is positive

False negatives (FN) - the number of incorrect predictions that an instance is negative

The aim of the algorithm is to maximize the TP and true negatives TN predictions. The effectiveness of the

algorithm is characterized with the recall and precision measurements.

Table 3. Confusion Matrix

 PREDICTED CLASS

YES NO

ACTUAL CLASS
YES TP FN

NO FP TN

Recall (R) is the Sensitivity or True Positive Rate (TPR) that measures the ability of the algorithm to find all

relevant entities as given by Equation 13. R = Number of correct answers - produced / Total number of

possible - correct answers

R (TPR) = TP/ (TP + FN) (13)

A high recall score tells that most of the relevant entities were retrieved by the algorithm, while a low

recall indicates that the most relevant entities were missed by the algorithm.

Precision (P) measures the ability of the algorithm to retrieve only relevant entities, which is computed

using Equation 14.

P = Number of correct answers - produced / Total number of answers – produced

P = TP/ (TP + FP) (14)

A high precision score indicates that most of the retrieved entities are relevant. A low precision means

that the algorithm cannot distinguish relevant entities while retrieving all entities.

F1-Measure is the efficiency measure that combines recall and precision together.

F1 -Measure is the traditional F1-measure or balanced F1-score.

F1 − Measure (F1) = 2PR/ (P + R) (15)

Accuracy = (TP + TN)/ (TP + FP + TN + FN) (16)

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 56

Fallout or False Positive Rate (FPR)

FPR = FP/ (FP + TN) (17)

Specificity or True Negative Rate (TNR)

TNR = TN/ (TN + FP) (18)

Miss Rate or False Negative Rate (FNR)

FNR = FN/ (FN + TP) (19)

TPR + FNR = 1 (20)

TNR + FPR = 1 (21)

6 Results and Discussions

The proposed system is designed and implemented as discussed in Section 4. The system is tested using

several test cases, containing training corpus of size 1, 51,440 tokens. The test corpus is chosen in such a

way that it satisfies the entire phrasal context; which is an inherent feature of Kannada language. It is to

be noted that the system achieves an average accuracy of 87% on a test corpus of 7000 tokens with linear

kernel. The details of the results obtained are as given below. The system’s performance is measured in

terms of Precision (P), Recall (R) and F1-measure (F1) as discussed in Section 5. The details of the corpus

created in this work are given in Section 4. The nature of input test sequence and output tagged sequence

are given in Table 4 and Table 5 respectively. The corpus size and program run time are tabulated in Table

6. Table 7 tabulates the results of 10 fold cross validation where validation fold is of size 15,144 tokens.

Table 8 indicates the confusion matrix of the experiment. Table 9 indicates the total count of NE’s in the

training corpus. Table 10 indicates the final classification results of test-set corpus of size 7000 tokens with

linear kernel and Table 11 shows the error analysis.

Table 4. Input test sequence

Table 5. Output tagged sequence

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 57

As already mentioned, SVM model of Kannada NERC is trained using a tagged corpus of size 1, 51, 440

tokens. A sample input test sequence is given in Table 4. The SVM model generates the tagged output

sequence as shown in Table 5. It can be noted that the Table 4 is a subset of actual test corpus of 7,000

tokens and the corresponding output tagged sequence is also the subset of the actual tagged sequence

of 7,000 tokens. The performance of the designed SVM model is measured using various evaluation

measurements as discussed in Section 5.

Table 6. Corpus size and program Run time

The training set size for the model 1,51,440 words

Total number of samples treated by the classifier 1,51,440 words

Total number of features extracted by the classifier 33273 (symbols)

Feature extraction Time (Training of SVM model) 1244.594 seconds

The test set size for the model 7000 words

Total number of features of test set 5775 (symbols)

Feature extraction Time for test data 2.031 seconds

Table 7. Results of 10 fold cross validation

FOLDS Precision % Recall % F1 % Support

1 81 81 81 15144

2 84 83 83.5 15144

3 85 83 84 15144

4 88 87 87.5 15144

5 85 84 84.5 15144

6 88 87 87.5 15144

7 79 77 78 15144

8 77 76 76.5 15144

9 83 82 82.5 15144

10 87 85 86 15144

Average/Total 83.7 82.5 83.1 151440

From Table 6 it can be noted that the execution time depends on the size of the input test corpus

sequence. Table 7 shows the scores of individual folds and the combined scores of all the ten folds.

Table 8. Confusion matrix of the experiment

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 58

PREDICTED CLASS

A
C

TU
A

L
C

LA
SS

N
EP

N
EP

B
IE

N
EL

N
EL

B
IE

N
EO

N
EO

B
IE

N
ED

N
ET

E

N
ET

P

N
ET

O

N
EB

N
EM

N
EN

N
ET

I

N
EA

N
E

N
O

N
E

NEP 18

9

4 2 0 0 0 1 0 0 0 0 0 0 0 0 0 128

NEPBIE 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

NEL 1 2 99 0 0 0 0 0 0 1 0 0 0 0 0 2 43

NELBIE 0 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 4

NEO 0 1 0 0 13 3 0 0 0 0 0 0 0 0 0 2 9

NEOBI

E

0 0 1 0 1 9 0 1 0 0 0 0 0 0 0 2 6

NED 0 2 0 0 0 0 27 0 0 0 0 0 0 0 0 2 13

NETE 1 0 0 0 0 0 0 24 0 0 0 1 0 3 0 3 71

NETP 2 0 0 0 1 0 0 0 11 0 0 0 0 0 0 1 12

NETO 0 1 0 0 2 1 0 5 0 34 0 0 0 0 0 2 54

NEB 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 7

NEM 1 0 0 0 0 0 0 0 0 0 0 24 3 1 0 0 39

NEN 0 2 0 0 0 0 0 0 0 0 0 0 55 1 0 1 92

NETI 0 1 1 0 0 0 0 0 0 0 0 0 3 38 0 0 12

NEA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5

NE 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 24

7

147

NONE 8 4 2 1 1 5 0 1 6 0 0 4 16 1 0 71 534

9

From the confusion matrix, the calculation of P, TPR, and FPR are done as follows:

Consider named entity NEP as Positive class and all others entities as negative class:

TP for NEP class = 189 (first element of primary diagonal)

FP for NEP class = 18 (first column sum excluding TP value of 189)

FN for NEP class = 135 (first row sum excluding TP value of 189)

TN = 5950 (diagonal elements sum of confusion matrix excluding TP value of 189)

Precision (P) = TP / (TP + FP) = 189 / (189+18) = 0.91

Recall(R/TPR) = TP / (TP + FN) = 189 / (189+135) = 189/324 = 0.58

F1-Measure = 2PR / (P + R) = 2x 0.91x 0.58 / (0.91 + 0.58) = 1.0556/1.49 = 0.71

FPR = FP/ (FP+TN) = 18/ (18+5950) = 18/5968 = 0.0030

Similarly the results are calculated for all the NEs and tabulated in Table 10 and Table 11.

Table 9. Total number of NE’s in training corpus

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 59

Named Entity

(NE)

Tag Tag

label

Support

Person

NEP 0 37181

NEPB 1 8222

NEPI 2 4338

NEPE 3 9216

Location

NEL 4 21419

NELB 5 126

NELI 6 78

NELE 7 164

Organization

NEO 8 1090

NEOB 9 254

NEOI 10 280

NEOE 11 202

Designation NED 12 1495

Term NETE 13 1065

Title-Person NETP 14 1587

Title-Object NETO 15 593

Brand NEB 16 185

Measurement NEM 17 1425

Number NEN 18 946

Time NETI 19 800

Abbreviation NEA 20 5218

Noun entity NE 21 32724

Not a NE NONE 22 151440

Table 9 indicates the count of different named entitied in the whole training corpus created manually for

this work.

Table 10. Classification Results of Test-set Corpus using linear kernel

Named Entity (NE) Tag Tag label Precision Recall F1 - score Support

Person NEP 0 0.91 0.58 0.71 324

NEP (BIE) 1 2 3 0.47 0.49 0.48 35

Location NEL 4 0.93 0.67 0.78 148

NEL (BIE) 5 6 7 0.86 0.50 0.63 12

Organization NEO 8 0.72 0.46 0.56 28

NEO (BIE) 9 10 11 0.50 0.45 0.47 20

Designation NED 12 0.96 0.61 0.75 44

Term NETE 13 0.77 0.23 0.35 103

Title-Person NETP 14 0.65 0.41 0.50 27

Title-Object NETO 15 0.97 0.34 0.50 99

Brand NEB 16 1.00 0.22 0.36 9

Measurement NEM 17 0.83 0.35 0.49 68

Number NEN 18 0.71 0.36 0.48 151

Time NETI 19 0.86 0.69 0.77 55

Abbreviation NEA 20 1.00 0.45 0.62 11

Noun entity NE 21 0.74 0.62 0.67 397

Not A NE NONE 22 0.89 0.98 0.93 5469

Average /Total 87% 88% 87.5% 7000

It can be seen that the input test sequence is a good mix of all types of possible named entities. We have

mixed single word named entities and multiword (beginning, internal and End, BOE) person names,

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 60

location names and organization names in the corpus. So, it is inferred that the model is well tested for

all kinds of possible classification opportunities. Table 10 and Table 11 give the performance of the model

indicating the classification ability of the model and the error analysis respectively.

Table 11. Error analysis

Named Entity (NE) Tag Tagl abel FPR Support

Person NEP 0 0.0030 324

NEP (BIE) 1 2 3 0.0031 35

Location NEL 4 0.0013 148

NEL (BIE) 5 6 7 0.0002 12

Organization NEO 8 0.0008 28

NEO(BIE) 9 10 11 0.0015 20

Designation NED 12 0.0002 44

Term NETE 13 0.0011 103

Title-Person NETP 14 0.0010 27

Title-Object NETO 15 0.0002 99

Brand NEB 16 0.0000 9

Measurement NEM 17 0.0008 68

Number NEN 18 0.0036 151

Time NETI 19 0.0010 55

Abbreviation NEA 20 0.0000 11

Noun entity NE 21 0.0144 397

Not a NE NONE 22 0.4509 5469

Average /Total 2.84% 7000

It is interesting that the proposed model works with higher F1-measure 87.5% on a test corpus of 7000

tokens with linear kernel SVM. The time taken for extraction of the features by SVM training model is

1244.594 seconds for a training corpus size of 1, 51,440 tokens. Moreover, it can be seen that the testing

time is very less of the order of 2.031 seconds, which mainly depends on the size of test corpus (7,000

words in this case). 10 fold cross validation results of the system in terms of Precision, Recall and F1-

measure are 83.7%, 82.5% and 83.1% respectively.

The results of SVM model with different kernels is tabulated in Table 12 for different sizes of Test-Set. It

is seen that the SVM model with linear kernel gives highest F1-Score of 87.5% on a test corpus of 7000

tokens

Table 12. F1-scores of SVM model with different kernels

Test-Set

size

in

words

F1-Score in %

linear kernel Poly kernel Rbf kernel Sigmoid kernel

7,000 87.5 68.5 51 51

11,000 82 51 59.7 59.7

15,000 81 51 51 51

20,000 74.5 34.4 44.6 34.4

30,000 71.9 20.5 40.9 20.5

40,000 70.9 12.5 32.9 12.5

50,000 68.4 6.6 32.5 6.6

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 61

7 Conclusion

Natural Language Processing is an important research area containing challenging issues to be

investigated. NERC is a class of NLP which is used for extracting named entities from unstructured data.

In this context, this paper focuses on NERC in Kannada language, as it is found that little work is done in

this area. In this direction, we have conducted an extensive survey in the related area of NLP and based

on the survey, we have proposed a problem and the methodology that has been formulated. Various

modeling techniques are investigated, out of which design of supervised SVM is reported here. We have

developed an efficient model which is trained on a corpus consisting of 1, 51,440 words. From the test

corpus, variety of test samples are chosen randomly and fed as input to the SVM model with different

kernels. It is interesting to note that the model recognizes the named entities with an average F1-measure

of 87.5% and 10 fold cross validation F1-measure of 83.1% for a test corpus of 7000 tokens with linear

kernel. The false positive rate of the algorithm is 2.84% for a test corpus of 7000 tokens with linear kernel.

REFERENCES

[1]. Elizabeth D Liddy, 2001. Natural Language Processing. In Encyclopedia of Library and Information

Science.2nd edition.

[2]. James Allen, 2007. Natural Language Understanding. Pearson Publication Inc., 2nd edition.

[3]. Kavi Narayana Murthy, 2006. Natural Language Processing. Ess Ess Publications for Sarada

Ranganathan Endowment for Library Science, Bangalore, India, 1st edition.

[4]. Gobinda G. Chowdhury, 2003. Natural Language Processing, Annual Review of Information Science

and Technology. 37(1):51-89.

[5]. Kashif Riaz, 2010. Rule-based Named Entity Recognition in Urdu. In Proceedings of the 2010 Named

Entities Workshop, pages 126-135. Association for Computational Linguistics.

[6]. Khaled Shaalan and Hafsa Raza, 2007. Person Name Entity Recognition for Arabic. In roceedings of

the 2007 Workshop on Computational Approaches to Semitic Languages: Common Issues and

Resources, pages 17-24. Association for Computational Linguistics.

[7]. Yassine Benajiba, Mona T Diab and Paolo Rosso, 2009. Using Language Independent and Language

Specific Features to Enhance Arabic Named Entity Recognition. Int. Arab J. Inf. Technol., 6(5):463-

471.

[8]. Padmaja Sharma, Utpal Sharma and Jugal Kalita, 2010. The First Steps towards Assamese Named

Entity Recognition. Brisbane Convention Center, 1:1-11.

[9]. Asif Ekbal and Sivaji Bandyopadhyay, 2009. A Conditional Random Field Approach for Named Entity

Recognition in Bengali and Hindi. Linguistic Issues in Language Technology, 2(1).

[10]. Asif Ekbal and Sivaji Bandyopadhyay, 2009. Named Entity Recognition in Bengali. A Multi-engine

Approach. Northern European Journal of Language Technology, 1(2):26-58.

S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);
pp: 43-63

URL: http://dx.doi.org/10.14738/tmlai.51.2549 62

[11]. Asif Ekbal and Sivaji Bandyopadhyay, 2008. Bengali named entity recognition using support vector

machine. In IJCNLP, pages 51-58.

[12]. Maksim Tkachenko, Andrey Simanovsky and St Petersburg, 2012. Named entity recognition:

Exploring features. In Proceedings of KONVENS, pages 118-127

[13]. [Ashwini A Shende and Avinash J Agrawa, 2012. Domain specific named entity recognition.

Proceedings of the International Conference on Advances in Computer, Electronics and Electrical

Engineering, ISBN: 978-981-07-1847-31, doi:10.3850/978-981- 07-1847-3 P0999:484-487.

[14]. David Nadeau, Peter Turney and Stan Matwin, 2006. Unsupervised named-entity recognition:

Generating gazetteers and resolving ambiguity. Published at the 19th Canadian Conference on

Artificial Intelligence.

[15]. Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna Sarkar and Pabitra Mitra, 2008 . Named entity

recognition in Hindi using maximum entropy and transliteration. Research journal on Computer

Science and Computer Engineering with Applications, pages 33-41.

[16]. Deepti Chopra, Nusrat Jahan and Sudha Morwal, 2012. Hindi named entity recognition by

aggregating rule based heuristics and hidden markov model. International Journal of Information,

2(6).

[17]. Sujan Kumar Saha, Shashi Narayan, Sudeshna Sarkar and Pabitra Mitra, 2010. A composite kernel

for named entity recognition. Pattern Recognition Letters, 31(12):1591-1597, doi:10.1016/

j.patrec.2010.05.004.

[18]. Sudha Morwal and Nusrat Jahan, 2013. Named entity recognition using hidden markov model

(hmm): An experimental result on Hindi, Urdu and Marathi languages. International Journal of

Advanced Research in Computer Science and Software Engineering (IJARCSSE), 3(4):671-675.

[19]. Erik F Tjong Kim Sang and Fien De Meulder, 2003. Introduction to the conll-2003 shared task:

Languageindependent named entity recognition. In Proceedings of the seventh conference on

Natural language learning at HLT-NAACL 2003-Volume 4, pages 142-147. Association for

Computational Linguistics.

[20]. Asif Ekbal and Sivaji Bandyopadhyay, 2010. Named entity recognition using support vector machine:

A language independent approach. International Journal of Electrical, Computer, and Systems

Engineering, 4(2):155-170.

[21]. Kishorjit Nongmeikapam, Tontang Shangkhunem, Ngariyanbam Mayekleima Chanu, Laishram

Newton Singh, Bishworjit Salam and Sivaji Bandyopadhyay, 2011. CRF based name entity

recognition (ner) in Manipuri: A highly agglutinative Indian language. In Emerging Trends and

Applications in Computer Science (NCETACS), 2nd National Conference on, pages 1-6. IEEE.

http://dx.doi.org/10.14738/tmlai.51.2549

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 5 , Issue 1, Feb 2017

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 63

[22]. Thoudam Doren Singh, Kishorjit Nongmeikapam, Asif Ekbal and Sivaji Bandyopadhyay, 2009.

Named entity recognition for Manipuri using support vector machine. In PACLIC, pages 811-818.

[23]. S Pandian, Krishnan Aravind Pavithra and T Geetha, 2008. Hybrid three-stage named entity

recognizer for Tamil. INFOS.

[24]. R Vijayakrishna and Sobha Lalitha Devi, 2008. Domain focused named entity recognizer for Tamil

using conditional random fields. In IJCNLP, pages 59-66.

[25]. G.V.S.Raju B.Srinivasu, Dr.S.Viswanadha Raju and K.S.M.V.Kumar, 2010. Named entity recognition

for Telugu using maximum entropy model. Journal of Theoretical and Applied Information

Technology (JATIT), 13:125-130.

[26]. Dr. A. Vinaya Babu, Dr. A. Govardhan, B. Sasidhar and P. M. Yohan, 2011. Named entity recognition

in Telugu language using language dependent features and rule based approach. International

Journal of Computer Applications (0975-888), 22(8):30-34.

[27]. [S Amarappa, Dr. S V Sathyanarayana, 2013. “A Hybrid approach for Named Entity Recognition,

Classification and Extraction (NERCE) in Kannada Documents”. Proceedings of the International

Conference on Multimedia Processing, Communication and Information Technology (MPCIT-2013).

Book Series: Advances in Engineering and Technology Series, IDES publications, DOI:

03.AETS.2013.4.91, ISBN: 2214 - 0344, Volume: 4, Page(s):173-179.

[28]. S Amarappa and S V Sathyanarayana, 2013. Named entity recognition and classification in Kannada

language. International Journal of Electronics and Computer Science Engineering, 2(1):281–289.

[29]. S Amarappa, and S V Sathyanarayana, 2015. Kannada Named Entity Recognition and Classification

(NERC) based on Multinomial Naïve Bayes (MNB) Classifier. International Journal on Natural

Language Computing (IJNLC), DOI: 10.5121/ijnlc.2015.4404, Vol. 4, No.4, Pages 39-52.

[30]. S Amarappa, and. S V Sathyanarayana, 2015. Kannada Named Entity Recognition and classification

(NERC) based on Conditional Random fields (CRF). Second International Conference on Emerging

Research on Electronics, Computer Science and Technology (ICERECT-2015), PES College of

Engineering, Mandya, India. 978-1-4673-9563-2/15/$31.00 ©2015 IEEE.

[31]. David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification, National

Research Council, Canada / New York University.

