SOCIETY FOR SCIENCE AND EDUCATION

Some Properties of Associates of Subsets of FSP-Points Set

¹Vaddiparthi Yogeswara, ²Biswajit Rath, ³Ch.Ramasanyasi Rao, and ⁴D. Raghu Ram

¹Associate Professor, Dept. Mathematics, GIT GITAM University, Visakhapatnam-530045, A.P State, India ²Assistant Professor, Dept. of Applied Mathematics, GIS GITAM University, Visakhapatnam-530045, A.P State, India ^{3,4}Research Scholar :Dept. of Mathematics, GIT, GITAM University, Visakhapatnam 530045, A.P State, India vaddiparthyy@yahoo.com; urwithbr@gmail.com; rams.mathematics@gmail.com; draghuram84@gmail.com

ABSTRACT

In this paper, based upon Fs-set theory [1], we define a crisp Fs-points set $FSP(\mathcal{A})$ for given Fs-set \mathcal{A} and establish a pair of relations between collection of all Fs-subsets of a given Fs-set \mathcal{A} and collection of all crisp subsets of Fs-points set $FSP(\mathcal{A})$ of the same Fs-set \mathcal{A} and prove one of the relations is a meet complete homomorphism and the other is a join complete homomorphism and search properties of relations between Fs-complemented sets and complemented constructed crisp sets via these homomorphisms.

Key word: Fs-set, Fs-subset, Fs-complement, Fs-function, Fs-point

1 Introduction:

Ever since Zadeh [17] introduced the notion of fuzzy sets in his pioneering work, several mathematicians studied numerous aspects of fuzzy sets.

Murthy[7] introduced f-sets in order to prove Axiom of choice for fuzzy sets. The following example shows why the introduction of f-set theory is necessitated. Let A be non-empty and consider a diamond lattice $L = \{0, \alpha \mid \beta, 1\}$. Define two fuzzy sets f and g from A into L such that $f(x) = \alpha$ and $g(x) = \beta$. Here both f and g are nonempty fuzzy sets. The Cartesian product of f and g from A into L is given by $(f \times g)(x) = f(x) \land g(x) = \alpha \land \beta = 0$. That is, $f \times g$ is a empty set. Even though both f and g are non-empty fuzzy sets, their fuzzy Cartesian product is empty showing that the failure of Axiom of choice in L-fuzzy set theory [10]. The collection of all f-subsets of a given f-set with Murthy's definition [7] f-complement [10] could not form a compete Boolean algebra. Vaddiparthi Yogeswara, G.Srinivas and Biswajit Rath introduced the concept of Fs-set and developed the theory of Fs-sets in order to prove collection of all Fs-subsets of given Fs-sets is a complete Boolean algebra under Fs-unions, Fs-intersections and Fs-complements. The Fs-sets they introduced contain Boolean valued membership functions .They are successful in their efforts in proving that result with some conditions. In papers [2] and [3] Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy introduced the concept of Fs-function between two Fs-subsets of given Fs-set and defined an image of an Fs-subset under a given Fs-function. Also they studied the properties of images under various kinds of Fs-functions.

In this paper, we construct a crisp set $FSP(\mathcal{A})$ of all Fs-points of given Fs-set \mathcal{A} such that there is a pair of relations between collection of all Fs-subsets of \mathcal{A} and collection of all crisp sub sets of $FSP(\mathcal{A})$, such that one of the relations is a complete meet homomorphism and other is a complete join homomorphism . Here the operations on collection of Fs-subsets of \mathcal{A} are Fs-union, Fs-intersection and Fs-complement. The operations on $FSP(\mathcal{A})$ of are usual crisp set union, crisp set intersection and crisp set complement. The correspondences between them are denoted by the same symbol '~' in the later contexts. The detailed definitions of Fs-point and FSP (\mathcal{A}) for given Fs-set \mathcal{A} are discussed before defining those relations mentioned above. For smooth reading of paper, the theory of Fs-sets and Fs-functions in brief is dealt with in first two sections. We denote the largest element of a complete Boolean algebra $L_A[1.1]$ by M_A or 1. We denote Fs-union and crisp set union by same symbol \cup and similarly Fs-intersection and crisp set intersection by the same symbol \cap . For all lattice theoretic properties and Boolean algebraic properties one can refer Szasz [13], Garret Birkhoff[14],Steven Givant • Paul Halmos[12] and Thomas Jech[15]

2 Fs-Sets

2.1 Definition

Let U be a universal set, $A_1 \subseteq U$ and let $A \subseteq U$ be non-empty. A four tuple $\mathcal{A} = (A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A)$ is said be an Fs-set if, and only if

- (1) $A \subseteq A_1$
- (2) L_A is a complete Boolean Algebra
- (3) $\mu_{1A_1}: A_1 \to L_A$, $\mu_{2A}: A \to L_A$, are functions such that $\mu_{1A_1}|A \ge \mu_{2A}$
- (4) $\overline{A}:A \rightarrow L_A$ is defined by $\overline{A}x = \mu_{1A_1} x \wedge (\mu_{2A}x)^c$, for each $x \in A$

2.2 Definition:

Fs-subset

Let $\mathcal{A}=(A_1, A, \overline{A}(\mu_{1A_1,}\mu_{2A}), L_A)$ and $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1,}\mu_{2B}), L_B)$ be a pair of Fs-sets. \mathcal{B} is said to be an Fs-subset of \mathcal{A} , denoted by $\mathcal{B}\subseteq \mathcal{A}$, if, and only if

- (1) $B_1 \subseteq A_1, A \subseteq B$
- (2) L_B is a complete subalgebra of $L_A\,$ or $L_B{\leq}L_A$
- (3) $\mu_{1B_1} \le \mu_{1A_1} | B_1$, and $\mu_{2B} | A \ge \mu_{2A}$

2.3 Proposition:

Let \mathcal{B} and \mathcal{A} be a pair of Fs-sets such that $\mathcal{B} \subseteq \mathcal{A}$. Then $\overline{B}x \leq \overline{A}x$ is true for each $x \in A$

2.3.1 Remark:

For some L_X , such that $L_X \leq L_A$ a four tuple $\mathcal{X} = (X_1, X, \overline{X}(\mu_{1X_1}, \mu_{2X}), L_X)$ is not an Fs-set if, and only if

(a) $X \not\subseteq X_1$ or

(b) $\mu_{1X_1} x \ge \mu_{2X} x$, for some $x \in X \cap X_1$

Here onwards, any object of this type is called an Fs-empty set of first kind and we accept that it is an Fs-subset of \mathcal{B} for any $\mathcal{B} \subseteq \mathcal{A}$.

2.4 Definition:

An Fs-subset $\mathcal{Y}=(Y_1, Y, \overline{Y}(\mu_{1Y_1}, \mu_{2Y}), L_Y)$ of \mathcal{A} , is said to be an Fs-empty set of second kind if, and only if

- $\begin{array}{ll} \text{(a')} & Y_1 = Y \\ \text{(b')} & L_Y \leq L_A \end{array}$
- (c) $\overline{Y} = 0$

2.4.1 Remark:

We denote Fs-empty set of first kind or Fs-empty set of second kind by $\Phi_{\mathcal{A}}$.

2.5 Definition:

Let $\mathcal{B}_1 = (B_{11}, B_1, \overline{B}_1(\mu_{1B_{11}}, \mu_{2B_1}), L_{B_1})$ and $\mathcal{B}_2 = (B_{12}, B_2, \overline{B}_2(\mu_{1B_{12}}, \mu_{2B_2}), L_{B_2})$ be a pair of Fs-sets. We say that \mathcal{B}_1 and \mathcal{B}_2 are equal, denoted by $\mathcal{B}_1 = \mathcal{B}_2$ if, only if

- (1) $B_{11} = B_{12}, B_1 = B_2$
- (2) $L_{B_1} = L_{B_2}$
- (3) (a) $(\mu_{1B_{11}} = \mu_{1B_{12}} \text{ and } \mu_{2B_1} = \mu_{2B_2})$, or (b) $\overline{B}_1 = \overline{B}_2$

2.5.1 Remark:

We can easily observed that 3(a) and 3(b) not equivalent statements.

2.6 Proposition:

 $\mathcal{B}_1 = (B_{11}, B_1, \overline{B}_1(\mu_{1B_{11}}, \mu_{B_1}), L_{B_1}) \text{ and } \mathcal{B}_2 = (B_{12}, B_2, \overline{B}_2(\mu_{1B_{12}}, \mu_{B_2}), L_{B_2}) \text{ are equal if, only if } \mathcal{B}_1 \subseteq \mathcal{B}_2 \text{ and } \mathcal{B}_2 \subseteq \mathcal{B}_1$

2.7 Definition of Fs-union for a given pair of Fs-subsets of A:

Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and

 $C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$, be a pair of Fs-subsets of A. Then,

the Fs-union of $\mathcal B$ and $\mathcal C$,denoted by $\mathcal B\cup\mathcal C$ is defined as

 $\mathcal{B}\cup\mathcal{C}=\mathcal{D}=(D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where

- (1) $D_1 = B_1 \cup C_1$, $D = B \cap C$
- (2) $L_D = L_B \lor L_C$ = complete subalgebra generated by $L_B \cup L_C$

```
(3) \mu_{1D_1}: D_1 \rightarrow L_D is defined by

\mu_{1D_1}x = (\mu_{1B_1} \lor \mu_{1C_1})x

\mu_{2D}: D \rightarrow L_D is defined by

\mu_{2D}x = \mu_{2B}x \land \mu_{2C}x

\overline{D}: D \rightarrow L_D is defined by

\overline{D}x = \mu_{1D_1}x \land (\mu_{2D}x)^c
```

2.8 Proposition:

 $\mathcal{B}\cup\mathcal{C}$ is an Fs-subset of \mathcal{A} .

2.9 Definition of Fs-intersection for a given pair of Fs-subsets of A:

Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and $\mathcal{C}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ be a pair of Fs-subsets of \mathcal{A} satisfying the following conditions:

- (i) $B_1 \cap C_1 \supseteq B \cup C$
- (ii) $\mu_{1B_1} x \land \mu_{1C_1} x \ge (\mu_{2B} \lor \mu_{2C}) x$, for each $x \in A$

Then, the Fs-intersection of $\mathcal B$ and t, denoted by $\mathcal B\cap\mathcal C$ is defined as

 $\mathcal{B} \cap \mathcal{C} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E),$ where

(a)
$$E_1 = B_1 \cap C_1$$
, $E = B \cup C$

```
(b) L_E = L_B \wedge L_C = L_B \cap L_C
```

 $\begin{array}{ll} \text{(c)} & \mu_{1E_1} \colon E_1 \longrightarrow L_E \text{ is defined by } \mu_{1E_1} x = \mu_{1B_1} x \wedge \mu_{1C_1} x \\ & \mu_{2E} \colon E \longrightarrow L_E \text{ is defined by} \\ & \mu_{2E} x = (\mu_{2B} \lor \mu_{2C}) x \\ & \overline{E} \colon E \longrightarrow L_E \text{ is defined by} \\ & \overline{E} x = \mu_{1E_1} x \wedge (\mu_{2E} x)^c \,. \end{array}$

2.9.1 Remark:

If (i) or (ii) fails we define $\mathcal{B} \cap \mathcal{C}$ as $\mathcal{B} \cap \mathcal{C} = \Phi_{\mathcal{A}}$, which is the Fs-empty set of first kind.

2.10 Proposition:

For any Fs-subsets \mathcal{B} , \mathcal{C} and \mathcal{D} of $\mathcal{A} = (A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A)$, the following associative laws are true:

- (I) $\mathcal{B} \cup (\mathcal{C} \cup \mathcal{D}) = (\mathcal{B} \cup \mathcal{C}) \cup \mathcal{D}$
- (II) $\mathcal{B} \cap (\mathcal{C} \cap \mathcal{D}) = (\mathcal{B} \cap \mathcal{C}) \cap \mathcal{D}$, whenever Fs-intersections exist.

2.11 Arbitrary Fs-unions and arbitrary Fs-intersections:

Given a family $(\mathcal{B}_i)_{i \in I}$ of Fs-subsets of $\mathcal{A} = (A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A)$, where

 $\mathcal{B}_i = (B_{1i}, B_i, \overline{B}_i(\mu_{1B_{1i}}, \mu_{2B_i}), L_{B_i})$, for any $i \in I$

2.12 Definition of Fs-union is as follows

Case (1): For I= Φ , define Fs-union of $(\mathcal{B}_i)_{i \in I}$, denoted by $\bigcup_{i \in I} \mathcal{B}_i$ as $\bigcup_{i \in I} \mathcal{B}_i = \Phi_{\mathcal{A}}$, which is the Fs-empty set

Case (2): Define for $I \neq \Phi$, Fs-union of $(\mathcal{B}_i)_{i \in I}$ denoted by $\bigcup_{i \in I} \mathcal{B}_i$ as follow

$$\bigcup_{i \in I} \mathcal{B}_{i} = \mathcal{B} = \left(B_{1}, B, \overline{B}\left(\mu_{1B_{1}}, \mu_{2B}\right), L_{B}\right),$$

where

(a) $B_1 = \bigcup_{i \in I} B_{1i}, B = \bigcap_{i \in I} B_i$

(b) $L_B = V_{i \in I} L_{B_i}$ = complete subalgebra generated by $\bigcup L_i (L_i = L_{B_i})$

(c)
$$\mu_{1B_1}: B_1 \rightarrow L_B$$
 is defined by
 $\mu_{1B_1}x = (\bigvee_{i \in I} \mu_{1B_{1i}})x = \bigvee_{i \in I_x} \mu_{1B_{1i}}x$, where
 $I_x = \{i \in I | x \in B_i\}$
 $\mu_{2B}: B \rightarrow L_B$ is defined by $\mu_{2B}x = (\bigwedge_{i \in I} \mu_{2B_i})x$
 $= \bigwedge_{i \in I} \mu_{2B_i}x$

 $\overline{B}: B \to L_B$ is defined by $\overline{B}x = \mu_{1B_1} x \Lambda (\mu_{2B} x)^c$

2.12.1 Remark

We can easily show that (d) $B_1 \supseteq B$ and $\mu_{1B_1} | B \ge \mu_{2B}$.

2.13 Definition of Fs-intersection:

Case (1): For I= Φ , we define Fs-intersection of $(\mathcal{B}_i)_{i \in I}$, denoted by $\bigcap_{i \in I} \mathcal{B}_i$ as $\bigcap_{i \in I} \mathcal{B}_i = \mathcal{A}$ Case (2): Suppose $\bigcap_{i \in I} B_{1i} \supseteq \bigcup_{i \in I} B_i$ and $\bigwedge_{i \in I} \mu_{1B_{1i}} | (\bigcup_{i \in I} B_i) \ge \bigvee_{i \in I} \mu_{2B_i}$

Then, we define Fs-intersection of $(\mathcal{B}_i)_{i\in I}$, denoted by $\bigcap_{i\in I}\mathcal{B}_i$ as follows

$$\bigcap_{i \in I} \mathcal{B}_{i} = \mathcal{C} = \left(C_{1}, C, \overline{C}\left(\mu_{1C_{1}}, \mu_{2C}\right), L_{C}\right)$$

 $\begin{array}{l} (a') \ C_1 = \bigcap_{i \in I} B_{1i}, C = \bigcup_{i \in I} B_i \\ (b') \ L_C = \bigwedge_{i \in I} L_{B_i} \\ (c') \ \mu_{1C_1}: C_1 \longrightarrow L_C \text{ is defined by } \mu_{1C_1} x = (\bigwedge_{i \in I} \mu_{1B_{1i}}) x = \bigwedge_{i \in I} \mu_{1B_{1i}} x \\ \mu_{2C}: C \longrightarrow L_C \text{ is defined by } \mu_{2C} x = (\bigvee_{i \in I} \mu_{2B_i}) x = \bigvee_{i \in I_x} \mu_{2B_i} x, \\ \text{where,} I_x = \{i \in I \mid x \in B_i\} \\ \overline{C}: C \longrightarrow L_C \text{ is defined by } \overline{C} x = \mu_{1C_1} x \wedge (\mu_{2C} x)^C \end{array}$

Case (3): $\bigcap_{i \in I} B_{1i} \not\supseteq \bigcup_{i \in I} B_i$ or $\bigwedge_{i \in I} \mu_{1B_{1i}} | (\bigcup_{i \in I} B_i) \not\ge \bigvee_{i \in I} \mu_{2B_i}$

We define

$$\bigcap_{i\in I}\mathcal{B}_i=\Phi_{\mathcal{A}}$$

2.13.1 Lemma:

For any Fs-subset $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and $\mathcal{B}\subseteq \mathcal{B}_i = (B_{1i}, B_i, \overline{B}_i(\mu_{1B_{1i}}, \mu_{2B_i}), L_{B_i})$ for each $i \in I \cap_{i \in I} \mathcal{B}_i$ exists and $\mathcal{B} \subseteq \bigcap_{i \in I} \mathcal{B}_i$

2.14 Proposition:

 $(\mathcal{L}(\mathcal{A}), \bigcap)$ is Λ -complete lattics.

2.14.1 Corollary:

For any Fs-subset $\mathcal B$ of $\mathcal A$, the following results are true

(i)
$$\Phi_{\mathcal{A}} \cup \mathcal{B} = \mathcal{B}$$

(ii) $\Phi_{\mathcal{A}} \cap \mathcal{B} = \Phi_{\mathcal{A}}$.

2.15 Proposition:

 $(\mathcal{L}(\mathcal{A}), U)$ is V-complete lattics.

2.15.1 Corollary:

 $(\mathcal{L}(\mathcal{A}), \bigcup, \bigcap)$ is a complete lattice with Vand Λ

17

2.16 Proposition:

Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, $\mathcal{C}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ and $\mathcal{D}=(D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$. Then $\mathcal{B} \cup (\mathcal{C} \cap \mathcal{D})=(\mathcal{B} \cup \mathcal{C}) \cap (\mathcal{B} \cup \mathcal{D})$ provided $\mathcal{C} \cap \mathcal{D}$ exists.

2.17 Proposition:

Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, $\mathcal{C}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ and $\mathcal{D}=(D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$. Then $\mathcal{B} \cap (\mathcal{C} \cup \mathcal{D})=(\mathcal{B} \cap \mathcal{C}) \cup (\mathcal{B} \cap \mathcal{D})$ provided in R.H.S

 $(\mathcal{B} \cap \mathcal{C})$ and $(\mathcal{B} \cap \mathcal{D})$ exists.

2.18 Definition of Fs-complement of an Fs-subset:

Consider a particular Fs-set $\mathcal{A} = (A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A), A \neq \Phi$, where

(i) $A \subseteq A_1$

(ii)
$$L_A = [0, M_A], M_A = \forall \overline{A}A = \bigvee_{a \in A} \overline{A}a$$

(iii) $\mu_{1A_1} = M_A, \mu_{2A} = 0$,

$$\overline{A}x = \mu_{1A_1} x \wedge (\mu_{2A}x)^c = M_A$$
, for each $x \in A$

Given $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$. We define Fs-complement of \mathcal{B} , denoted by $\mathcal{B}^{C_{\mathcal{A}}}$ for B=A and $L_B = L_A$ as follows:

 $\mathcal{B}^{C_{\mathcal{A}}} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where

- (a') $D_1 = C_A B_1 = B_1^c \cup A, D = B = A$
- (b') $L_D = L_A$
- (c') $\mu_{1D_1}: D_1 \to L_A$, is defined by $\mu_{1D_1}x = M_A$ $\mu_{2D}: A \to L_A$, is defined by $\mu_{2D}x = \overline{B}x = \mu_{1B_1}x\Lambda(\mu_{2B}x)^c$ $\overline{D}: A \to L_A$, is defined by $\overline{D}x = \mu_{1D_1}x\Lambda(\mu_{2D}x)^c = M_A \wedge (\overline{B}x)^c = (\overline{B}x)^c$.

2.19 Proposition:

$$\mathcal{A}^{\mathsf{C}_{\mathcal{A}}} = \Phi_{\mathcal{A}}$$

2.20 Definition:

Define $(\Phi_{\mathcal{A}})^{C_{\mathcal{A}}} = \mathcal{A}$

2.21 Proposition:

For $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, $\mathcal{C}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$, which are non Fs-empty sets and B = C = A, $L_B = L_C = L_A$

- (1) $\mathcal{B} \cap \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \Phi_{\mathcal{A}}$
- (2) $\mathcal{B} \cup \mathcal{B}^{C_{\mathcal{A}}} = \mathcal{A}$

$$(3) \left(\mathcal{B}^{\mathsf{C}_{\mathcal{A}}}\right)^{\mathsf{C}_{\mathcal{A}}} = \mathcal{I}$$

(4) $\mathcal{B} \subseteq \mathcal{C}$ if and only if $\mathcal{C}^{C_{\mathcal{A}}} \subseteq \mathcal{B}^{C_{\mathcal{A}}}$

2.22 Proposition:

Fs-De-Morgan's laws for a given pair of Fs-subsets:

For any pair of Fs-sets $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and $\mathfrak{A}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$, with B=C=A and $L_B=L_C=L_A$, we will have

(i) $(\mathcal{B} \cup \mathcal{C})^{C_{\mathcal{A}}} = \mathcal{B}^{C_{\mathcal{A}}} \cap \mathcal{C}^{C_{\mathcal{A}}}$ if $(\overline{B}x)^{c} \wedge (\overline{C}x)^{c} \leq \left[\left(\mu_{1B_{1}}x \right)^{c} \vee \mu_{2C}x \right] \wedge \left[\left(\mu_{1C_{1}}x \right)^{c} \vee \mu_{2B}x \right]$, for each $x \in A$ (ii) $(\mathcal{B} \cap \mathcal{C})^{C_{\mathcal{A}}} = \mathcal{B}^{C} \cup \mathcal{C}^{C_{\mathcal{A}}}$, whenever $\mathcal{B} \cap \mathcal{C}$ exists.

2.23 Fs-De Morgan laws for any given arbitrary family of Fs-sets:

Proposition: Given a family of Fs-subsets $(\mathcal{B}_i)_{i \in I}$ of $\mathcal{A} = (A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A)$, where $L_A = [0, M_A] \cdot \mu_{1A_1} = M_A, \mu_{2A} = 0, \overline{A}x = M_A$

(I) $(\bigcup_{i\in I} \mathcal{B}_i)^{C_{\mathcal{A}}} = \bigcap_{i\in I} \mathcal{B}_i^{C_{\mathcal{A}}}$, for $I \neq \Phi$, where $\mathcal{B}_i = (B_{1i}, B_i, \overline{B}_i(\mu_{1B_{1i}}, \mu_{2B_i}), L_{B_i})$ and (1) $B_i = A, L_{B_i} = L_A$ provided $\bigwedge_{i\in I} (\overline{B}_i x)^c \le \bigwedge_{\substack{i,j\in I \\ i\neq i}} [(\mu_{1B_{1i}} x)^c \lor \mu_{2B_j} x]$

(II) $(\bigcap_{i \in I} \mathcal{B}_i)^{C_{\mathcal{A}}} = \bigcup_{i \in I} \mathcal{B}_i^{C_{\mathcal{A}}}$, whenever $\bigcap_{i \in I} \mathcal{B}_i$ exist

3 Fs-point

3.1 Definition

We define an object, for $b \in A$, $\beta \in L_A$ such that $\beta \leq \overline{A}b$ - denoted by (b, β) as follows

 $(b,\beta) = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B) , \text{ where } A \subseteq B \subseteq B_1 \subseteq A_1, L_B \leq L_A, \text{ such that } \mu_{1B_1}x, \mu_{2B}x \in L_B, \alpha \leq \mu_{1A_1}x, \forall x \in A_1, \beta \in L_A$

 $\mu_{1B_1} x = \begin{cases} \mu_{2A} x, & x \neq b, x \in A \\ \beta \lor \mu_{2A} b, & x = b \\ \alpha, & x \notin A, x \in A_1 \end{cases} \text{And } \mu_{2B} x = \begin{cases} \mu_{2A} x, & x \in A \\ \alpha, & x \notin A, x \in B \end{cases}$

3.2 Lemma:

(a) $\beta \leq \mu_{1A_{1}} b$ and $\beta \leq (\mu_{2A}b)^{c}$ (b) $\mu_{1B_{1}}b \geq \mu_{2B}b$ (c) $\mu_{1B_{1}}b \leq \mu_{1A_{1}}b$ (d) $\mu_{2B}b \geq \mu_{2A}b$ (e) $Bb = \beta$ (f) (b, β) is Fs-subset of \mathcal{A} Proof : (a): Given $\beta \leq \overline{A}b = \mu_{1A_{1}}b \wedge (\mu_{2A}b)^{c}$ $\Rightarrow \beta \leq \mu_{1A_{1}}b$ and $\beta \leq (\mu_{2A}b)^{c}$ (b): $\mu_{1B_{1}}b \wedge \mu_{2B}b = (\beta \vee \mu_{2A}b) \wedge \mu_{2A}b = \mu_{2B}b = \mu_{2B}b$ $\Rightarrow \mu_{1B_{1}}b \geq \mu_{2B}b$

 $\begin{aligned} \text{(c): } \mu_{1B_{1}}b \wedge \mu_{1A_{1}}b &= (\beta \vee \mu_{2A}b) \wedge \mu_{1A_{1}}b = (\beta \wedge \mu_{1A_{1}}b) \vee (\mu_{1A_{1}}b \wedge \mu_{2A}b) &= \beta \vee \mu_{2A}b = \mu_{1B_{1}}b \\ \Rightarrow \mu_{1B_{1}}b &\leq \mu_{1A_{1}}b \\ \text{(d): } \mu_{2B}b &\geq \mu_{2A}b \ (\because \mu_{2B}x = \mu_{2A}x, \forall x \in A) \\ \text{(e): } \overline{B}b &= \mu_{1B_{1}}b \wedge (\mu_{2B}b)^{c} \end{aligned}$

$$= (\beta \lor \mu_{2A}b) \land (\mu_{2A}b)^{c}$$

 $= (\beta \wedge \ (\mu_{2A}b \)^c) \vee (\mu_{2A}b \ \wedge \ (\mu_{2A}b \)^c)$

$$= (\beta \land (\mu_{2A}b)^{c}) \lor 0$$

$$= \beta \land (\mu_{2A}b)^{c} = \beta$$

(f): Given $(b, \beta) = (B_{1}, B, \overline{B}(\mu_{1B_{1}}, \mu_{2B}), L_{B})$
(i) $B_{1} \subseteq A_{1}, A \subseteq B$
(ii) $L_{B} \leq L_{A}$
(iii) $\mu_{1B_{1}}x = \begin{cases} \mu_{2A}x, & x \neq b, x \in A \\ \beta \lor \mu_{2A}b, & x = b \\ \alpha, & x \notin A, x \in A_{1} \end{cases}$ And $\mu_{2B}x = \begin{cases} \mu_{2A}x, & x \in A \\ \alpha, & x \notin A, x \in B \end{cases}$
 $\mu_{1B_{1}}x = \mu_{2A}x = \mu_{2B}x \leq \mu_{1A_{1}}x, x \neq b, x \in A$
 $\mu_{1B_{1}}b = \beta \lor \mu_{2A}b \geq \mu_{2A}b = \mu_{2B}b, \mu_{1B_{1}}b \leq \mu_{1A_{1}}b$
 $\therefore \mu_{1B_{1}}x \geq \mu_{2B}x, \forall x \in B, \mu_{1B_{1}}x \leq \mu_{1A_{1}}x, \forall x \in B_{1}$ and $\mu_{2B}x = \mu_{2A}x, \forall x \in A$

Hence $(\mathbf{b}, \boldsymbol{\beta}) = (\mathbf{B}_1, \mathbf{B}, \overline{\mathbf{B}}(\mu_{1B_1}, \mu_{2B}), \mathbf{L}_{\mathbf{B}})$ is Fs-subset of \mathcal{A} .

Here onward (b,β) –which is an Fs-subset of \mathcal{A} , we call a (b,β) objects of \mathcal{A} .

3.3 Definition of a relation between objects:

For any (b,β) objects $\mathcal{B}_1 = (B_{11}, B_1, \overline{B}_1(\mu_{1B_{11}}, \mu_{2B_1}), L_{B_1})$ and $\mathcal{B}_2 = (B_{12}, B_2, \overline{B}_2(\mu_{1B_{12}}, \mu_{2B_2}), L_{B_2})$ of \mathcal{A} , we say that $\mathcal{B}_1 R(b,\beta) \mathcal{B}_2$ if, and only if $\mu_{1B_{11}} x = \mu_{2B_1} x, x \neq b$ and $\forall x \in B_1$ and $\mu_{1B_{12}} x = \mu_{2B_2} x, x \neq b$ and $\forall x \in B_2$ and $\mu_{1B_{11}} b = \mu_{1B_{12}} b = \beta \lor \mu_{2A} b$ and $\mu_{2B_1} b = \mu_{2B_2} b = \mu_{2A} b$.

3.4 Theorem:

 $R(b, \beta)$ is an equivalence relation.

Proof: The proof follows clearly from definition.

3.5 Definition of Fs-point:

The equivalence class corresponding to $R(b,\beta)$ is denoted by χ_b^β or (b,β) . We define this χ_b^β is an Fs point of \mathcal{A} .

Set of all Fs-point of \mathcal{A} is denoted by $FSP(\mathcal{A})$.

3.6 Definition:

Let $G \subseteq FSP(\mathcal{A})$.

- (a) G is said to be closed under stalks if, and only if $\chi_b^\beta \in G$, $\alpha \le \beta \Rightarrow \chi_b^\alpha \in G$
- (b) G is said to be closed under supremums if and only if $M \subseteq L_A, \chi_b^{\beta} \in G, \forall \beta \in M \Rightarrow \chi_b^{\vee M} \in G, \forall M = \bigvee_{\beta \in M} \beta$
- (c) G is said to be S-closed if, and only if G is closed under both stalks and supremums.

3.7 Theorem:

Arbitrary intersection of S-closed subset is S-closed

3.8 Definition:

Let $G \subseteq FSP(\mathcal{A})$.

Define
$$G^{\sim} = \Phi_{\mathcal{A}}$$
 if $G = \Phi$. Otherwise $G^{\sim} = \bigcup_{\chi_{b}^{\beta} \in G} \chi_{b}^{\beta}$
Define $\mathcal{B} = (B_{1}, B, \overline{B}(\mu_{1B_{1}}, \mu_{2B}), L_{B})$, where
 $B_{1} \supseteq B = \{b|\chi_{b}^{\beta} \in G\}, L_{B} = \bigvee_{\chi_{b}^{\beta} \in G} L_{\beta}, \mu_{1B_{1}} b = \bigvee_{\chi_{b}^{\beta} \in G} (\beta \lor \mu_{2A} b), \mu_{2B} b = \mu_{2A} b$
 $\overline{B}b = \mu_{1B_{1}} b \land (\mu_{2B} b)^{c}$
 $= \bigvee_{\chi_{b}^{\beta} \in G} (\beta \lor \mu_{2A} b) \land (\mu_{2A} b)^{c}$
 $= \left[(\bigvee_{\chi_{b}^{\beta} \in G} \beta) \lor \mu_{2A} b \right] \land (\mu_{2A} b)^{c}$
 $= \left((\bigvee_{\chi_{b}^{\beta} \in G} \beta) \land (\mu_{2A} b)^{c} \right) \lor (\mu_{2A} b \land (\mu_{2A} b)^{c})$
 $= \bigvee_{\chi_{b}^{\beta} \in G} (\beta \land (\mu_{2A} b)^{c}) \lor 0$
 $= \bigvee_{\chi_{b}^{\beta} \in G} (\beta \land (\mu_{2A} b)^{c}) = \bigvee_{\chi_{b}^{\beta} \in G} \beta$

3.9 Theorem:

$$\begin{split} & G^{\sim} = \mathcal{B} \\ & \text{Proof: Let } \chi_b^{\beta} = \left(B_1, B, \overline{X}(\mu_{1X_1}, \mu_{2X}), L_X\right), \text{ where } \beta \leq \overline{A}b \\ & \mu_{1X_1}x = \begin{cases} \mu_{2A}x, & x \neq b, x \in A \\ \beta \lor \mu_{2A}b, & x = b \\ \alpha, & x \notin A, x \in B_1 \end{cases} \text{ And } \mu_{2X}x = \begin{cases} \mu_{2A}x, & x \in A \\ \alpha, & x \notin A, x \in B \end{cases} \\ & \text{Let } \bigcup_{\chi_b^{\beta} \in G} \chi_b^{\beta} = \mathcal{C} = \left(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C\right), \text{ where} \end{cases} \\ & \text{(I) } C_1 = B_1, C = B = \left\{b|\chi_b^{\beta} \in G\right\}, C_1 \supseteq C \\ & \text{(II) } L_C = L_X = \bigvee_{\chi_b^{\beta} \in G} L_\beta \\ & \text{(III) For } b \in A, \mu_{1C_1}b = \bigvee_{\chi_b^{\beta} \in G} (\beta \lor \mu_{2A}b) = \mu_{1B_1}b, \mu_{2C}b = \mu_{2A}b = \mu_{2B}b \\ & \text{Hence } G^{\sim} = \mathcal{B} \end{split}$$

3.10 Definition:

For any $\mathcal{B} \subseteq \mathcal{A}$ Define $\mathcal{B}^{\sim} = \Phi$ if $\mathcal{B} = \Phi_{\mathcal{A}}$ Let $\mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and $\mathcal{B} \neq \Phi_{\mathcal{A}}$ Define $\mathcal{B}^{\sim} = \left\{ \chi_b^{\beta} | b \in B, \beta \in L_B, \beta \leq \overline{B}b \right\}$

3.11 Theorem:

$$\mathcal{A} = \bigcup_{\chi_b^\beta \in FSP(\mathcal{A})} \chi_b^\beta$$

Proof: The proof follows similar lines of the proof of 4.9

3.12 Lemma:

 $\mathcal{A}^{\sim} = \text{FSP}(\mathcal{A})$ Clearly $\mathcal{A}^{\sim} \subseteq \text{FSP}(\mathcal{A})$ Let $\chi_{\rm b}^{\beta} = \mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_{\rm B}) \in \text{FSP}(\mathcal{A})$ $\therefore \chi_{\rm b}^{\beta}$ is a (b, β) object $\mathsf{I.e.} \ b \in \mathsf{A}, \beta \in \mathsf{L}_\mathsf{A}, \mathsf{A} \subseteq \mathsf{B} \subseteq \mathsf{B}_1 \subseteq \mathsf{A}_1, \mathsf{such that } \mu_{1\mathsf{B}_1} \mathsf{x}, \mu_{2\mathsf{B}} \mathsf{x} \in \mathsf{L}_\mathsf{B}, \mathsf{L}_\mathsf{B} \leq \mathsf{L}_\mathsf{A}, \alpha \leq \mu_{1\mathsf{A}_1} \mathsf{x}, \forall \mathsf{x} \in \mathsf{A}_1, \beta \in \mathsf{L}_\mathsf{A}, \beta \in \mathsf{L}, \beta$ $\mu_{1B_1} x = \begin{cases} \mu_{2A} x, & x \neq b, x \in A \\ \beta \lor \mu_{2A} b, & x = b \\ \alpha. & x \notin A, x \in A_1 \end{cases} \text{And } \mu_{2B} x = \begin{cases} \mu_{2A} x, & x \in A \\ \alpha, & x \notin A, x \in B \end{cases}$ Clearly $b \in A \subseteq B$, $\beta \in L_B$ and $L_B \leq L_A$ Hence $FSP(\mathcal{A}) \subseteq \mathcal{A}^{\sim}$ Hence $\mathcal{A}^{\sim} = \text{FSP}(\mathcal{A})$ 3.13 Theorem: \mathcal{B}^{\sim} is S-closed. Proof: Let $\chi_b^{\beta} \in \mathcal{B}^{\sim}$, then $b \in B, \beta \in L_B, \beta \leq \overline{B}b$ Let $\delta \leq \beta, \delta \in L_B, \delta \leq \overline{B}b$ $\therefore \chi_{\rm b}^{\delta} \in \mathcal{B}^{\sim}$ Hence \mathcal{B}^{\sim} is closed under stalks. Let $\chi_{b}^{\beta_{i}} \in \mathcal{B}^{\sim}$ for $i \in I$ then $b \in B, \beta_{i} \in L_{B}, \beta_{i} \leq \overline{B}b$ \Rightarrow b \in B, $\bigvee_{i \in I} \beta_i \in L_B$, $\bigvee_{i \in I} \beta_i \leq \overline{B}b$ $\Rightarrow \chi_{h}^{\vee\beta_{i}} \in \mathcal{B}^{\sim}$ Hence \mathcal{B}^{\sim} is closed under supremum. $\therefore \mathcal{B}^{\sim}$ is S-closed. 3.14 Theorem: For any $G \subseteq FSP(\mathcal{A}), G \subseteq G^{\sim \sim}$ Proof: Case (I): $G = \Phi \Rightarrow$ Clear Case (II): $G \neq \Phi$, we have $G^{\sim \sim} = \mathcal{B}^{\sim} = \left\{ \chi_b^{\beta} | b \in B, \beta \in L_B, \beta \leq \overline{B}b \right\}$ Where $\mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, where $B_1 \supseteq B = \left\{ b | \chi_b^\beta \in G \right\}, L_B = \bigvee_{\chi_b^\beta \in G} L_\beta, \mu_{1B_1} b = \bigvee_{\chi_b^\beta \in G} (\beta \lor \mu_{2A} b), \mu_{2B} b = \mu_{2A} b, \overline{B} b = \bigvee_{\chi_b^\beta \in G} \beta b = \bigcup_{\chi_b^\beta \in G} \beta b = \bigvee_{\chi_b^\beta \in G} \beta b = \bigcup_{\chi_b^\beta \in G} \beta$ $\text{Let }\chi^\beta_b\in G\Rightarrow b\in B, \beta\in L_B, \overline{B}b= \bigvee_{\chi^\beta\in G}\beta, \beta\leq \overline{B}b\Rightarrow \chi^\beta_b\in \mathcal{B}^{\sim}=G^{\sim\sim}\Rightarrow G\subseteq G^{\sim\sim}$

3.15 Theorem:

Let \mathcal{A} be an Fs-set. Then the following are equivalent for any $G \subseteq FSP(\mathcal{A})$

- (a) $G^{\sim \sim} = G$
- (b) G is S-closed
- (c) (i) $b \in B \Rightarrow \chi_b^{\overline{B}b} \in G$ (ii) $b \in B, \beta \le \overline{B}b \Rightarrow \chi_b^{\beta} \in G$ where $\mathcal{B} = G^{\sim}$

Proof: We have $G^{\sim} = \bigcup_{\chi_{b}^{\beta} \in G} \chi_{b}^{\beta}$ and from 4.9, $G^{\sim} = \mathcal{B} = (B_{1}, B, \overline{B}(\mu_{1B_{1}}, \mu_{2B}), L_{B})$, where $B_{1} \supseteq B = \{b|\chi_{b}^{\beta} \in G\}, L_{B} = \bigvee_{\chi_{b}^{\beta} \in G} L_{\beta}, \mu_{1B_{1}} b = \bigvee_{\chi_{b}^{\beta} \in G} (\beta \lor \mu_{2A} b), \mu_{2B} b = \mu_{2A} b, \overline{B} b = \bigvee_{\chi_{b}^{\beta} \in G} \beta$ Also we have $G^{\sim} = \mathcal{B}^{\sim} = \{\chi_{b}^{\beta}|b \in B, \beta \in L_{B}, \beta \leq \overline{B} b\}$ $G = G^{\sim} = \mathcal{B}^{\sim}$ which is S-closed from 4.13 gives (a) \Rightarrow (b) (i) Here $G^{\sim} = \mathcal{B} = (B_{1}, B, \overline{B}(\mu_{1B_{1}}, \mu_{2B}), L_{B}),$ where $B_{1} \supseteq B = \{b|\chi_{b}^{\beta} \in G\}, L_{B} = \bigvee_{\chi_{b}^{\beta} \in G} L_{\beta}, \mu_{1B_{1}} b = \bigvee_{\chi_{b}^{\beta} \in G} (\beta \lor \mu_{2A} b), \mu_{2B} b = \mu_{2A} b, \overline{B} b = \bigvee_{\chi_{b}^{\beta} \in G} \beta$ For any $b \in B, \chi_{b}^{\overline{B}b} \in G$ follows from G is closed under supremums.

(ii) For any $b \in B$, $\beta \leq \overline{B}b$, we have $\chi_b^{\beta} \in G$, because $\chi_b^{\overline{B}b} \in G$ and G is S-closed which gives $(b) \Rightarrow (c)$. (c) \Rightarrow (a) is clear.

3.16 Theorem:

For any \mathcal{B}_1 and \mathcal{B}_2 such that $\mathcal{B}_1 \subseteq \mathcal{B}_2 \subseteq \mathcal{A}$, $\mathcal{B}_1^{\sim} \subseteq \mathcal{B}_2^{\sim}$ provided $B_1 = B_2$ where $\mathcal{B}_1 = (B_{11}, B_1, \overline{B}_1(\mu_{1B_{11}}, \mu_{2B_1}), L_{B_1})$ and $\mathcal{B}_2 = (B_{12}, B_2, \overline{B}_2(\mu_{1B_{12}}, \mu_{2B_2}), L_{B_2})$

Proof: From hypotheses, we have

(1) $B_{11} \subseteq B_{12}, B_1 \supseteq B_2$ (2) $L_{B_1} \le L_{B_2}$ (3) $\mu_{1B_{11}} \le \mu_{1B_{12}} | B_{11}, \mu_{2B_1} | B_2 \ge \mu_{2B_2}$

$$\chi_b^\beta\in \mathcal{B}_1 \tilde{}$$

Implies $b \in B_1, \beta \in L_{B_1}, \beta \leq \overline{B}_1 b$ which implies

 $b \in B_2, \beta \in L_{B_2}, \beta \leq \overline{B}_1 b \leq \overline{B}_2 b$ ($\therefore B_1 \subseteq B_2$)

so that $\chi_h^\beta \in \mathcal{B}_2^\sim$

3.16.1 Corollary:

 $\mathcal{B} \subseteq \mathcal{A} \Longrightarrow \mathrm{FSP}(\mathcal{B}) \subseteq \mathrm{FSP}(\mathcal{A})$

3.17 Result:

 $\mathcal{B}_1 \subseteq \mathcal{B}_2$ implies $\mathcal{B}_1 \subseteq \mathcal{B}_2 \cup \mathcal{B}_3$ for any Fs-subset \mathcal{B}_3

3.18 Result:

 $\chi_b^\beta \subseteq G^\sim$ for any $\chi_b^\beta \in G$ such that $G \subseteq FSP(\mathcal{A})$.

Proof: $\chi_b^{\beta} \in G$ is an Fs-point of \mathcal{A} and $G^{\sim} = \bigcup_{\chi_b^{\beta} \in G} \chi_b^{\beta}$ gives $\chi_b^{\beta} \subseteq G^{\sim}$

3.19 Recall 1.16 for any Family $(\mathcal{G}_i)_{i \in I}$ of Fs-subsets of \mathcal{A} such that $\mathcal{G}_i \subseteq \mathcal{G}$, $\bigcup_{i \in I} \mathcal{G}_i \subseteq \mathcal{G}$.

3.20 Proposition:

 $G_1 \cong G_2$ for any two subsets G_1 and G_2 of FSP(\mathcal{A}), such that $G_1 \subseteq G_2$.

Proof: The proof follows clearly if $G_1 = \Phi$ because $G_1^{\sim} = \Phi_{\mathcal{A}}$ which is an Fs-empty subset of \mathcal{A} For $G_1 \neq \Phi$,

take $\chi_b^{\beta} \in G_1 \subseteq G_2$ implying $\chi_b^{\beta} \subseteq G_2^{\sim}$ from4.18 again implying $\bigcup_{\chi_b^{\beta} \in G_1} \chi_b^{\beta} \subseteq G_2^{\sim}$ from 4.19 so that $G_1^{\sim} \subseteq G_2^{\sim}$

3.21 Theorem:

For any Fs-subset \mathcal{B} of an Fs-set $\mathcal{A}, \mathcal{B}^{\sim \sim} = \mathcal{B}$. Proof: For $\mathcal{B} = \Phi_{\mathcal{A}}$ -Fs-empty subset of $\mathcal{A}, \mathcal{B}^{\sim} = \Phi$ the crisp empty subset, $\mathcal{B}^{\sim \sim} = \Phi_{\mathcal{A}} = \mathcal{B}$ For $\mathcal{B} \neq \Phi_{\mathcal{A}}, \mathcal{B}^{\sim} = \left\{\chi_{b}^{\beta}|b \in B, \beta \in L_{B}, \beta \leq \overline{B}b\right\}$. Since each χ_{b}^{β} in \mathcal{B}^{\sim} is an Fs-subset of \mathcal{B} it follows $\bigcup_{\chi_{b}^{\beta} \in \mathcal{B}^{\sim}} \chi_{b}^{\beta} \subseteq \mathcal{B}$. But $G^{\sim} = \bigcup_{\chi_{b}^{\beta} \in G} \chi_{b}^{\beta}$ implies $(\mathcal{B}^{\sim})^{\sim} = \bigcup_{\chi_{b}^{\beta} \in G^{\sim}} \chi_{b}^{\beta}$ Where $\mathcal{B}^{\sim} = \left\{\chi_{b}^{\beta}|\chi_{b}^{\beta} \subseteq \mathcal{B}\right\}$ $\therefore \bigcup_{\chi_{b}^{\beta} \in \mathcal{B}^{\sim}} \chi_{b}^{\beta} \subseteq \mathcal{B} = \bigcup_{\chi_{b}^{\beta} \in G} \chi_{b}^{\beta} = \bigcup_{\chi_{b}^{\beta} \in \mathcal{B}^{\sim}} \chi_{b}^{\beta} = (\mathcal{B}^{\sim})^{\sim}$ So that $\mathcal{B}^{\sim \sim} = \mathcal{B}$.

3.22 Theorem:

 $(\mathcal{B} \cap \mathcal{C})^{\sim} = \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$ for any Fs-subsets $\mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and $\mathcal{C} = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ of \mathcal{A} such that B = C.

Proof: For $\mathcal{B} \cap \mathcal{C} = \Phi_{\mathcal{A}}, (\mathcal{B} \cap \mathcal{C})^{\sim} = (\Phi_{\mathcal{A}})^{\sim} = \Phi$ which is the crisp empty set

For $\chi_b^\beta \in \mathcal{B}^\sim \cap \mathcal{C}^\sim$, $\chi_b^\beta \subseteq \mathcal{B}$ and $\chi_b^\beta \subseteq \mathcal{C}$ which imply $\chi_b^\beta \subseteq \mathcal{B} \cap \mathcal{C}$ again implying $\chi_b^\beta \in (\mathcal{B} \cap \mathcal{C})^\sim$ -a contradiction

For $\mathcal{B} \cap \mathcal{C} \neq \Phi_{\mathcal{A}}$

Say $\mathcal{B} \cap \mathcal{C} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where D = B = C

Then $(\mathcal{B} \cap \mathcal{C})^{\sim} \subseteq \mathcal{B}^{\sim}$ and $(\mathcal{B} \cap \mathcal{C})^{\sim} \subseteq \mathcal{C}^{\sim}$ from 4.16

Implying $(\mathcal{B} \cap \mathcal{C})^{\sim} \subseteq \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$

For
$$\chi_{\rm b}^{\beta} \in \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$$

 $b \in B, \beta \in L_B, \beta \leq \overline{B}b$ and $b \in C, \beta \in L_C, \beta \leq \overline{C}b$

Implying $b \in B \cap C$, $\beta \in L_B \cap L_C$, $\beta \leq \overline{B}b \wedge \overline{C}b = (\overline{B} \wedge \overline{C})b$ again implying $\chi_b^{\beta} \in (\mathcal{B} \cap \mathcal{C})^{\sim}$

So that $(\mathcal{B} \cap \mathcal{C})^{\sim} \supseteq \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$

Hence $(\mathcal{B} \cap \mathcal{C})^{\sim} = \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$

3.23 Proposition:

For any family of Fs-subset $(\mathcal{B}_i)_{i \in I}$ of \mathcal{A} , $(\bigcap_{i \in I} \mathcal{B}_i)^{\sim} = \bigcap_{i \in I} \mathcal{B}_i^{\sim}$ provided all B_i 's are equal for each $i \in I$

3.24 Theorem:

 $(G_1 \cup G_2)^{\sim} = G_1^{\sim} \cup G_2^{\sim}$ for any subsets G_1 and G_2 of FSP(\mathcal{A}), Proof: For $G_1 = \Phi$, we have $G_1^{\sim} = \Phi_{\mathcal{A}}$ and $(G_1 \cup G_2)^{\sim} = G_2^{\sim}$ and $G_1^{\sim} \cup G_2^{\sim} = G_2^{\sim}$ So that $(G_1 \cup G_2)^{\sim} = G_1^{\sim} \cup G_2^{\sim}$.

Suppose G₁ and G₂ be non-empty

Since $G_1, G_2 \subseteq G_1 \cup G_2, G_1^{\sim}, G_2^{\sim} \subseteq (G_1 \cup G_2)^{\sim}$ so that $G_1^{\sim} \cup G_2^{\sim} \subseteq (G_1 \cup G_2)^{\sim}$

For $\chi_b^{\beta} \subseteq (G_1 \cup G_2)^{\sim}$, $\chi_b^{\beta} \in G_1 \cup G_2$ so that $\chi_b^{\beta} \in G_1$ or $\chi_b^{\beta} \in G_2$ implying $\chi_b^{\beta} \subseteq G_1^{\sim}$ or $\chi_b^{\beta} \subseteq G_2^{\sim}$ so that $\chi_b^{\beta} \subseteq G_1^{\sim} \cup G_2^{\sim}$ finally $(G_1 \cup G_2)^{\sim} \subseteq G_1^{\sim} \cup G_2^{\sim}$

Hence $(G_1 \cup G_2)^{\sim} = G_1^{\sim} \cup G_2^{\sim}$

3.25 Theorem:

 $(\bigcup_{i \in I} G_i)^{\sim} = \bigcup_{i \in I} G_i^{\sim}$ for any family $(G_i)_{i \in I}$ of subsets of FSP(\mathcal{A}).

3.25.1 Remark:

Observe that χ_c^0 is always an Fs-subset of \mathcal{B} i.e. $\chi_c^0 \in \mathcal{B}^{\sim}$ i.e. $\chi_c^0 \notin (\mathcal{B}^{\sim})^c$

3.26 Theorem:

For $\mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B) \subseteq \mathcal{A}, B = A \text{ and } L_A = L_B$,

$$\left(\mathcal{B}^{\mathcal{C}_{\mathcal{A}}}\right)^{\sim} \subseteq (\mathcal{B}^{\sim})^{\mathsf{c}}$$

Proof: Suppose $\mathcal{B}^{C_{\mathcal{A}}} = \mathcal{D}=(D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$. From 1.18

(1)
$$D_1 = C_A B_1 = B_1^c \cup A, D = B = A$$

(2) $L_{D} = L_{A}$

(3) $\mu_{1D_1}: D_1 \to L_A$, is defined by $\mu_{1D_1}x = M_A$ $\mu_{2D}: A \to L_A$, is defined by $\mu_{2D}x = \overline{B}x = \mu_{1B_1}x \Lambda(\mu_{2B}x)^c$ $\overline{D}: A \to L_A$, is defined by $\overline{D}x = \mu_{1D_1}x \Lambda(\mu_{2D}x)^c = M_A \wedge (\overline{B}x)^c = (\overline{B}x)^c$.

Then from 4.10 $(\mathcal{B}^{\mathcal{C}_{\mathcal{A}}})^{\sim} = \mathcal{D}^{\sim} = \{\chi_{d}^{\delta} | d \in A, \delta \in L_{A} = L_{D}, \delta \leq \overline{D}d = (\overline{B}d)^{c} \text{ i.e. } \delta \land \overline{B}d = 0\}$ And $\mathcal{B}^{\sim} = \{\chi_{b}^{\beta} | b \in B = A, \beta \in L_{B} = L_{A}, \beta \leq \overline{B}b\}$ implying $(\mathcal{B}^{\sim})^{c} = \{\chi_{c}^{\gamma} | \chi_{c}^{\gamma} \notin \mathcal{B}^{\sim}\}$ $\chi_{c}^{\gamma} \in (\mathcal{B}^{\mathcal{C}_{\mathcal{A}}})^{\sim}$ implying $\gamma \land \overline{B}c = 0$ which implies $\gamma \nleq \overline{B}c$ as $\chi_{c}^{\gamma} \notin \mathcal{B}^{\sim} \Rightarrow \gamma \nleq \overline{B}c$ so that $\chi_{c}^{\gamma} \in (\mathcal{B}^{\sim})^{c}$ Hence $(\mathcal{B}^{\mathcal{C}_{\mathcal{A}}})^{\sim} \subseteq (\mathcal{B}^{\sim})^{c}$

3.26.1 Example:

Let $\mathcal{A} = (A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A)$, where $A_1 = \{a, b\}, A = \{a\}, \mu_{1A_1} = 1, \mu_{2A} = 0$ and $L_A = \{0, \alpha \parallel \beta, 1\}$ Suppose $\mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B) \subseteq \mathcal{A}$, where $B_1 = B = A = \{a\}, \mu_{1B_1} = \alpha, \mu_{2B} = 0$ and $L_B = L_A \overline{Ba} = \alpha$

$$\mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{D} = (D_{1}, D, \overline{D}(\mu_{1D_{1}}, \mu_{2D}), L_{D}), \text{where } D_{1} = A_{1}, D = A, \mu_{1D_{1}}a = 1, \mu_{2D}a = \alpha, \overline{D} = \beta, L_{D} = L_{A}$$
$$(\mathcal{B}^{\mathcal{C}_{\mathcal{A}}})^{\sim} = \mathcal{D}^{\sim} = \{\chi_{d}^{\delta} | d \in A, \delta \in L_{A} = L_{B}, \delta \leq \overline{D}d = (\overline{B}d)^{c} \text{ i. e } \delta \wedge \overline{B}d = 0\}$$
$$\mathcal{B}^{\sim} = \{\chi_{b}^{\beta} | b \in B = A, \beta \in L_{B} = L_{A}, \beta \leq \overline{B}b\}$$
$$\Rightarrow \mathcal{B}^{\sim} = \{\chi_{a}^{0}, \chi_{a}^{\alpha}\}$$
$$\Rightarrow \chi_{a}^{1} \in (\mathcal{B}^{\sim})^{c} (\because 1 \leq \overline{B}a = \alpha)$$
But $\chi_{a}^{1} \notin (\mathcal{B}^{\mathcal{C}_{\mathcal{A}}})^{\sim}$ I.e. $(\mathcal{B}^{\sim})^{c} \notin (\mathcal{B}^{\mathcal{C}_{\mathcal{A}}})$

3.27 Theorem:

 $(G^{\sim})^{C_{\mathcal{A}}} \subseteq (G^{c})^{\sim} \text{ for any } G \subseteq FSP(\mathcal{A}) \text{ , where } \mathcal{A} = (A_{1,A}, \overline{A} (\mu_{1A_{1,}} \mu_{2A}), L_{A}), \mu_{1A_{1}} = M_{A}, \mu_{2A} = 0 \text{ and } L_{A} = [0, M_{A}].$

Proof: For any
$$G \subseteq FSP(\mathcal{A}), \ G^{\sim} = \bigcup_{\chi_b^{\beta} \in G} \chi_b^{\beta}$$

Let $G^{\sim} = \mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, where $B_1 \supseteq B = A = \{b | \chi_b^\beta \in G\}, L_B = L_A, \mu_{1B_1}b = V_{\chi_b^\beta \in G}(\beta \lor \mu_{2A}b) = V_{\chi_b^\beta \in G}(\beta \lor \mu_{2B}b) = \mu_{2A}b = 0, \overline{B}b = V_{\chi_b^\beta \in G}\beta.$

Let $(\mathcal{B})^{C_{\mathcal{A}}} = \mathcal{D} = \mathcal{D} = \left(D_1, D, \overline{D} (\mu_{1D_1}, \mu_{2D}), L_D \right)$ then

- (1) $D_1 = A, D = B = A$
- (2) $L_{D} = L_{A}$
- (3) $\mu_{1D_1}: D_1 \longrightarrow L_A$, is defined by $\mu_{1D_1}x = M_A$ $\mu_{2D}: A \longrightarrow L_A$, is defined by $\mu_{2D}b = \overline{B}b = V_{\chi_{h}^{\beta} \in G}\beta$

$$\overline{D}:A \longrightarrow L_A \text{ ,is defined by } \overline{D}b = \mu_{1D_1}b \wedge (\mu_{2D}b)^c = M_A \wedge (\overline{B}b)^c = \left(\mathsf{V}_{\chi^\beta_b \in G} \, \beta \right)^c$$

Also
$$(G^{\sim})^{C_{\mathcal{A}}} = (\mathcal{B})^{C_{\mathcal{A}}} = \mathcal{D}$$

Now, $G^{c} = FSP(\mathcal{A}) - G$
Let $(G^{c})^{\sim} = \mathcal{E} = (E_{1}, E, \overline{E}(\mu_{1E_{1}}, \mu_{2E}), L_{E})$, where
 $E_{1} = E = A = \{c|\chi_{c}^{\gamma} \in G^{c}\}, L_{E} = L_{A}, \mu_{1E_{1}}c = \bigvee_{\chi_{c}^{\gamma} \in G^{c}}(\gamma \lor \mu_{2A}c) = \bigvee_{\chi_{c}^{\gamma} \in G^{c}}\gamma, \mu_{2E}c = \mu_{2A}c = 0, \quad \overline{E}c = \bigvee_{\chi_{c}^{\gamma} \in G^{c}}\gamma.$
We prove $(G^{\sim})^{C_{\mathcal{A}}} \subseteq (G^{c})^{\sim}$ if $\chi_{b}^{M_{A}} \in G$ or $\chi_{b}^{M_{A}} \notin G$
If $\chi_{b}^{M_{A}} \in G$, then $G^{\sim} = \bigcup_{\chi_{b}^{\beta} \in G} \chi_{b}^{\beta} = \mathcal{B} = (B_{1}, B, \overline{B}(M_{A}, 0), L_{A}), \overline{B} = M_{A}$ implying
 $(G^{\sim})^{C_{\mathcal{A}}} = \mathcal{D} = (D_{1}, D, \overline{D}(M_{A}, M_{A}), L_{A}), \overline{D} = 0$
That is, $(G^{\sim})^{C_{\mathcal{A}}} = \Phi_{\mathcal{A}} \subseteq (G^{c})^{\sim}$
If $\chi_{b}^{M_{A}} \notin G$ then $\chi_{b}^{M_{A}} \in G^{c}$ implying $(G^{c})^{\sim} = \mathcal{E} = (E_{1}, E, \overline{E}(M_{A}, 0), L_{A})$
That is, $(G^{c})^{\sim} = \mathcal{A} \supseteq (G^{\sim})^{C_{\mathcal{A}}}$
Hence, whether $\chi_{b}^{M_{A}} \notin G$ or $\chi_{b}^{M_{A}} \notin G$, we have

 $(\mathbf{G}^{\sim})^{\mathsf{C}_{\mathcal{A}}} \subseteq (\mathbf{G}^{\mathsf{c}})^{\sim}$

ACKNOWLEDGEMENTS

Nistala V.E.S. Murthy [7] the great teacher is acknowledged.

The first two authors acknowledge GITAM university management for providing facilities to do research.

REFERENCES

- [1] Vaddiparthi Yogeswara, G.Srinivas and Biswajit Rath , A Theory of Fs-sets, Fs-Complements and Fs-De Morgan Laws, IJARCS, Vol- 4, No. 10, Sep-Oct 2013
- [2] Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy, A Study of Fs-Functions and Properties of Images of Fs-Subsets Under Various Fs-Functions. MS-IRJ, Vol-3, Issue-1
- [3] Vaddiparthi Yogeswara, Biswajit Rath, A Study of Fs-Functions and Study of Images of Fs-Subsets In The Light Of Refined Definition Of Images Under Various Fs-Functions. IJATCSE, Vol-3, No.3, Pages : 06 - 14 (2014) Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore
- [4] Vaddiparthi Yogeswara, Biswajit Rath, Generalized Definition of Image of an Fs-Subset under an Fs-function- Resultant Properties of Images Mathematical Sciences International Research Journal, 2015, Volume -4, Spl Issue, 40-56
- [5] Vaddiparthi Yogeswara, Biswajit Rath, , Ch.Ramasanyasi Rao , Fs-Sets and Infinite Distributive Laws Mathematical Sciences International Research Journal, 2015 ,Volume-4 Issue-2, Page No-251-256
- [6] Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, K.V.Umakameswari, D. Raghu Ram Fs-Sets and Theory of FsB-Topology Mathematical Sciences International Research Journal, 2016, Volume-5, Issue-1, Page No-113-118
- [7] Nistala V.E.S. Murthy, Is the Axiom of Choice True for Fuzzy Sets?, JFM, Vol 5(3),P495-523, 1997, U.S.A
- [8] Nistala V.E.S Murthy and Vaddiparthi Yogeswara, A Representation Theorem for Fuzzy Subsystems of A Fuzzy Partial Algebra, Fuzzy Sets and System, Vol 104,P359-371,1999,HOLLAND
- [9] Nistala V.E.S. Murthy, f-Topological Spaces Proceedings of The National Seminar on Topology, Category Theory and their applications to Computer Science, P89-119, March 11-13, 2004, Department of Mathematics, St Joseph's College, Irinjalaguda, Kerala (organized by the Kerala Mathematical Society. Invited Talk).

[10] J.A.Goguen ,L-Fuzzy Sets, JMAA, Vol. 18, P145-174, 1967

- [11] Steven Givant Paul Halmos, Introduction to Boolean algebras, Springer
- [12] Szasz, G., An Introduction to Lattice Theory, Academic Press, New York.
- [13] Garret Birkhoff, Lattice Theory, American Mathematical Society Colloquium publications Volume-xxv
- [14] Thomas Jech , Set Theory, The Third Millennium Edition revised and expanded, Springer
- [15] George J. Klir and Bo Yuan , Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi
 A. Zadeh , Advances in Fuzzy Systems-Applications and Theory Vol-6, World Scientific
- [16] James Dugundji, Topology, Universal Book Stall, Delhi.
- [17] L.Zadeh, Fuzzy Sets, Information and Control, Vol.8, P338-353, 1965
- [18] U.Höhle, S.E.Rodabaugh, Mathematics of fuzzy Sets Logic, topology, and measure Theory, Kluwer Academic Publishers, Boston