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ABSTRACT   

Named Entity Recognition and Classification (NERC) is a process of identification of proper nouns in the 

text and classification of those nouns into certain predefined categories like person name, location, 

organization, date, time etc. Kannada NERC is an essential and challenging work which aims at developing 

a novel model based on Support Vector Machine. In this paper, tf-idf and POS features are used, which 

are extracted from a training corpus created manually. Furthermore, the model is trained and tested with 

different kernels: polynomial, rbf, sigmoid and linear kernels. The details of implementation and 

performance evaluation are discussed. The experiments are conducted on a training corpus of size 1, 

51,440 tokens and test corpus of 7,000, 11,000, 15,000, 20,000, 30,000, 40,000 and 50,000 tokens. It is 

observed that the model works with an average precision, recall and F1-measure of 87%, 88% and 87.5% 

respectively for a linear kernel SVM on the test corpus of 7,000 tokens. 

Keywords: Natural Language Processing; Hyperplane; Support vectors; Named Entity Recognition; 

Classification; Support vector machine; Training Corpus; Test Corpus. 

1 Introduction 

Natural Language Processing (NLP) has two major tasks: Natural Language Understanding (NLU) and 

Natural Language Generation (NLG) [1]. NLU deals with machine reading comprehension, i.e., the level of 

understanding of a text or message. NLG is the task of generating natural language from a machine 

representation system such as a knowledge base. Apart from NLG and NLU, the other tasks to be done in 

NLP include automatic summarization, Information Extraction (IE), Information Retrieval (IR), Named 

Entity Recognition (NER) etc.  

In NLP, the primary goal of IE and IR is to automatically extract structured information. NERC is a typical 

subtask of IE [2]. NERC involves processing of structured and unstructured documents and identifying 

proper names that refer to persons, organizations, locations (cities, countries, rivers, etc.), date, time, etc. 

The aim of NERC is to automatically extract proper names that are useful to address many problems such 

as Machine Translation, Information Extraction, Information Retrieval, Question Answering, and 

Automatic Text Summarization etc., [3]. 

India has more than 1,652 mother tongues of which 22 are scheduled languages included in the 

Constitution. Among the 22 scheduled languages, Kannada is one of the major Dravidian languages of 
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India, spoken predominantly in the state of Karnataka. The Karnataka official language Act 1963 

recognized Kannada as its official language. Kannada, whose native speakers are called Kannadigas 

(Kannadigaru) number roughly 40 million, making it the 33rd most spoken languages in the world (”Census 

2001: Languages by state”. censusindia.gov.in. Retrieved on 12 February 2013). 

1.1 Kannada language features 

The language uses forty-nine phonetic letters, divided into three groups: swaragalu (vowels – thirteen 

letters); vyanjanagalu (consonants – thirty four letters); and yogavaahakagalu (neither vowel nor 

consonant - two letters: the anusvara and the visarga), similar to the vowels and consonants of English. 

The character set is almost identical to that of other Indian languages. This language is inflected with three 

genders (masculine, feminine, and neutral) and two numbers (singular and plural). The Noun is inflected 

by various factors such as case, number and gender. It is a free-word order language with rich heritage 

and large grammar. 

1.2 Challenges and Issues specific to Kannada language 

Kannada is one of the many Indian languages, presenting a large set of complications. Processing of 

Kannada language and extraction of named entities on the phrasal semantics basis is challenging because 

of the reasons:  

o Kannada is a highly agglutinating and inflected language.  

o Kannada language has no capitalization.  

o It has a Brahmi script with high phonetic characteristics that could be utilized by NERC system. 

o There is non-availability of large gazetteer, lack of annotated data, lack of standardization and 

spelling.  

o There are a number of frequently used words (common nouns), which can also be used as names.  

o These nouns act as adjectives in many contexts and handling these nouns carefully is very much 

essential. Phrasal semantic analysis of these nouns is interesting.  

o As there is lack of annotated data, the whole corpus is annotated by hand. While annotating, care 

is taken on overlaps among types of Named Entities (NEs). NE overlaps of this kind are carefully 

tagged based on the phrasal context. 

Examples of NE overlaps are: 
o Common noun vs. proper noun: ‘surya’ which means sun may be person’s name.  

o Organization vs. person name: ‘TaTa’, person name as well as an organization name. 

o Organization vs. place name: Mumbai meets Chennai at Bangalore. Here ‘Mumbai’ and ‘Chennai’ 

are names of playing teams rather than the names of cities.  

o Person name vs. place name: The word ‘kashi’ is used as a person name as well as the name of a 

place. 

1.3 Motivation 

From the survey carried out in Section 2, it is observed that a lot of work on NERC has been done in English 

and other foreign languages. NERC work in Indian languages is still in its initial stage. As far as Indian 

languages are concerned, some works related to NERC are found in Hindi, Bengali, Telugu, Tamil, Oriya, 

Manipuri, Punjabi, Marathi and Assamese languages. But in Kannada language, NERC work is not yet 

reported except our former works using Hybrid approach [27], Hidden Markov Model (HMM) [28], 
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Multinomial Nave Bayes (MNB) classifier [29] and Continuous Random Fields (CRF) [30]. The experimental 

results of all the methods are encouraging; nevertheless the works on NERC in Kannada are to be 

investigated and implemented with different statistical approaches apart from HMM, MNB and CRF. This 

has motivated us to take up NERC in Kannada using Support Vector Machine (SVM) classifier as the 

projected research paper. 

1.4 Novelty in this work 

With the challenges and issues in Kannada language, we propose the application of Support Vector 

Machine to resolve the problem of the NERC for Kannada language. We find the work carried out has 

novelty factors in many respects as mentioned here under: 

o The main contribution is that there has been no SVM method available for Kannada language; 

therefore we ought to deal with the problem from the scratch. This is the first solution of its kind 

to the problem of NERC using SVM for Kannada language. 

o Support Vector Machine model was already used to solve the NERC problem in other languages, 

but we have to deal with the effort of creating an annotated dataset for the previously neglected 

language.  

o As the annotated Kannada corpus (Unicode) is not available, the whole raw corpus that we have 

shaped is manually tagged and is checked by local linguistic experts. While annotating we have 

used fine-grained tags as mentioned in IJCNLP-2008 NERSSEAL shared task data set.  

o The work is explained in detail and furthermore, it provides an interesting view over the status of 

the art with respect to NLP solutions for Indian languages.  

o The essence of this work is, tuning up of the SVM idea to the Kannada language NERC.  

o The language text is not transliterated (unlike the NERC in other Indian languages) to Roman; 

instead it is honestly taken from Unicode text files typed by us and trained our model. The test 

data is also taken from Unicode text files.  

o We have used the document classification perception for individual tokens, treating them as 

independent documents. The features extracted from the training corpus include ‘tf-idf’ features 

and parts of speech tags. From these features Support Vector Machine hyperplane is estimated.  

This contribution towards Kannada NLP is expected to be a motivation for young researchers and for the 

readers interested in Information Extraction from natural languages. The application of the results of this 

work is relevant mostly to research, dealing with Indian languages. So, the work is definitely relevant as it 

boosts up the scientific developments related to the processing of the Kannada language. Furthermore, 

the proposed solution was experimentally tested with a variety of test-set sequences and the results are 

encouraging. 

The paper presents in detail the implementation and evaluation of a solution for Named Entity 

Recognition based on Support Vector Machine for the Kannada language. The results obtained from the 

proposed model are quite encouraging with an average accuracy of 87% for a linear kernel. The rest of 

this paper is organized as follows: Section 2 discusses about the details of existing work. Section 3 deals 

with Support Vector Machine principles which are used for NERC in the paper. The proposed methodology 

and implementation details are dealt in Section 4. The SVM classifier’s evaluation measurements are 

discussed in Section 5. Finally the results are evaluated and discussed in Section 6 followed by conclusions 

in Section 7. 
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2 Existing work 

The NLP started way back in the 1940s and from then to 1980s, the NLP systems were based on complex 

sets of hand-made rules. After 1980s, machine learning algorithms were used in NLP research and recent 

NLP algorithms are based on statistical machine learning. The term Named Entity was introduced in the 

sixth Message Understanding Conference (MUC-6) [4]. The different techniques for addressing the NERC 

problem include: Hidden Markov Models (HMM) (D.Bikeletal, 1997), Decision Trees (S.Sekine, 1998), 

Maximum-Entropy Models (ME) (A.Borthwick, 1998), Support Vector Machines (SVM) (M.Asahara & 

Matsumoto, 2003), and Conditional Random Fields (CRF) (A.McCallum & Li, 2003) [31]. 

A lot of NLP work has been done in English, as there is an enormous amount of data available in it. A 

voluminous work is done in most of the other European languages, some of the Asian languages like 

Chinese, Japanese, Korean and other foreign languages like Arabic, etc. NLP research in Indian languages 

is at the initial stage, as annotated corpus and other lexical resources have started appearing recently. In 

computational linguistics, Kannada is lagging far behind, compared to other Indian languages. In the 

following paragraphs, we present a brief survey of research on NERC in Indian languages including 

Kannada. This is not a comprehensive and thorough survey, but is an indication of current status in NERC 

research. 

Few works on NER in English language are: In [12] the authors have built a CRF based NER system that 

achieves 91.02% F1-measure on the CoNLL 2003 dataset. An overview of the techniques employed to 

develop domain specific NER systems is dealt in [13]. In [14] the authors have devised an unsupervised 

NER by generating Gazetteers and resolving ambiguity. 

In [5] the authors have developed an algorithm for rule based NER in Urdu. In [6] the authors carried out 

a work on Person Name Entity Recognition for Arabic. Reference [7] discusses about SVM based language 

independent NER. Reference [8] discusses about the first step towards Assamese NER. In [9] the authors 

have developed a system using CRF approach for NER in Bengali and Hindi. In [10] the authors have 

developed NER system for Bengali. Reference [11] discussed about Bengali NER using SVM. 

In [15] the authors have developed a system for NER in Hindi using Max-Entropy and Transliteration. In 

[16] the authors have developed Hindi NER by aggregating rule based heuristics and HMM. Reference [17] 

discusses a composite kernel for NER. In [18] the authors have experimented NER using HMM on Hindi, 

Urdu and Marathi languages. Reference [19] gives introduction to the CoNLL- 2003 shared task a language-

independent NER. Reference [20] discussed about a language independent NER system for Bengali & Hindi 

using SVM. Reference [21] deals with a model on CRF based NER in Manipuri. Reference [22] deals with 

SVM based NER for Manipuri. Reference [23] presents the construction of a hybrid, three stages NER for 

Tamil. In [24] the authors have developed a tourism domain focused NER for Tamil using CRF. Reference 

[25] describes a Max-Ent, NER system for Telugu. Reference [26] discusses about Telugu NER using 

language dependent features and rule based approach. 

In Kannada language, the only papers available are [27], [28], [29] and [30]. In [27] the authors have 

carried out Named Entity Recognition Classification and Extraction (NERCE) for Kannada language using 

hybrid approach, which combines man made rules and Hidden Markov Model (HMM) on a small training 

corpus of 10,000 tokens and text corpus of 1000 tokens and the experimental results are good with an 

average F1-measure of 94.85%. In [28] the authors have carried out NERC using Hidden Markov Model 
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(HMM) on a small training corpus of 10,000 tokens and text corpus of 1000 tokens and the experimental 

results are encouraging with an average F1-measure of 86%. In [29] we have carried out Kannada NERC 

based on Multinomial Naïve Bayes (MNB) Classifier and achieved an average F1-measure of 81% on a 

training corpus of 95,170 tokens and test corpus of 5,000 tokens. In [30] we have carried out Kannada 

NERC based on Conditional Random Fields (CRF) and achieved an average F1-measure of 82% on a training 

corpus of 95,127 tokens and test corpus of 5,000 tokens. 

3 Support Vector Machine 

Although the details of Support Vector Machine (SVM) are well established in the literature, we reiterate 

the information essential to our research. Support Vector Machine (SVM) is a supervised learning method 

used for binary classification, regression and outlier’s detection. SVM has a simple structure and is derived 

from statistical learning theory by Vladimir Vapnik and his colleagues in 1992. Given some data points, 

each belonging to one of two classes and the goal is to decide to which class a new data point belongs. In 

SVM, a data point is viewed as an n-dimensional vector in n-dimensional space V = Rn and we want to 

know whether we can separate such points with an (n - 1) dimensional hyper plane (canonical plane). 

There are many hyperplanes that might classify the data but, the best one is with the largest margin. A 

hyperplane is a subspace of one dimension less than its ambient space. A hyperplane of an n-dimensional 

space V is a subset with dimension n-1 in V that separates the space into two half spaces. The hyper plane 

is found by using a subset of training points in the decision function called support vectors, and the margin. 

To find the margin, two parallel supporting planes are constructed, one on each side of the canonical 

plane. 

3.1 Multi-class SVM 

Multiclass classification aims at classifying data points belonging to more than two classes with the 

assumption that each sample is assigned to one and only one label. 

The dominant approach for multiclass classification is to reduce the single multiclass problem into 

multiple binary classification problems. Common approaches of reducing a multiclass problem into 

multiple binary classifiers include:  

o One-versus-the-rest also known as one-versus-all strategy aims at fitting one classifier per class. 

If there are n-classes of data points then for each classifier, the class is fitted against all the other 

n-1 classes and hence it requires n classifier models to be trained. Since each class is represented 

by one and one classifier only, it is possible to gain knowledge about the class by inspecting its 

corresponding classifier. This is the most commonly used strategy and is a fair default choice.  

o One-versus-one approach (Knerr et al., 1990) constructs one classifier per pair of classes. At 

prediction time, the class which received the most votes is selected. If n is the number of data 

classes, then n * (n - 1) / 2 classifiers are to be constructed and each one trains data from two 

classes. Since it requires to fit n * (n - 1) / 2 classifiers, this method is usually slower than one-vs-

the-rest approach. The basic principle of a binary SVM classifier is derived from the geometrical 

equation of a straight line y = mx+b, thus defining a linear discriminant function, 
 ( )     Tg x w X b                                                                         (1) 

In the Equation (1), w = [w1, w2]; w1 and w2 are weights of x and y respectively, with ‘b’ being the intercept 

to y-axis. The weights w1 and w2 may be positive or negative. X is a vector in two-dimensional space. The 
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line wT X + b = 0, is used as a hyperplane in two class classification problems. In SVM, the hyperplane 

should be found such that it maximizes the margin separating the positive training points from the 

negative training data points. The Lagrange multiplier of Equation (2) is used to obtain optimized 

hyperplane, where the term ½||w||2 should be minimized, subject to the constraints Yi (wT X + b) ≤ 1. 

n
2 T

P i i i

i=1

1
L (w, b, )=  ||w|| - (Y (w +b)-1)

2
                                                (2) 

Such that αi ≥ 0. Solving the Equation (2), gives w1, w2, b, and αi. These parameters determine a unique 

maximal margin solution. The two parallel positive class and negative class supporting planes are 

constructed, one on each side of the hyperplane by the constraints:  

 

                 
    = +1Tw X b                                                                                (3) 

                     = -1Tw X b                                                                                (4) 

4 Proposed work and Methodology 

The main aim of this work is to develop a supervised statistical machine learning NERC system for Kannada 

language based on SVM. NERC involves identification of proper names in texts, and classification of those 

names into a set of pre-defined categories of interest such as: person names (names of people), 

organization names (companies, government organizations, committees, etc.), location names (cities, 

countries etc.), and miscellaneous names (date, time, number, percentage, monetary expressions, 

number expressions and measurement expressions). The functional block diagram of the proposed 

system is as shown in Figure 1. 

Text Corpus

NE Tagged
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NE Tagged
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X=Words (Symbols)
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Figure 1:  SVM model for Kannada NERC 

This Section deals with the design and development of NERC system based on the SVM model. We resent 

the details of the methodology, design, and development of the proposed system. The machine learning 

used in the work is fully supervised SVM. The features extracted from the training corpus include POS tag 
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features, term frequency features and inverse document frequency features. The model is trained and 

tested with different kernels: polynomial, rbf, sigmoid and linear kernels. 

4.1 Corpus creation and usage 

Kannada NERC is very hard without tagged corpus and hence we manually tagged about 150K Kannada 

words. This Kannada corpus is used to build the NERC Model. The manually tagged corpus includes: Part 

of EMILLE (Enabling Minority Language Engineering) corpus [http://www.ciil.org/Schemes.aspx (Linguistic 

Data Consortium for Indian Languages (LDCIL))], a part of the corpus taken from web articles and part of 

the corpus extracted from Kannada books. The entire corpus is tagged based on the phrasal semantics 

taking the text context into consideration. The whole corpus is divided into two sets: Development-set 

and Test-set as shown in Figure 1. First, select the Development-set and then subdivide it into the Training-

set and development test set (Dev-test- set). The Training-set is used to train the model and the Dev-test-

set is used to perform error analysis. The Test-set serves for the final evaluation of the system. The 

machine learning used in the work is fully supervised SVM. 

The data set is annotated by four annotators with a common agreement. Tag set is chosen exactly similar 

to that of tag set used in IJCNLP-2008 NERSSEAL shared task data set. While annotating the corpus 

manually, Named Entity (NE) overlaps are carefully tagged based on the phrasal context. Examples of NE 

overlaps are mentioned in Section 1.2. The corpus created is having 70% to 80% of distinctive words of 

Kannada language. 

For a binary SVM classifier the input training-set consists of ‘N’ number of data points in the form (Xi, yi) 

where, Xi Є (X1, X2 … XN) and yi Є (+1, −1).  Moreover Xi is a point in two dimensional vector space (Xi Є R2) 

and represents the contextual information of the tagged word. 

In this paper we have used thirteen Named Entities (NEs) with twenty two tags as indicated in Table 1. A 

non-named entity is tagged as ’NONE’ with label ’22’. Person name has 4 tags, where the tag NEP is used 

for person names having only one word in it. If person name is of two words, first word is tagged with 

NEPB and second word with NEPE and further if person name is of more than two words, first word is 

tagged with NEPB, last word is tagged with NEPE and intermediate words are tagged with NEPI. The same 

rules are followed for locations and organizations also (Table 1). 

The sample of training corpus is: Training-set X = [(amar, NEP), (jnnce, NEO), (shimoga, NEL), (shimoga, 

NEL), (jnnce, NEO), (Davanagere, NEL), (shimoga, NEL), (pesitm, NEO), (sathyanarayana, NEP)]. 

4.2 Pre-processing stage 

The tagged training text corpus is tokenized into words (symblols) and tags (states / classes). The 

separated words are X = [w1, w2, w3 … wN] and separated tags are Y = [y1, y2, y3 … yN]. Each tag in Y is 

assigned a number called label, i.e., yi Є (0, 1, 2 … 22) (or yi Є (c0, c1 … c22)) as given by: 

[’NEP:0’, ’NEPB:1’, ’NEPI:2’, ’NEPE:3’, ’NEL:4’, ’NELB:5’, ’NELI:6’, ’NELE:7’, ’NEO:8’, ’NEOB:9’, ’NEOI:10’, 

’NEOE:11’, ’NED:12’, ’NETE:13’, ’NETP:14’, ’NETO:15’, ’NEB:16’, ’NEM:17’, ’NEN:18’, ’NETI:19’, ’NEA:20’, 

’NE:21’, ’NONE:22’]. 

For the sample training-set mentioned in Step 1, tokenize and separate words and tags/labels: Separated 

words: X = [amar, jnnce, shimoga, shimoga, jnnce, davanagere, shimoga, pesitm, sathyanarayana] and 

Separated tags/labels: Y = [NEP:0, NEO:8, NEL:4, NEL:4, NEO:8, NEL:4, NEL:4, NEO:8, NEL:4]. 
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Table 1. Named Entity Tag set 

 

We are using the concept of document classification where, each input word is treated as a document 

and tag as its class: for the above example we have the details as mentioned in Table 2. 

 

 

Table 2. Each word is a document 

Document 

No. 

word (x)   

 

tag (y) 

D1 amar NEP 
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D2 jnnce NEO 

D3 shimoga NEL 

D4 shimoga NEL 

D5 jnnce NEO 

D6 davanagere NEL 

D7 shimoga NEL 

D8 pesitm NEO 

D9 sathyanrayana NEP 

4.3 Training stage 

The various steps of training the model are as given below: 

3.1 Input to the training stage are X and Y 

3.2 The model finds important words (vocabulary features) by removing repeated words and stop 

words from X. The model also finds unique tags/ labels from Y. The vocabulary feature words are 

W = [w1, w2, w3 … wn] and unique tags are Y = [y1, y2, y3 … yk]. 

For the sample training-set mentioned in Step 1, the important words (vocabulary features) by 

removing repeated words and stop words are: W = [w1: amar, w2: jnnce, w3: shimoga, w4: 

davanagere, w5: pesitm, w6: sathyanarayana] and the unique tags/labels are Y = [NEP: 0, NEO: 8, 

NEL: 4]. 

3.3 Find raw count of each vocabulary word of W in Training-set, i.e., term frequencies tf. 

3.4 The term-frequency is a measure of how many times a particular term of W, is present in the 

document of Training-set X=[x1, x2 … xN] (or D= [d1, d2 … dN]). In our model, each word of X is 

treated as a document (word x1 = document D1). The term-frequency is defined as a counting 

function and is given in Equation (5). 

tf(t, d) =  ∑ fr(x, t)x  ∈ d                                                                        (5) 

Where fr(x, t) is a simple function, defined by Equation (6). 

fr(x, t) =  {
1,   if x = t

       0,   otherwise
                                                                             (6) 

The tf(t, d) returns count of t in document d. The tf(t, d) in matrix form is denoted by Equation 

(7). 

M|D|×F  =  (Mtrain)        (7) 

3.5 Find inverse document frequency idf(t) of training corpus defined by the function  P(t|d) =
|{d:t∈d}|

|D|
 , so idf is define as Equation (8). 

 

idf   = − logP(t|d)                                  

                = log
1

P(t|d)
                                    

 idf(t)  =   ln (
|D|+1

1+ |{d:t∈d}|
) + 1 

         (8) 

Here |{d: t ∈ d}|  is the number of documents where the term t appears; when the term-

frequency function satisfies tf(t, d) ≠ 0. It should be noted that adding 1 into the formula above 

avoids zero division.   

 

 



S Amarappa, S V Sathyanarayana; Kannada Named Entity Recognition and Classification using Support Vector 
Machine, Transactions on Machine Learning and Artificial Intelligence, Volume 5 No 1 February, (2017);  
pp: 43-63 

 

URL: http://dx.doi.org/10.14738/tmlai.51.2549        52 
 

3.6 Now to find tf-idf use the following steps tf-idf is found using Equation (9). 

3.6.1. tf − idf =  tf(t, d) × idf(t)                                                                                          (9)                                                                             

3.6.2. Find idf for each feature present in the feature matrix with the term frequency 
and idf weights can be represented by a vector as given by Equation (10).  

𝑖𝑑𝑓→
𝑡𝑟𝑎𝑖𝑛 = [𝑖𝑑𝑓(𝑡1),  𝑖𝑑𝑓(𝑡2) … 𝑖𝑑𝑓(𝑡𝑘)]                                        (10) 

3.6.3. tf-idf matrix of training set in un-normalized form is found by: 

Now the tf matrix,  M|D|×F = Mtrain of Equation (7) and the idf matrix  idf →
train  of 

Equation (10) are multiplied to calculate the tf-idf weights. 

3.6.4. And then multiply  Midf to the term frequency matrix, so the final result can be 
defined as Equation (11). 

[𝑀𝑓𝑡−𝑖𝑑𝑓]𝑖𝑥𝑘 = [𝑀𝑡𝑟𝑎𝑖𝑛]𝑖𝑥𝑘  ×  [𝑀𝑖𝑑𝑓]𝑘𝑥𝑘                                   (11) 

3.6.5. tf-idf matrix of Training-set in normalized form is given in Equation (12).  

𝑀𝑓𝑡−𝑖𝑑𝑓 =  
𝑀𝑓𝑡−𝑖𝑑𝑓

‖𝑀𝑓𝑡−𝑖𝑑𝑓‖
2

                                                       (12) 

tf−idf vectors are the actual trained parameters/features of the SVM model (Scikitlearn version 0.14 

documentation). The tf−idf vectors and POS tags are the main features that are used to determine the 

hyperplane weight vectors w1, w2 and the intercept ‘b’.  

As already mentioned in Table 1, we have used 13 named entities with 22 classes and a non-named entity 

is assigned a tag ’NONE’, and hence 23 classifiers are trained: [SVMm0, SVMm1 … SVMm21, SVMm22]. 

The SVMm0 is trained such that it assigns positive value (≥ +1) for class c0 and negative value (≤ -1) for 

remaining classes. In general SVMmi is trained to give positive result for class ci and negative result for rest 

of the classes.  

To predict the class of an unknown (test) feature vector ‘p’, the classifier uses the separating hyperplane 

wi
T p + bi = 0. If wi

T p + bi ≥ +1, then feature vector ‘p’ belongs to class ci. Else if wi
T p + bi ≤ -1, then feature 

vector ‘p’ does not belongs to class ci. 

4.4 Validation stage    

A fold of the tagged training corpus is reserved as Dev-test-set and multiple evaluations are performed on 

various Dev-test-sets. The scores thus obtained from those evaluations are combined to get the average 

score. A fold of the annotated training data is taken from the Development-set as Dev-test-set and the 

following computations are performed: 

a) Pre-processing and tf-idf computations are done for Dev-test-set as explained in Steps 2 and 

3.  

b) The tf-idf vector of each sample of Dev-test-set is given to classifier SVMm0. The classifier 

SVMm0 assigns a positive value (≥ +1) if the sample belongs to class c0. If the sample doesn’t 

belong to class c0 it assigns a negative value (≤ -1), and then sample is fed to SVMm1. The 

classifier SVMm1 says whether the sample belongs to class c1 or not. If not the sample is fed 

to next classifier, and this process is continued till the sample is classified for a right class. 
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Figure 2 shows the tree of SVM decoding. Here values ≥ +1 are normalized to +1 and values ≤ 

-1 are normalized to -1. 

c) From the actual class labels and predicted class labels of Dev-test set, find precision, recall 

and F1-measure. Repeat this process on all folds of Dev-test-set and calculate average F1-

measure thus validating the model. 

4.5 Testing stage 

Test-set is taken from the corpus set. The computations are performed similar as in validation stage: 

 

Figure 2. Multi-class SVM for named entity classification 

The following algorithm gives the implementation procedure of the SVM Model: 

Algorithm: 

1. Reading the tagged corpus from the directory and dividing into 10-folds 

corpus ← read tagged corpus 

corpus size  ← count of tokens in whole corpus 

folds ← divide the corpus size into ten equal folds 

2. 10-fold cross validation of the model 

tag_set = [NEP, NEL, NEO, NED, NETE, NETP, NETO, NEB, NEM, NEN, NETI, NEA, NE, NEPB,  

NEPI, NEPE, NELB, NELI, NELE, NEOB, NEOI, NEOE, NONE] 

tag_set_labels = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] 

Begin 

(i) Preprocessing 

development test set ←reserve ith fold of training 

corpus training set ← take the remaining nine folds as training set 

words ← separate words of training set 

tags ← separate tags of training set 

labels ← assign labels to the tags of training set 

(ii) Feature extraction and training of SVM model 

vectorizer ← TfidfVectorizer 
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time0 ← read system time 

training words ← transform words of step (i) into vectors using vectorizer 

classifier ← svm.SVC(kernel=’linear’) 

(kernels used are: linear, rbf, sigmoid and poly) 

SVM classifier ← input training words and labels to the classifier 

time1 ← read system time 

training time ← time1 – time0 

(iii) Testing with reserved fold of the development test set 

development test set (DTS) ← take reserved ith fold of training corpus 

words of DTS ← separate words of development test set 

actual tags of DTS ← separate tags of development test set 

actual labels of DTS ← assign labels to the tags of development test set 

time0 ← read system time 

test words of DTS ← transform words of DTS  into vectors using vectorizer 

SVM predicted labels of DTS ← SVM classifier receives test words of DTS as input 

time1 ← read system time 

fold test time ← time1 – time0 

(iv) Evaluation metrics 

precision ← precision score from actual labels & SVM predicted labels of DTS 

recall ← recall score from actual labels & SVM predicted labels of DTS 

f1 ← f1 score from actual labels & SVM predicted labels of DTS 

class report ← class report from actual labels & SVM predicted labels of DTS 

End  

Combine the scores of all the ten folds for the cross validation. 

3. Testing of the SVM model 

(i) Train the SVM model for all the 10 folds of training corpus as explained in (ii) of Step 2 

(ii) Testing with Test-set 

test set ← read untagged test corpus from test corpus root directory 

words of test set ← words of test set 

actual tags of test set ← find actual tags of test set (manually) 

actual labels of test set ← assign labels to the tags of test set 

time0 ← read system time 

test words of test set ← transform words of test set into vectors using vectorizer 

SVM predicted labels ← SVM classifier receives test words of test set as input 
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time1 ← read system time 

test time ← time1 – time0 

(iii) Evaluation metrics and classification report are found similar to (iv) of Step 2 
 

5 Performance Evaluation Metrics 

It is important to know the quality of the SVM machine learning algorithm. Several statistical 

measurements can be used to estimate the performance of the algorithm. These measurements are 

collected from a confusion matrix show in Table 3, which contains information about the real and 

predicted classifications done by the algorithm (https://en.wikipedia.org/wiki/Precision_and_recall). 

True positives (TP) - the number of correct predictions that an instance is positive 

True negatives (TN) - the number of correct predictions that an instance is negative 

False positives (FP) - the number of incorrect predictions that an instance is positive 

False negatives (FN) - the number of incorrect predictions that an instance is negative 

The aim of the algorithm is to maximize the TP and true negatives TN predictions. The effectiveness of the 

algorithm is characterized with the recall and precision measurements. 

Table 3. Confusion Matrix 

 PREDICTED CLASS 

YES NO 

ACTUAL CLASS 
YES TP FN 

NO FP TN 

 

Recall (R) is the Sensitivity or True Positive Rate (TPR) that measures the ability of the algorithm to find all 

relevant entities as given by Equation 13. R = Number of correct answers - produced / Total number of 

possible - correct answers 

R (TPR) = TP/ (TP + FN)       (13) 

A high recall score tells that most of the relevant entities were retrieved by the algorithm, while a low 

recall indicates that the most relevant entities were missed by the algorithm. 

Precision (P) measures the ability of the algorithm to retrieve only relevant entities, which is computed 

using Equation 14. 

P = Number of correct answers - produced / Total number of answers – produced 

P = TP/ (TP + FP)       (14) 

A high precision score indicates that most of the retrieved entities are relevant. A low precision means 

that the algorithm cannot distinguish relevant entities while retrieving all entities. 

F1-Measure is the efficiency measure that combines recall and precision together.  

F1 -Measure is the traditional F1-measure or balanced F1-score. 

F1 − Measure (F1) = 2PR/ (P + R)     (15) 

Accuracy = (TP + TN)/ (TP + FP + TN + FN)    (16) 
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Fallout or False Positive Rate (FPR) 

FPR = FP/ (FP + TN)       (17) 

Specificity or True Negative Rate (TNR) 

TNR = TN/ (TN + FP)       (18) 

Miss Rate or False Negative Rate (FNR) 

FNR = FN/ (FN + TP)       (19) 

TPR + FNR = 1        (20) 

TNR + FPR = 1        (21) 

6 Results and Discussions 

The proposed system is designed and implemented as discussed in Section 4. The system is tested using 

several test cases, containing training corpus of size 1, 51,440 tokens. The test corpus is chosen in such a 

way that it satisfies the entire phrasal context; which is an inherent feature of Kannada language. It is to 

be noted that the system achieves an average accuracy of 87% on a test corpus of 7000 tokens with linear 

kernel. The details of the results obtained are as given below. The system’s performance is measured in 

terms of Precision (P), Recall (R) and F1-measure (F1) as discussed in Section 5. The details of the corpus 

created in this work are given in Section 4. The nature of input test sequence and output tagged sequence 

are given in Table 4 and Table 5 respectively. The corpus size and program run time are tabulated in Table 

6. Table 7 tabulates the results of 10 fold cross validation where validation fold is of size 15,144 tokens. 

Table 8 indicates the confusion matrix of the experiment. Table 9 indicates the total count of NE’s in the 

training corpus. Table 10 indicates the final classification results of test-set corpus of size 7000 tokens with 

linear kernel and Table 11 shows the error analysis.  

Table 4. Input test sequence 

 

 

 

Table 5. Output tagged sequence 
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As already mentioned, SVM model of Kannada NERC is trained using a tagged corpus of size 1, 51, 440 

tokens. A sample input test sequence is given in Table 4. The SVM model generates the tagged output 

sequence as shown in Table 5. It can be noted that the Table 4 is a subset of actual test corpus of 7,000 

tokens and the corresponding output tagged sequence is also the subset of the actual tagged sequence 

of 7,000 tokens. The performance of the designed SVM model is measured using various evaluation 

measurements as discussed in Section 5.  

Table 6. Corpus size and program Run time 

The training set size for the model 1,51,440 words 

Total number of samples treated by the classifier 1,51,440 words 

Total number of features extracted by the classifier 33273 (symbols) 

Feature extraction Time (Training of SVM model) 1244.594 seconds 

The test set size for the model 7000 words 

Total number of features of test set 5775 (symbols) 

Feature extraction Time for test data 2.031 seconds 

Table 7. Results of 10 fold cross validation 

FOLDS Precision % Recall % F1 % Support 

1 81 81 81 15144 

2 84 83 83.5 15144 

3 85 83 84 15144 

4 88 87 87.5 15144 

5 85 84 84.5 15144 

6 88 87 87.5 15144 

7 79 77 78 15144 

8 77 76 76.5 15144 

9 83 82 82.5 15144 

10 87 85 86 15144 

Average/Total 83.7 82.5 83.1 151440 
 

From Table 6 it can be noted that the execution time depends on the size of the input test corpus 

sequence. Table 7 shows the scores of individual folds and the combined scores of all the ten folds. 

 

Table 8. Confusion matrix of the experiment 
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PREDICTED CLASS 

A
C

TU
A

L 
C

LA
SS

 
 

N
EP

 

N
EP

B
IE

 

N
EL

 

N
EL

B
IE

 

N
EO

 

N
EO

B
IE

 

N
ED

 

N
ET

E 

N
ET

P
 

N
ET

O
 

N
EB

 

N
EM

 

N
EN

 

N
ET

I 

N
EA

 

N
E 

N
O

N
E 

NEP 18

9 

4 2 0 0 0 1 0 0 0 0 0 0 0 0 0 128 

NEPBIE 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 

NEL 1 2 99 0 0 0 0 0 0 1 0 0 0 0 0 2 43 

NELBIE 0 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 4 

NEO 0 1 0 0 13 3 0 0 0 0 0 0 0 0 0 2 9 

NEOBI

E 

0 0 1 0 1 9 0 1 0 0 0 0 0 0 0 2 6 

NED 0 2 0 0 0 0 27 0 0 0 0 0 0 0 0 2 13 

NETE 1 0 0 0 0 0 0 24 0 0 0 1 0 3 0 3 71 

NETP 2 0 0 0 1 0 0 0 11 0 0 0 0 0 0 1 12 

NETO 0 1 0 0 2 1 0 5 0 34 0 0 0 0 0 2 54 

NEB 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 7 

NEM 1 0 0 0 0 0 0 0 0 0 0 24 3 1 0 0 39 

NEN 0 2 0 0 0 0 0 0 0 0 0 0 55 1 0 1 92 

NETI 0 1 1 0 0 0 0 0 0 0 0 0 3 38 0 0 12 

NEA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 

NE 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 24

7 

147 

NONE 8 4 2 1 1 5 0 1 6 0 0 4 16 1 0 71 534

9 

From the confusion matrix, the calculation of P, TPR, and FPR are done as follows: 

Consider named entity NEP as Positive class and all others entities as negative class: 

TP for NEP class = 189 (first element of primary diagonal) 

FP for NEP class = 18 (first column sum excluding TP value of 189) 

FN for NEP class = 135 (first row sum excluding TP value of 189) 

TN = 5950 (diagonal elements sum of confusion matrix excluding TP value of 189) 

Precision (P) = TP / (TP + FP) = 189 / (189+18) = 0.91 

Recall(R/TPR) = TP / (TP + FN) = 189 / (189+135) = 189/324 = 0.58 

F1-Measure = 2PR / (P + R) = 2x 0.91x 0.58 / (0.91 + 0.58) = 1.0556/1.49 = 0.71 

FPR = FP/ (FP+TN) = 18/ (18+5950) = 18/5968 = 0.0030 

Similarly the results are calculated for all the NEs and tabulated in Table 10 and Table 11. 

 

 

 

Table 9. Total number of NE’s in training corpus 
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Named Entity 

(NE) 

Tag Tag 

label 

Support 

 

Person 

NEP 0 37181 

NEPB 1 8222 

NEPI 2 4338 

NEPE 3 9216 

 

Location 

NEL 4 21419 

NELB 5 126 

NELI 6 78 

NELE 7 164 

 

Organization 

NEO 8 1090 

NEOB 9 254 

NEOI 10 280 

NEOE 11 202 

Designation NED 12 1495 

Term NETE 13 1065 

Title-Person NETP 14 1587 

Title-Object NETO 15 593 

Brand NEB 16 185 

Measurement NEM 17 1425 

Number NEN 18 946 

Time NETI 19 800 

Abbreviation NEA 20 5218 

Noun entity NE 21 32724 

Not a NE NONE 22 151440 

 

Table 9 indicates the count of different named entitied in the whole training corpus created manually for 

this work. 

Table 10. Classification Results of Test-set Corpus using linear kernel 

Named Entity (NE) Tag Tag label Precision Recall F1 - score Support 

Person NEP 0 0.91 0.58 0.71 324 

NEP (BIE) 1 2 3 0.47 0.49 0.48 35 

Location NEL 4 0.93 0.67 0.78 148 

NEL (BIE) 5 6 7 0.86 0.50 0.63 12 

Organization NEO 8 0.72 0.46 0.56 28 

NEO (BIE) 9 10 11 0.50 0.45 0.47 20 

Designation NED 12 0.96 0.61 0.75 44 

Term NETE 13 0.77 0.23 0.35 103 

Title-Person NETP 14 0.65 0.41 0.50 27 

Title-Object NETO 15 0.97 0.34 0.50 99 

Brand NEB 16 1.00 0.22 0.36 9 

Measurement NEM 17 0.83 0.35 0.49 68 

Number NEN 18 0.71 0.36 0.48 151 

Time NETI 19 0.86 0.69 0.77 55 

Abbreviation NEA 20 1.00 0.45 0.62 11 

Noun entity NE 21 0.74 0.62 0.67 397 

Not A NE NONE 22 0.89 0.98 0.93 5469 

Average /Total 87%  88%  87.5%  7000 

 

It can be seen that the input test sequence is a good mix of all types of possible named entities. We have 

mixed single word named entities and multiword (beginning, internal and End, BOE) person names, 
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location names and organization names in the corpus. So, it is inferred that the model is well tested for 

all kinds of possible classification opportunities. Table 10 and Table 11 give the performance of the model 

indicating the classification ability of the model and the error analysis respectively.   

Table 11. Error analysis 

Named Entity (NE) Tag Tagl abel FPR Support 

Person NEP 0 0.0030 324 

NEP (BIE) 1 2 3 0.0031 35 

Location NEL 4 0.0013 148 

NEL (BIE) 5 6 7 0.0002 12 

Organization NEO 8 0.0008 28 

NEO(BIE) 9 10 11 0.0015 20 

Designation NED 12 0.0002 44 

Term NETE 13 0.0011 103 

Title-Person NETP 14 0.0010 27 

Title-Object NETO 15 0.0002 99 

Brand NEB 16 0.0000 9 

Measurement NEM 17 0.0008 68 

Number NEN 18 0.0036 151 

Time NETI 19 0.0010 55 

Abbreviation NEA 20 0.0000 11 

Noun entity NE 21 0.0144 397 

Not a NE NONE 22 0.4509 5469 

Average /Total 2.84% 7000 

 
It is interesting that the proposed model works with higher F1-measure 87.5% on a test corpus of 7000 

tokens with linear kernel SVM. The time taken for extraction of the features by SVM training model is 

1244.594 seconds for a training corpus size of 1, 51,440 tokens. Moreover, it can be seen that the testing 

time is very less of the order of 2.031 seconds, which mainly depends on the size of test corpus (7,000 

words in this case). 10 fold cross validation results of the system in terms of Precision, Recall and F1-

measure are 83.7%, 82.5% and 83.1% respectively. 

The results of SVM model with different kernels is tabulated in Table 12 for different sizes of Test-Set.  It 

is seen that the SVM model with linear kernel gives highest F1-Score of 87.5%  on a test corpus of 7000 

tokens 

Table 12. F1-scores of SVM model with different kernels 

Test-Set 

size 

in 

words 

F1-Score in % 

 

linear kernel  Poly kernel Rbf kernel Sigmoid kernel 

7,000 87.5 68.5 51 51 

11,000 82 51 59.7 59.7 

15,000 81 51 51 51 

20,000 74.5 34.4 44.6 34.4 

30,000 71.9 20.5 40.9 20.5 

40,000 70.9 12.5 32.9 12.5 

50,000 68.4 6.6 32.5 6.6 
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7 Conclusion 

Natural Language Processing is an important research area containing challenging issues to be 

investigated. NERC is a class of NLP which is used for extracting named entities from unstructured data. 

In this context, this paper focuses on NERC in Kannada language, as it is found that little work is done in 

this area. In this direction, we have conducted an extensive survey in the related area of NLP and based 

on the survey, we have proposed a problem and the methodology that has been formulated. Various 

modeling techniques are investigated, out of which design of supervised SVM is reported here. We have 

developed an efficient model which is trained on a corpus consisting of 1, 51,440 words. From the test 

corpus, variety of test samples are chosen randomly and fed as input to the SVM model with different 

kernels. It is interesting to note that the model recognizes the named entities with an average F1-measure 

of 87.5% and 10 fold cross validation F1-measure of 83.1% for a test corpus of 7000 tokens with linear 

kernel. The false positive rate of the algorithm is 2.84% for a test corpus of 7000 tokens with linear kernel.   
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