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ABSTRACT   

This paper presents optimization of self-organizing feature maps by adjusting tunable parameters and in 

the iterative process by utilizing linear algebra concepts. A gradient rule is applied on the weights matrix 

singular value decomposition values during convergence phases to optimize the algorithm while achieving 

sufficient statistical accuracy. Tunable parameters such as the learning rate, and neighborhood radius are 

adjusted to support the learning algorithm. The algorithm presented herein is tested on the self-

organization of the standard Iris dataset, in the literature. 

Keywords: Self-Organizing Feature Map, Neural Networks, Unsupervised Learning, Singular Value 

Decomposition 

1 Introduction  

1.1 Self-Organizing Feature Map 

The self-organizing feature map (SOFM) is a neural network based algorithm developed by Kohonen that 

iteratively projects high dimensional input vectors into 1D, 2D, or 3D topological map, to visualize 

dissimilarities between data by grouping them into different clusters [1]. Thus, making it easier to obtain 

an insight into the topographic relationship between the data items. SOFM have been widely utilized in 

the industry and academia to establish correlations between data items on a visual output lattice, and 

many research groups previously modified it in several directions, and found useful applications. Industry 

applications include monitoring and diagnosing engine health [2], malware removal [3], Global Positioning 

Systems [4], and many others in the fields of robotics, telecommunications, acoustic and musical, process 

control, machine vision,  classification of mathematical curves, image analysis and signal processing [1, 5]. 

There are two main stages for the SOFM, the competitive, and the adaptive stages. In the competitive 

stage, the nodes compete to become the best matching unit (BMU) of a randomly selected input sequence. 

The node that is most like the input vector, having the least Euclidean distance is chosen as the BMU, and 

hence considered a winning node[1]. 

 

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛

(

 √∑(𝑉𝑖(𝑡) −𝑊𝑖(𝑡))
2

𝑖=𝑛

𝑖=0
)

  

   (1) 

𝛽:𝐵𝑒𝑠𝑡 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑈𝑛𝑖𝑡   
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𝑉𝑖(𝑡): 𝑖𝑡ℎ 𝐼𝑛𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 

𝑊𝑖(𝑡): 𝑖𝑡ℎ 𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 

n: Number of features 

The neighborhood around BMU has a radius that is calculated through the neighborhood function. 

Because of the unique decaying feature, the neighborhood area exponentially shrinks over a time 

constant to the size of few nodes [6]. 

 
𝜎 =  𝜎0𝑒

−
𝑡
𝜆2 

 (2) 

𝜎:𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝜎0: 𝑀𝑎𝑝 𝑅𝑎𝑑𝑖𝑢𝑠 

𝜆: 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑡: 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 

  

The nodes within the neighborhood range are updated to become closer in space to the input vector. 

These nodes are identified by calculating the Euclidean distance between them and the BMU as in (4). If 

the node’s distance is within the neighborhood radius, then the update occurs on it as follows. 

 𝑊𝑖(𝑡 + 1) = 𝑊𝑖(𝑡) +  𝜃 ∗  𝛼 ∗ (𝑉𝑖 −𝑊𝑖)             (3) 

𝑊𝑖(𝑡): 𝑖𝑡ℎ 𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 

𝜃: 𝐵𝑒𝑠𝑡 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑈𝑛𝑖𝑡 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 

𝛼: 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 

𝑉𝑖: 𝐼𝑛𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 
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     (4) 

𝜃: 𝐵𝑒𝑠𝑡 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑈𝑛𝑖𝑡 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 

𝑁:𝑁𝑜𝑑𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑅𝑎𝑑𝑖𝑢𝑠 

𝛽:𝐵𝑒𝑠𝑡 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑈𝑛𝑖𝑡  

𝜎:𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑛: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

  

By the end of each iteration, a new learning rate is calculated in a decaying matter follows. 

 
𝛼(𝑡) =  𝛼0𝑒

(−
𝑡
𝑇
)
 

  (5) 

𝛼: 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 

𝛼0: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 

𝑡: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 

𝑇: 𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔  
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However, the theoretical research frontier has yet to determine a better learning mechanisms for neural 

network based algorithms to mitigate large convergence time of the learning phase, and parallelization 

in-capabilities due to the iterative nature of the algorithm and intensive computing resources needed [7-

9]. In this paper, a new method providing users the flexibility to optimize the convergence number of 

iterations is discussed for clustering of input data. It also achieves a level were the SOFM is capable of 

semi-supervising itself. However, the end-user still must adjust the initial neighborhood radius, and the 

learning rate parameters, to sacrifice or maintain the accuracy of the SOFM in favor of further reducing 

the numb 

1.2 Application of Singular Value Decomposition on Weight Matrix 

Consider a non-normal matrix A, it is not unitarily or orthogonally like a diagonal matrix. Nevertheless, 

this matrix can be simplified using orthogonal transformation, to some extent, by a famous decomposition 

called the Singular Value Decomposition (SVD) [10]. SVD is considered the most widely used method for 

real or complex matrix factorization with a lot of applications, among them, enhancement of digital 

images [11], image, and audio watermarking [12, 13], data mining[14], and many other.  In this paper, we 

use SVD to determine Whether the weight matrix (w) is enduring heavy changes during the loop cycle of 

the algorithm. Reaching a point where there are no more updates occurring on the matrix triggers an 

event to break the loop of the algorithm. 

To calculate SVD values, let’s consider a real 𝑚 ×  𝑛 matrix A, with 𝑚 ≥ 𝑛, then: 

 𝐴 = 𝑈Σ𝑉𝑇 (6) 

Where U is a matrix that consists of n orthonormalized eigenvectors that are allied with the largest 

eigenvalues of 𝐴𝐴𝑇, while the normalized eigenvectors of 𝐴𝑇𝐴 are found in the V matrix, and the SVD 

values are found in the Σ matrix [15]. In this paper, we consider the normalized summation of the Σ matrix 

to monitor the rate of change of the weight matrix. Notice that another metrics can also be used but in 

our case, the summation provided the best accuracy results. 

2 Linear Algebra-based SOFM Algorithm 

In this section, we discuss the concept of Linear Algebra-based Self Organizing Feature Map (LA-SOFM), 

and the different steps that constitute the proposed algorithm. Statistical methods are integrated with 

the SVD vector calculation where its recursive effects on the convergence speed of the algorithm along 

with its accuracy are analyzed, and presented in the following sections: 

2.1 Initialization and Matrix Size 

Initialization of SOFM involves randomizing the weights matrix but this does not mean, however, that 

random initialization would be the best. In our approach, the inputs are further normalized to achieve 

faster execution. A normally distributed randomization in the range between (0, 1) is considered for the 

weights matrix. 

2.2 Learning Rate and Neighborhood Functions 

The learning rate is calculated using the following stochastic method. Notice that the summation of the 

SVD values (ε) replaces the total requested number of iterations in the conventional SOFM algorithm. 

Since we leave our algorithm to decide the optimum number of iteration, it is necessary to update the 

learning rate (α) in gradient descent fashion like the original algorithm, and for that, the SVD values are 
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chosen to replace the total number of iteration since they converge to zero in the fashion we require, 

ensuring our learning rate is monotonically decreases with the regression step. Notice that we take the 

SVD values calculated in the previous iteration, and for that, we initialize ε to 1 to calculate the first 

iterations (t=1). 

 
            𝛼(𝑡) =  𝛼0𝑒

(−
𝑡

𝜀(𝑡−1)
)
 

(7) 

𝛼: 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 

𝛼0: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 

𝑡: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 

𝜀: 𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑉𝐷 𝑉𝑎𝑙𝑢𝑒𝑠  

  

The neighborhood function adaptation around the BMU is applied per plasticity control kernel taking on 

Gaussian or similar form.  

 
𝜆(𝑡) =

𝜀(𝑡 − 1)

log (𝜎0)
 

(8) 

𝜆: 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜀: 𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑉𝐷 𝑉𝑎𝑙𝑢𝑒𝑠 

𝜎0: 𝑀𝑎𝑝 𝑅𝑎𝑑𝑖𝑢𝑠 

𝑡: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 

  

 

 
𝜎(𝑡) = 𝜎0𝑒

(−
𝑡
𝜆(𝑡)

)
 

   (9) 

𝜎:𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝜀: 𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑉𝐷 𝑉𝑎𝑙𝑢𝑒𝑠 

𝜎0: 𝑀𝑎𝑝 𝑅𝑎𝑑𝑖𝑢𝑠 

𝑡: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 

  

2.3 Weight Matrix Update and SVD value Calculations 

Updating the weights is like the conventional SOFM. However, the SVD values summation are calculated 

every iteration after the weights are updated, and then the rate of change of the SVD values summation. 

obtaining a rate of change of zero means we arrived at a convergence for the lattice. To make sure of 

convergence, we verify its consistency for 10 consecutive cycles before breaking the loop, or the iterative 

process will continue its work normally. 

3 Experiments and Analysis 

3.1 Iris Flower Dataset 

The iris flower dataset is a multi-class classification dataset that represents three types of iris flowers, Iris 

Setosa, Iris Versicolor, and Iris Virginica, each with different sepal length, and width, and petal length, and 

width dimensions [16]. The dataset contains 150 inputs, 50 for each iris type. 
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3.2 Training and Testing 

The iris dataset is randomly split into training, and testing subsets every time a session is conducted. 

Furthermore, data is normalized to speed up the clustering process, and the LA-SOFM are tuned to achieve 

the best results possible. Clustering has been done using both the conventional method, and ours as 

shown in Table1, where 80% of the original dataset is training data, and 20% is testing. While in Table2, 

the training, and testing datasets are split in half (50% - 50%). 

Table 1. Testing Results with 80% Training and 20% Testing. 

 Test # LA-SOFM Conventional SOM 

 # iterations      Time Accuracy # iterations Time Accuracy 

1 121 3.5706 0.9666 1000 19.3728 0.9000 

2 138 3.9672 0.9333 1000 19.6997 0.9666 

3 148 4.1391 1.0000 1000 22.7906 1.0000 

4 133 4.0139 0.9666 1000 21.9220 1.0000 

5 122 3.5513 0.9666 1000 20.5624 1.0000 

6 140 4.0854 0.9666 1000 19.9320 0.9333 

7 146 4.0480 0.9666 1000 23.0422 0.9333 

8 135 3.9431 1.0000 1000 21.0772 0.9333 

9 126 3.6985 0.9666 1000 20.1508 0.9333 

10 149 4.2281 1.0000 1000 20.5058 0.9333 

     Average 135.8 3.9245 0.9733 1000 20.9055 0.9533 

In this test, 80% of the randomly selected data were training data and 20% were testing. LA-SOFM proved 

better by providing better accuracy with way less execution time. 

Table 2. Testing Results with 50% Training and 50% Testing. 

Test # LA-SOFM Conventional SOM 

 # iterations Time Accuracy # iterations Time Accuracy 

1 121 3.8937 0.8933 1000 20.4131 0.8533 

2 137 4.2285 0.9066 1000 21.2074 0.8800 

3 120 3.7879 0.9600 1000 20.6351 0.9066 

4 97 3.2838 0.9600 1000 20.3298 0.9600 

5 134 4.1403 0.9333 1000 20.5927 0.8933 

6 128 3.9855 0.9200 1000 20.4367 0.9200 

7 108 3.7454 0.9333 1000 20.3451 0.9600 

8 129 4.0464 0.9733 1000 19.8269 0.9200 

9 142 4.3352 0.9733 1000 20.3973 0.9600 

10 130 4.1004 0.9733 1000 20.4778 0.9733 

Average 124.6 3.9547 0.9426 1000 20.4661 0.9226 

In this test, LA-SOFM maintained better accuracy in less execution time even in 50%-50% data split. 

From Table1, and Table2, LA-SOFM is shown to produce a better accuracy than the conventional SOFM, 

while having a way shorter execution time since it stops the iteration of the algorithm once it reaches a 

statistical efficiency. In our method, the algorithm keeps iterating until there are no more updates 

happening on the weight matrix. Usually, we achieve that when the rate of change in the SVD values 

summation is zero, but in these tests, we break the loop whenever we achieve a rate of change that is less 

than 𝟏𝒆 − 𝟒 for 10 consecutive iterations since it produced accurate results. In Figure1, it shows how the 

SVD values played a role in converging the learning rate, and neighborhood function. It also shows the 

rate of change of the value summation, where is displays a high rate of change at the first epochs, but 

then the rate of change started to go down until it reached the threshold we set. 
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Figure 1. LA-SOFM Functions. 

This figure shows what goes behind the scene of the LA-SOFM algorithm, and how the SVD integrate the 

SOFM functions consistently together. 

4 Conclusion 

Since the introduction of the modern computer circa 1950s, and the SVD values have been a constant 

factor in the research frontier since much of scientific computing depends critically in one way or another 

on numerical linear algebra algorithm. This paper reviewed the use of SVD values to determine, and 

control the flow of the iterative process of the LA-SOFM. 

5 Future Work 

Having the whole iterative process of the LA-SOFM to be decided based on the eigenvalue is the first step 

in this research. Still, the relationship between the eigenvalue, learning rate, the neighborhood function, 

and the generalization of the weight matrix is a good area to go deeper in. Reaching a level where the 

relationship between the mentioned parameters are acknowledged, then a full automatic LA-SOFM where 

the user does not need to worry about the parameters can be achieved. 
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