Some Properties of Associates of Subsets of FSP-Points Set

${ }^{1}$ Vaddiparthi Yogeswara, ${ }^{2}$ Biswajit Rath, ${ }^{3} \mathrm{Ch}$. Ramasanyasi Rao, and ${ }^{4}$ D. Raghu Ram
${ }^{1}$ Associate Professor,Dept. Mathematics, GIT GITAM University, Visakhapatnam-530045,A.P State, India
${ }^{2}$ Assistant Professor, Dept. of Applied Mathematics, GIS GITAM University, Visakhapatnam-530045,A.P State, India
${ }^{3,4}$ Research Scholar :Dept. of Mathematics, GIT, GITAM University, Visakhapatnam 530045, A.P
State,India
vaddiparthyy@yahoo.com; urwithbr@gmail.com; rams.mathematics@gmail.com; draghuram84@gmail.com

Abstract

In this paper, based upon Fs-set theory [1], we define a crisp Fs-points set $\mathrm{FSP}(\mathcal{A})$ for given Fs -set \mathcal{A} and establish a pair of relations between collection of all Fs -subsets of a given Fs -set \mathcal{A} and collection of all crisp subsets of Fs -points set $\mathrm{FSP}(\mathcal{A})$ of the same Fs -set \mathcal{A} and prove one of the relations is a meet complete homomorphism and the other is a join complete homomorphism and search properties of relations between Fs-complemented sets and complemented constructed crisp sets via these homomorphisms.

Key word: Fs-set, Fs-subset, Fs-complement, Fs-function, Fs-point

1 Introduction:

Ever since Zadeh [17] introduced the notion of fuzzy sets in his pioneering work, several mathematicians studied numerous aspects of fuzzy sets.

Murthy[7] introduced f-sets in order to prove Axiom of choice for fuzzy sets. The following example shows why the introduction of f-set theory is necessitated. Let A be non-empty and consider a diamond lattice $L=\{0, \alpha \| \beta, 1\}$. Define two fuzzy sets f and g from A into L such that $f(x)=\alpha$ and $g(x)=\beta$. Here both f and g are nonempty fuzzy sets. The Cartesian product of f and g from A into L is given by $(f \times g)(x)=$ $f(x) \wedge g(x)=\alpha \wedge \beta=0$. That is, $f \times g$ is a empty set. Even though both f and g are non-empty fuzzy sets, their fuzzy Cartesian product is empty showing that the failure of Axiom of choice in L-fuzzy set theory [10]. The collection of all f-subsets of a given f-set with Murthy's definition [7] f-complement [10] could not form a compete Boolean algebra. Vaddiparthi Yogeswara, G.Srinivas and Biswajit Rath introduced the concept of Fs -set and developed the theory of Fs -sets in order to prove collection of all Fs -subsets of given Fs-set is a complete Boolean algebra under Fs-unions, Fs-intersections and Fs-complements. The Fs-sets they introduced contain Boolean valued membership functions. They are successful in their efforts in proving that result with some conditions. In papers [2] and [3] Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy introduced the concept of Fs-Function between two Fs-subsets of given Fs-set and defined an image of an Fs -subset under a given Fs -function. Also they studied the properties of images under various kinds of Fs -functions.

In this paper, we construct a crisp set $\operatorname{FSP}(\mathcal{A})$ of all Fs -points of given Fs -set \mathcal{A} such that there is a pair of relations between collection of all Fs -subsets of \mathcal{A} and collection of all crisp sub sets of $\operatorname{FSP}(\mathcal{A})$,such that one of the relations is a complete meet homomorphism and other is a complete join homomorphism .Here the operations on collection of Fs -subsets of \mathcal{A} are Fs -union, Fs -intersection and Fs -complement. The operations on $\operatorname{FSP}(\mathcal{A})$ of are usual crisp set union, crisp set intersection and crisp set complement. The correspondences between them are denoted by the same symbol ${ }^{\sim} \sim$ ' in the later contexts. The detailed definitions of Fs-point and FSP (\mathcal{A}) for given Fs-set \mathcal{A} are discussed before defining those relations mentioned above. For smooth reading of paper, the theory of Fs -sets and Fs-functions in brief is dealt with in first two sections. We denote the largest element of a complete Boolean algebra $\mathrm{L}_{\mathrm{A}}[1.1]$ by M_{A} or 1 . We denote Fs -union and crisp set union by same symbol U and similarly Fs-intersection and crisp set intersection by the same symbol \cap. For all lattice theoretic properties and Boolean algebraic properties one can refer Szasz [13], Garret Birkhoff[14],Steven Givant • Paul Halmos[12] and Thomas Jech[15]

2 Fs-Sets

2.1 Definition

Let U be a universal set, $\mathrm{A}_{1} \subseteq \mathrm{U}$ and let $\mathrm{A} \subseteq \mathrm{U}$ be non-empty. A four tuple $\mathcal{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)$ is said be an Fs-set if, and only if
(1) $A \subseteq A_{1}$
(2) L_{A} is a complete Boolean Algebra
(3) $\mu_{1 A_{1}}: A_{1} \rightarrow L_{A}, \mu_{2 A}: A \rightarrow L_{A}$,are functions such that $\mu_{1 A_{1}} \mid A \geq \mu_{2 A}$
(4) $\overline{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{L}_{\mathrm{A}}$ is defined by
$\bar{A} x=\mu_{1 A_{1}} x \wedge\left(\mu_{2 A} x\right)^{c}$, for each $x \in A$

2.2 Definition:

Fs-subset
Let $\mathcal{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)$ and $\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ be a pair of Fs -sets. \mathcal{B} is said to be an Fs-subset of \mathcal{A}, denoted by $\mathcal{B} \subseteq \mathcal{A}$, if, and only if
(1) $\mathrm{B}_{1} \subseteq \mathrm{~A}_{1}, \mathrm{~A} \subseteq \mathrm{~B}$
(2) L_{B} is a complete subalgebra of L_{A} or $\mathrm{L}_{\mathrm{B}} \leq \mathrm{L}_{A}$
(3) $\mu_{1 \mathrm{~B}_{1}} \leq \mu_{1 \mathrm{~A}_{1}} \mid \mathrm{B}_{1}$, and $\mu_{2 \mathrm{~B}} \mid \mathrm{A} \geq \mu_{2 \mathrm{~A}}$

2.3 Proposition:

Let \mathcal{B} and \mathcal{A} be a pair of Fs -sets such that $\mathcal{B} \subseteq \mathcal{A}$. Then $\overline{\mathrm{B}} \leq \overline{\mathrm{A}} \mathrm{x}$ is true for each $\mathrm{x} \in \mathrm{A}$

2.3.1 Remark:

For some L_{X}, such that $\mathrm{L}_{\mathrm{X}} \leq \mathrm{L}_{\mathrm{A}}$ a four tuple $\mathcal{X}=\left(\mathrm{X}_{1}, \mathrm{X}, \overline{\mathrm{X}}\left(\mu_{1 \mathrm{X}_{1},}, \mu_{2 \mathrm{X}}\right), \mathrm{L}_{\mathrm{X}}\right)$ is not an Fs-set if, and only if
(a) $\mathrm{X} \nsubseteq \mathrm{X}_{1}$ or
(b) $\mu_{1 \mathrm{X}_{1}} \mathrm{x} \neq \mu_{2 \mathrm{X}} \mathrm{X}$, for some $\mathrm{x} \in \mathrm{X} \cap \mathrm{X}_{1}$

Here onwards, any object of this type is called an Fs-empty set of first kind and we accept that it is an Fssubset of \mathcal{B} for any $\mathcal{B} \subseteq \mathcal{A}$.

2.4 Definition:

An Fs-subset $\mathcal{Y}=\left(\mathrm{Y}_{1}, \mathrm{Y}, \overline{\mathrm{Y}}\left(\mu_{1 \mathrm{Y}_{1}}, \mu_{2 \mathrm{Y}}\right), \mathrm{L}_{\mathrm{Y}}\right)$ of \mathcal{A}, is said to be an Fs-empty set of second kind if, and only if
(a') $\mathrm{Y}_{1}=\mathrm{Y}$
(b') $L_{Y} \leq L_{A}$
(c') $\overline{\mathrm{Y}}=0$

2.4.1 Remark:

We denote Fs-empty set of first kind or Fs-empty set of second kind by $\Phi_{\mathcal{A}}$.

2.5 Definition:

Let $\mathcal{B}_{1}=\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{2 \mathrm{~B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right)$ and $\mathcal{B}_{2}=\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}, \mu_{2 \mathrm{~B}_{2}}\right), \mathrm{L}_{\mathrm{B}_{2}}\right)$ be a pair of Fs-sets. We say that \mathcal{B}_{1} and \mathcal{B}_{2} are equal, denoted by $\mathcal{B}_{1}=\mathcal{B}_{2}$ if, only if
(1) $B_{11}=B_{12}, B_{1}=B_{2}$
(2) $\mathrm{L}_{\mathrm{B}_{1}}=\mathrm{L}_{\mathrm{B}_{2}}$
(3) (a) $\left(\mu_{1 \mathrm{~B}_{11}}=\mu_{1 \mathrm{~B}_{12}}\right.$ and $\left.\mu_{2 \mathrm{~B}_{1}}=\mu_{2 \mathrm{~B}_{2}}\right)$,or (b) $\overline{\mathrm{B}}_{1}=\overline{\mathrm{B}}_{2}$

2.5.1 Remark:

We can easily observed that 3(a) and 3(b) not equivalent statements.

2.6 Proposition:

$\mathcal{B}_{1}=\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{\mathrm{B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right)$ and $\mathcal{B}_{2}=\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}, \mu_{\mathrm{B}_{2}}\right), \mathrm{L}_{\mathrm{B}_{2}}\right)$ are equal if, only if $\mathcal{B}_{1} \subseteq$ \mathcal{B}_{2} and $\mathcal{B}_{2} \subseteq \mathcal{B}_{1}$

2.7 Definition of $\mathbf{F s}$-union for a given pair of Fs -subsets of \mathcal{A} :

Let $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ and
$\mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$, be a pair of Fs -subsets of \mathcal{A}. Then,
the Fs -union of \mathcal{B} and \mathcal{C}, denoted by $\mathcal{B} \cup \mathcal{C}$ is defined as
$\mathcal{B} \cup \mathcal{C}=\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$, where
(1) $D_{1}=B_{1} \cup C_{1}, D=B \cap C$
(2) $\mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{B}} \vee \mathrm{L}_{\mathrm{C}}=$ complete subalgebra generated by $\mathrm{L}_{\mathrm{B}} \cup \mathrm{L}_{\mathrm{C}}$
(3) $\mu_{1 \mathrm{D}_{1}}: \mathrm{D}_{1} \rightarrow \mathrm{~L}_{\mathrm{D}}$ is defined by
$\mu_{1 \mathrm{D}_{1}} \mathrm{x}=\left(\mu_{1 \mathrm{~B}_{1}} \vee \mu_{1 \mathrm{C}_{1}}\right) \mathrm{x}$
$\mu_{2 \mathrm{D}}: \mathrm{D} \rightarrow \mathrm{L}_{\mathrm{D}}$ is defined by
$\mu_{2 \mathrm{D}} \mathrm{X}=\mu_{2 \mathrm{~B}} \mathrm{X} \wedge \mu_{2 \mathrm{C}} \mathrm{X}$
$\overline{\mathrm{D}}: \mathrm{D} \rightarrow \mathrm{L}_{\mathrm{D}}$ is defined by
$\overline{\mathrm{D}} \mathrm{x}=\mu_{1 \mathrm{D}_{1}} \mathrm{x} \wedge\left(\mu_{2 \mathrm{D}} \mathrm{X}\right)^{\mathrm{c}}$

2.8 Proposition:

$\mathcal{B} \cup \mathcal{C}$ is an Fs -subset of \mathcal{A}.

2.9 Definition of $\mathbf{F s}$-intersection for a given pair of Fs-subsets of \mathcal{A} :

Let $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ and $\mathcal{C}=\left(C_{1}, C, \bar{C}\left(\mu_{1 C_{1}}, \mu_{2 C}\right), L_{C}\right)$ be a pair of Fs -subsets of \mathcal{A} satisfying the following conditions:
(i) $\mathrm{B}_{1} \cap \mathrm{C}_{1} \supseteq \mathrm{~B} \cup \mathrm{C}$
(ii) $\mu_{1 B_{1}} x \wedge \mu_{1 C_{1}} x \geq\left(\mu_{2 B} \vee \mu_{2 C}\right) x$, for each $x \in A$

Then, the Fs-intersection of \mathcal{B} and t , denoted by $\mathcal{B} \cap \mathcal{C}$ is defined as
$\mathcal{B} \cap \mathcal{C}=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right), \mathrm{L}_{\mathrm{E}}\right)$, where
(a) $\mathrm{E}_{1}=\mathrm{B}_{1} \cap \mathrm{C}_{1}, \mathrm{E}=\mathrm{B} \cup \mathrm{C}$
(b) $\mathrm{L}_{\mathrm{E}}=\mathrm{L}_{\mathrm{B}} \wedge \mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{B}} \cap \mathrm{L}_{\mathrm{C}}$
(c) $\mu_{1 \mathrm{E}_{1}}: \mathrm{E}_{1} \rightarrow \mathrm{~L}_{\mathrm{E}}$ is defined by $\mu_{1 \mathrm{E}_{1}} \mathrm{x}=\mu_{1 \mathrm{~B}_{1}} \mathrm{x} \wedge \mu_{1 \mathrm{C}_{1}} \mathrm{x}$
$\mu_{2 \mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is defined by
$\mu_{2 \mathrm{E}} \mathrm{X}=\left(\mu_{2 \mathrm{~B}} \vee \mu_{2 \mathrm{C}}\right) \mathrm{x}$
$\overline{\mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is defined by
$\overline{\mathrm{E}} \mathrm{X}=\mu_{1 \mathrm{E}_{1}} \mathrm{x} \wedge\left(\mu_{2 \mathrm{E}} \mathrm{x}\right)^{\mathrm{c}}$.

2.9.1 Remark:

If (i) or (ii) fails we define $\mathcal{B} \cap \mathcal{C}$ as $\mathcal{B} \cap \mathcal{C}=\Phi_{\mathcal{A}}$, which is the Fs-empty set of first kind.

2.10 Proposition:

For any Fs-subsets \mathcal{B}, \mathcal{C} and \mathcal{D} of $\mathcal{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)$, the following associative laws are true:
(I) $\mathcal{B} \cup(\mathcal{C} \cup \mathcal{D})=(\mathcal{B} \cup \mathcal{C}) \cup \mathcal{D}$
(II) $\mathcal{B} \cap(\mathcal{C} \cap \mathcal{D})=(\mathcal{B} \cap \mathcal{C}) \cap \mathcal{D}$, whenever Fs -intersections exist.

2.11 Arbitrary Fs-unions and arbitrary Fs-intersections:

Given a family $\left(\mathcal{B}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}$ of Fs-subsets of $\mathcal{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)$, where
$\mathcal{B}_{i}=\left(\mathrm{B}_{1 \mathrm{i}}, \mathrm{B}_{\mathrm{i}}, \overline{\mathrm{B}}_{\mathrm{i}}\left(\mu_{1 \mathrm{~B}_{1 \mathrm{i}}}, \mu_{2 \mathrm{~B}_{\mathrm{i}}}\right), \mathrm{L}_{\mathrm{B}_{\mathrm{i}}}\right)$,for any $\mathrm{i} \in \mathrm{I}$

2.12 Definition of $\mathbf{F s}$-union is as follows

Case (1): For $\mathrm{I}=\Phi$, define Fs -union of $\left(\mathcal{B}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}$, denoted by $\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}$ as $\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}=\Phi_{\mathcal{A}}$, which is the Fs-empty set

Case (2): Define for $l \neq \Phi$, Fs-union of $\left(\mathcal{B}_{i}\right)_{i \in I}$ denoted by $U_{i \in I} \mathcal{B}_{i}$ as follow

$$
\bigcup_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}=\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right),
$$

where
(a) $\mathrm{B}_{1}=\bigcup_{i \in I} B_{1 \mathrm{i}}, B=\bigcap_{\mathrm{i} \in \mathrm{I}} B_{\mathrm{i}}$
(b) $\mathrm{L}_{\mathrm{B}}=\mathrm{V}_{\mathrm{i} \in \mathrm{I}} \mathrm{L}_{\mathrm{B}_{\mathrm{i}}}=$ complete subalgebra generated by $\cup \mathrm{L}_{\mathrm{i}}\left(\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{B}_{\mathrm{i}}}\right)$
(c) $\mu_{1 B_{1}}: \mathrm{B}_{1} \rightarrow \mathrm{~L}_{\mathrm{B}}$ is defined by
$\mu_{1 B_{1}} x=\left(V_{i \in I} \mu_{1 B_{1 i}}\right) x=V_{i \in I_{x}} \mu_{1 B_{1 i}} x$, where
$\mathrm{I}_{\mathrm{x}}=\left\{\mathrm{i} \in \mathrm{I} \mid \mathrm{x} \in \mathrm{B}_{\mathrm{i}}\right\}$
$\mu_{2 B}: B \rightarrow L_{B}$ is defined by $\mu_{2 B} X=\left(\Lambda_{i \in I} \mu_{2 B_{i}}\right) x$
$=\Lambda_{i \in I} \mu_{2 B_{i}} \mathrm{X}$
$\bar{B}: B \rightarrow L_{B}$ is defined by $\bar{B} x=\mu_{1 B_{1}} x \wedge\left(\mu_{2 B} x\right)^{C}$

2.12.1 Remark

We can easily show that (d) $\mathrm{B}_{1} \supseteq \mathrm{~B}$ and $\mu_{1_{1}} \mid \mathrm{B} \geq \mu_{2 \mathrm{~B}}$.

2.13 Definition of Fs-intersection:

Case (1): For $\mathrm{I}=\Phi$, we define Fs-intersection of $\left(\mathcal{B}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}$, denoted by $\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}$ as $\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}=\mathcal{A}$
Case (2): Suppose $\bigcap_{i \in I} B_{1 i} \supseteq U_{i \in I} B_{i}$ and $\Lambda_{i \in I} \mu_{1 B_{1 i}} \mid\left(U_{i \in I} B_{i}\right) \geq V_{i \in I} \mu_{2 B_{i}}$
Then, we define Fs-intersection of $\left(\mathcal{B}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}$, denoted by $\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}$ as follows

$$
\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}=\mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)
$$

(a') $\mathrm{C}_{1}=\bigcap_{\mathrm{i} \in \mathrm{I}} \mathrm{B}_{1 \mathrm{i}}, \mathrm{C}=\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{B}_{\mathrm{i}}$
(b') $\mathrm{L}_{\mathrm{C}}=\Lambda_{\mathrm{i} \in \mathrm{I}} \mathrm{L}_{\mathrm{B}_{\mathrm{i}}}$
(c') $\mu_{1 \mathrm{C}_{1}}: \mathrm{C}_{1} \rightarrow \mathrm{~L}_{\mathrm{C}}$ is defined by $\mu_{1 \mathrm{C}_{1}} \mathrm{x}=\left(\Lambda_{\mathrm{i} \in \mathrm{I}} \mu_{1 \mathrm{~B}_{1 \mathrm{i}}}\right) \mathrm{x}=\Lambda_{\mathrm{i} \in \mathrm{I}} \mu_{1 \mathrm{~B}_{1 \mathrm{i}}} \mathrm{x}$
$\mu_{2 C}: C \rightarrow L_{C}$ is defined by $\mu_{2 C} X=\left(V_{i \in I} \mu_{2 B_{i}}\right) x=V_{i \in E_{X}} \mu_{2 B_{i}} X$,
where, $\mathrm{I}_{\mathrm{x}}=\left\{\mathrm{i} \in \mathrm{I} \mid \mathrm{x} \in \mathrm{B}_{\mathrm{i}}\right\}$
$\overline{\mathrm{C}}: \mathrm{C} \rightarrow \mathrm{L}_{\mathrm{C}}$ is defined by $\overline{\mathrm{C}} \mathrm{x}=\mu_{1 \mathrm{C}_{1}} \mathrm{x} \wedge\left(\mu_{2 \mathrm{C}} \mathrm{x}\right)^{\mathrm{C}}$
Case (3): $\bigcap_{i \in I} B_{1 i} \nsupseteq \bigcup_{i \in I} B_{i}$ or $\bigwedge_{i \in I} \mu_{1 B_{1 i}} \mid\left(U_{i \in I} B_{i}\right) \nsupseteq V_{i \in I} \mu_{2 B_{i}}$
We define

$$
\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}=\Phi_{\mathcal{A}}
$$

2.13.1 Lemma:

For any Fs-subset $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ and $\mathcal{B} \subseteq \mathcal{B}_{i}=\left(B_{1 i}, B_{i}, \bar{B}_{i}\left(\mu_{1 B_{1 i}}, \mu_{2 B_{i}}\right), L_{B_{i}}\right)$ for each $i \in$ I. $\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}$ exists and $\mathcal{B} \subseteq \bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}$

2.14 Proposition:

$(\mathcal{L}(\mathcal{A}), \cap)$ is Λ-complete lattics.

2.14.1 Corollary:

For any Fs-subset \mathcal{B} of \mathcal{A}, the following results are true
(i) $\Phi_{\mathcal{A}} \cup \mathcal{B}=\mathcal{B}$
(ii) $\Phi_{\mathcal{A}} \cap \mathcal{B}=\Phi_{\mathcal{A}}$.

2.15 Proposition:

($\mathcal{L}(\mathcal{A}), \mathrm{U})$ is V -complete lattics.

2.15.1 Corollary:

$(\mathcal{L}(\mathcal{A}), \mathrm{U}, \cap)$ is a complete lattice with V and \wedge

2.16 Proposition:

Let $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right), \mathcal{C}=\left(C_{1}, C, \bar{C}\left(\mu_{1 C_{1}}, \mu_{2 C}\right), L_{C}\right)$ and $\mathcal{D}=\left(D_{1}, D, \bar{D}\left(\mu_{1 D_{1}}, \mu_{2 D}\right), L_{D}\right)$.Then $\mathcal{B} \cup$ $(\mathcal{C} \cap \mathcal{D})=(\mathcal{B} \cup \mathcal{C}) \cap(\mathcal{B} \cup \mathcal{D})$ provided $\mathcal{C} \cap \mathcal{D}$ exists.

2.17 Proposition:

Let $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 B}\right), \mathrm{L}_{\mathrm{B}}\right), \mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$ and $\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$. Then $\mathcal{B} \cap$ $(\mathcal{C} \cup \mathcal{D})=(\mathcal{B} \cap \mathcal{C}) \cup(\mathcal{B} \cap \mathcal{D})$ provided in R.H.S
$(\mathcal{B} \cap \mathcal{C})$ and $(\mathcal{B} \cap \mathcal{D})$ exists.

2.18 Definition of Fs-complement of an Fs-subset:

Consider a particular Fs-set $\mathcal{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right), \mathrm{A} \neq \Phi$, where
(i) $\mathrm{A} \subseteq \mathrm{A}_{1}$
(ii) $\mathrm{L}_{\mathrm{A}}=\left[0, \mathrm{M}_{\mathrm{A}}\right], \mathrm{M}_{\mathrm{A}}=\mathrm{V} \overline{\mathrm{A}} \mathrm{A}=\mathrm{V}_{\mathrm{a} \in \mathrm{A}} \overline{\mathrm{A}} \mathrm{a}$
(iii) $\mu_{1 \mathrm{~A}_{1}}=\mathrm{M}_{\mathrm{A}}, \mu_{2 \mathrm{~A}}=0$,

$$
\overline{\mathrm{A}} \mathrm{x}=\mu_{1 \mathrm{~A}_{1}} \mathrm{x} \wedge\left(\mu_{2 \mathrm{~A}} \mathrm{x}\right)^{\mathrm{c}}=\mathrm{M}_{\mathrm{A}}, \text { for each } \mathrm{x} \in \mathrm{~A}
$$

Given $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$. We define Fs-complement of \mathcal{B}, denoted by $\mathcal{B}^{C_{\mathcal{A}}}$ for $B=A$ and $L_{B}=L_{A}$ as follows:
$\mathcal{B}^{\mathrm{C}_{\mathcal{A}}}=\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$, where
(a') $D_{1}=C_{A} B_{1}=B_{1}^{c} \cup A, D=B=A$
(b') $\mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{A}}$
(c') $\mu_{1 D_{1}}: D_{1} \rightarrow L_{A}$, is defined by $\mu_{1 D_{1}} x=M_{A}$

$$
\mu_{2 \mathrm{D}}: \mathrm{A} \rightarrow \mathrm{~L}_{\mathrm{A}}, \text { is defined by } \mu_{2 \mathrm{D}} \mathrm{X}=\overline{\mathrm{B}} \mathrm{X}=\mu_{1 \mathrm{~B}_{1}} \mathrm{x} \wedge\left(\mu_{2 \mathrm{~B}} \mathrm{X}\right)^{\mathrm{c}}
$$

$\overline{\mathrm{D}}: \mathrm{A} \rightarrow \mathrm{L}_{\mathrm{A}}$, is defined by $\overline{\mathrm{D}} \mathrm{x}=\mu_{1 \mathrm{D}_{1}} \mathrm{x} \wedge\left(\mu_{2 \mathrm{D}} \mathrm{x}\right)^{\mathrm{c}}=\mathrm{M}_{\mathrm{A}} \wedge(\overline{\mathrm{B}})^{\mathrm{c}}=(\overline{\mathrm{B}} \mathrm{x})^{\mathrm{c}}$.

2.19 Proposition:

$\mathcal{A}^{\mathrm{C}_{\mathcal{A}}}=\Phi_{\mathcal{A}}$

2.20 Definition:

Define $\left(\Phi_{\mathcal{A}}\right)^{\mathrm{C}_{\mathcal{A}}}=\mathcal{A}$

2.21 Proposition:

For $\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right), \mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$, which are non Fs-empty sets and $\mathrm{B}=\mathrm{C}=$ $\mathrm{A}, \mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{A}}$
(1) $\mathcal{B} \cap \mathcal{B}^{\mathrm{C}_{\mathcal{A}}}=\Phi_{\mathcal{A}}$
(2) $\mathcal{B} \cup \mathcal{B}^{\mathrm{C}_{\mathcal{A}}}=\mathcal{A}$
(3) $\left(\mathcal{B}^{\mathrm{C}_{\mathcal{A}}}\right)^{\mathrm{C}_{\mathcal{A}}}=\mathcal{B}$
(4) $\mathcal{B} \subseteq \mathcal{C}$ if and only if $\mathcal{C}^{\mathrm{C}_{\mathcal{A}}} \subseteq \mathcal{B}^{\mathrm{C}_{\mathcal{A}}}$

2.22 Proposition:

Fs-De-Morgan's laws for a given pair of Fs-subsets:

For any pair of Fs-sets $\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ and 䵔 $=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$, with $\mathrm{B}=\mathrm{C}=\mathrm{A}$ and $\mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{A}}$, we will have
(i) $(\mathcal{B} \cup \mathcal{C})^{\mathrm{C}_{\mathcal{A}}}=\mathcal{B}^{\mathrm{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathrm{C}_{\mathcal{A}}}$ if $(\overline{\mathrm{B}})^{\mathrm{c}} \wedge(\overline{\mathrm{C}} \mathrm{X})^{\mathrm{c}} \leq\left[\left(\mu_{1 \mathrm{~B}_{1}} \mathrm{x}\right)^{\mathrm{c}} \vee \mu_{2 \mathrm{C}}\right] \wedge\left[\left(\mu_{1 \mathrm{C}_{1} \mathrm{x}}\right)^{\mathrm{c}} \vee \mu_{2 \mathrm{~B}} \mathrm{X}\right]$, for each $\mathrm{x} \in \mathrm{A}$
(ii) $(\mathcal{B} \cap \mathcal{C})^{\mathrm{C}_{\mathcal{A}}}=\mathcal{B}^{\mathrm{C}} \cup \mathcal{C}^{\mathrm{C}_{\mathcal{A}}}$, whenever $\mathcal{B} \cap \mathcal{C}$ exists.

2.23 Fs-De Morgan laws for any given arbitrary family of Fs-sets:

Proposition: Given a family of Fs-subsets $\left(\mathcal{B}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}$ of $\mathcal{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)$, where $L_{A}=\left[0, M_{A}\right] \cdot \mu_{1 A_{1}}=M_{A}, \mu_{2 A}=0, \bar{A} x=M_{A}$
(I) $\left(U_{i \in I} \mathcal{B}_{\mathrm{i}}\right)^{\mathrm{C}_{\mathcal{A}}}=\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}^{\mathrm{C}_{\mathcal{A}}}$, for $l \neq \Phi$, where $\mathcal{B}_{\mathrm{i}}=\left(\mathrm{B}_{1 \mathrm{i}}, \mathrm{B}_{\mathrm{i}}, \overline{\mathrm{B}}_{\mathrm{i}}\left(\mu_{1 \mathrm{~B}_{1 \mathrm{i}}}, \mu_{2 \mathrm{~B}_{\mathrm{i}}}\right), \mathrm{L}_{\mathrm{B}_{\mathrm{i}}}\right)$ and

$$
\text { (1) } \mathrm{B}_{\mathrm{i}}=\mathrm{A}, \mathrm{~L}_{\mathrm{B}_{\mathrm{i}}}=\mathrm{L}_{\mathrm{A}} \text { provided } \Lambda_{\mathrm{i} \in \mathrm{I}}\left(\overline{\mathrm{~B}}_{\mathrm{i}} \mathrm{x}\right)^{\mathrm{c}} \leq \bigwedge_{\substack{\mathrm{i}, j \in \mathrm{I} \\ \mathrm{i} \neq \mathrm{j}}}\left[\left(\mu_{1 \mathrm{~B}_{1 \mathrm{i}} \mathrm{x}}\right)^{\mathrm{c}} \vee \mu_{2 \mathrm{~B}_{\mathrm{j}} \mathrm{X}}\right]
$$

(II) $\left(\bigcap_{i \in I} \mathcal{B}_{\mathrm{i}}\right)^{\mathrm{C}_{\mathcal{A}}}=U_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}^{\mathrm{C}_{\mathcal{A}}}$, whenever $\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}$ exist

3 Fs-point

3.1 Definition

We define an object, for $b \in A, \beta \in L_{A}$ such that $\beta \leq \overline{\mathrm{A}}$ - denoted by (b, β) as follows $(b, \beta)=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$, where $A \subseteq B \subseteq B_{1} \subseteq A_{1}, L_{B} \leq L_{A}$, such that $\mu_{1 B_{1}} x, \mu_{2 B} X \in L_{B}$, $\alpha \leq \mu_{1 A_{1}} \mathrm{x}, \forall \mathrm{x} \in \mathrm{A}_{1}, \beta \in \mathrm{~L}_{\mathrm{A}}$
$\mu_{1 B_{1}} x=\left\{\begin{array}{cc}\mu_{2 A} x, & x \neq b, x \in A \\ \beta \vee \mu_{2 A} b, & x=b \\ \alpha, & x \notin A, x \in A_{1}\end{array}\right.$ And $\mu_{2 B} x=\left\{\begin{array}{cc}\mu_{2 A} x, & x \in A \\ \alpha, & x \notin A, x \in B\end{array}\right.$

3.2 Lemma:

(a) $\beta \leq \mu_{1 A_{1}}$ b and $\beta \leq\left(\mu_{2 A} b\right)^{c}$
(b) $\mu_{1 \mathrm{~B}_{1}} \mathrm{~b} \geq \mu_{2 \mathrm{~B}} \mathrm{~b}$
(c) $\mu_{1 \mathrm{~B}_{1}} \mathrm{~b} \leq \mu_{1 \mathrm{~A}_{1}} \mathrm{~b}$
(d) $\mu_{2 B} b \geq \mu_{2 A} b$
(e) $\overline{\mathrm{B}} \mathrm{b}=\beta$
(f) (b, β) is Fs-subset of \mathcal{A}

Proof: (a): Given $\beta \leq \bar{A} b=\mu_{1 A_{1}} b \wedge\left(\mu_{2 A} b\right)^{c}$

$$
\Rightarrow \beta \leq \mu_{1 \mathrm{~A}_{1}} \mathrm{~b} \text { and } \beta \leq\left(\mu_{2 \mathrm{~A}} \mathrm{~b}\right)^{\mathrm{c}}
$$

(b): $\mu_{1 B_{1}} b \wedge \mu_{2 B} b=\left(\beta \vee \mu_{2 A} b\right) \wedge \mu_{2 A} b=\mu_{2 A} b=\mu_{2 B} b$

$$
\Rightarrow \mu_{1 \mathrm{~B}_{1}} \mathrm{~b} \geq \mu_{2 \mathrm{~B}} \mathrm{~b}
$$

(c): $\mu_{1 \mathrm{~B}_{1}} \mathrm{~b} \wedge \mu_{1 \mathrm{~A}_{1}} \mathrm{~b}=\left(\beta \vee \mu_{2 \mathrm{~A}} \mathrm{~b}\right) \wedge \mu_{1 \mathrm{~A}_{1}} \mathrm{~b}=\left(\beta \wedge \mu_{1 \mathrm{~A}_{1}} \mathrm{~b}\right) \vee\left(\mu_{1 \mathrm{~A}_{1}} \mathrm{~b} \wedge \mu_{2 \mathrm{~A}} \mathrm{~b}\right)=\beta \vee \mu_{2 \mathrm{~A}} \mathrm{~b}=\mu_{1 \mathrm{~B}_{1}} \mathrm{~b}$

$$
\Rightarrow \mu_{1 \mathrm{~B}_{1}} \mathrm{~b} \leq \mu_{1 \mathrm{~A}_{1}} \mathrm{~b}
$$

(d): $\mu_{2 B} b \geq \mu_{2 A} b\left(\because \mu_{2 B} x=\mu_{2 A} x, \forall x \in A\right)$
(e): $\overline{\mathrm{B}} \mathrm{b}=\mu_{1 \mathrm{~B}_{1}} \mathrm{~b} \wedge\left(\mu_{2 \mathrm{~B}} \mathrm{~b}\right)^{\mathrm{c}}$
$=\left(\beta \vee \mu_{2 A} b\right) \wedge\left(\mu_{2 A} b\right)^{c}$
$=\left(\beta \wedge\left(\mu_{2 A} b\right)^{c}\right) \vee\left(\mu_{2 A} b \wedge\left(\mu_{2 A} b\right)^{c}\right)$

$$
\begin{aligned}
& =\left(\beta \wedge\left(\mu_{2 A} b\right)^{c}\right) \vee 0 \\
& =\beta \wedge\left(\mu_{2 A} b\right)^{c}=\beta
\end{aligned}
$$

(f): Given (b, β) $=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$
(i) $\mathrm{B}_{1} \subseteq \mathrm{~A}_{1}, \mathrm{~A} \subseteq \mathrm{~B}$
(ii) $\mathrm{L}_{\mathrm{B}} \leq \mathrm{L}_{\mathrm{A}}$
(iii) $\mu_{1 B_{1}} x=\left\{\begin{array}{cc}\mu_{2 A} x, & x \neq b, x \in A \\ \beta \vee \mu_{2 A} b, & x=b \\ \alpha, & x \notin A, x \in A_{1}\end{array}\right.$ And $\mu_{2 B} x=\left\{\begin{array}{cc}\mu_{2 A} x, & x \in A \\ \alpha, & x \notin A, x \in B\end{array}\right.$
$\mu_{1 B_{1}} \mathrm{X}=\mu_{2 \mathrm{~A}} \mathrm{X}=\mu_{2 \mathrm{~B}} \mathrm{X} \leq \mu_{1 \mathrm{~A}_{1}} \mathrm{X}, \mathrm{x} \neq \mathrm{b}, \mathrm{x} \in \mathrm{A}$
$\mu_{1 B_{1}} \mathrm{~b}=\beta \vee \mu_{2 \mathrm{~A}} \mathrm{~b} \geq \mu_{2 \mathrm{~A}} \mathrm{~b}=\mu_{2 \mathrm{~B}} \mathrm{~b}, \mu_{1 \mathrm{~B}_{1}} \mathrm{~b} \leq \mu_{1 \mathrm{~A}_{1}} \mathrm{~b}$
$\therefore \mu_{1 B_{1}} \mathrm{x} \geq \mu_{2 \mathrm{~B}} \mathrm{X}, \forall \mathrm{x} \in \mathrm{B}, \mu_{1 \mathrm{~B}_{1}} \mathrm{x} \leq \mu_{1 \mathrm{~A}_{1}} \mathrm{x}, \forall \mathrm{x} \in \mathrm{B}_{1}$ and $\mu_{2 \mathrm{~B}} \mathrm{X}=\mu_{2 \mathrm{~A}} \mathrm{x}, \forall \mathrm{x} \in \mathrm{A}$
Hence $(b, \beta)=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ is Fs-subset of \mathcal{A}.
Here onward (b, β)-which is an Fs -subset of \mathcal{A}, we call a $(\mathrm{b}, \beta$) objects of \mathcal{A}.

3.3 Definition of a relation between objects:

For any (b, β) objects $\mathcal{B}_{1}=\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{2 \mathrm{~B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right)$ and $\mathcal{B}_{2}=\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}, \mu_{2 \mathrm{~B}_{2}}\right), \mathrm{L}_{\mathrm{B}_{2}}\right)$ of \mathcal{A}, we say that $\mathcal{B}_{1} R(b, \beta) \mathcal{B}_{2}$ if, and only if $\mu_{1 B_{11}} x=\mu_{2 B_{1}} \mathrm{x}, \mathrm{x} \neq \mathrm{b}$ and $\forall \mathrm{x} \in \mathrm{B}_{1}$ and $\mu_{1 \mathrm{~B}_{12}} \mathrm{x}=\mu_{2 \mathrm{~B}_{2}} \mathrm{x}, \mathrm{x} \neq$ b and $\forall \mathrm{x} \in \mathrm{B}_{2}$ and $\mu_{1 \mathrm{~B}_{11}} \mathrm{~b}=\mu_{1 \mathrm{~B}_{12}} \mathrm{~b}=\beta \vee \mu_{2 \mathrm{~A}} \mathrm{~b}$ and $\mu_{2 \mathrm{~B}_{1}} \mathrm{~b}=\mu_{2 \mathrm{~B}_{2}} \mathrm{~b}=\mu_{2 \mathrm{~A}} \mathrm{~b}$.

3.4 Theorem:

$R(b, \beta)$ is an equivalence relation.
Proof: The proof follows clearly from definition.

3.5 Definition of Fs-point:

The equivalence class corresponding to $R(b, \beta)$ is denoted by χ_{b}^{β} or (b, β). We define this χ_{b}^{β} is an Fs point of \mathcal{A}.

Set of all Fs -point of \mathcal{A} is denoted by $\operatorname{FSP}(\mathcal{A})$.

3.6 Definition:

Let $\mathrm{G} \subseteq \operatorname{FSP}(\mathcal{A})$.
(a) G is said to be closed under stalks if, and only if $\chi_{b}^{\beta} \in G, \alpha \leq \beta \Rightarrow \chi_{b}^{\alpha} \in G$
(b) G is said to be closed under supremums if and only if $M \subseteq L_{A}, \chi_{b}^{\beta} \in G, \forall \beta \in M \Rightarrow \chi_{b}^{V M} \in G$, $V M=V_{\beta \in M} \beta$
(c) G is said to be S -closed if, and only if G is closed under both stalks and supremums.

3.7 Theorem:

Arbitrary intersection of S-closed subset is S-closed

3.8 Definition:

Let $\mathrm{G} \subseteq \operatorname{FSP}(\mathcal{A})$.

Define $\mathrm{G}^{\sim}=\Phi_{\mathcal{A}}$ if $\mathrm{G}=\Phi$.Otherwise $\mathrm{G}^{\sim}=\mathrm{U}_{\chi_{b}^{\beta} \in \mathrm{G}} \chi_{b}^{\beta}$
Define $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$, where

$$
\begin{aligned}
& B_{1} \supseteq B=\left\{b \mid \chi_{b}^{\beta} \in G\right\}, L_{B}=V_{\chi_{b}^{\beta} \in G} L_{\beta}, \mu_{1 B_{1}} b=V_{\chi_{b}^{\beta} \in G}\left(\beta \vee \mu_{2 A} b\right), \mu_{2 B} b=\mu_{2 A} b \\
& \bar{B} b=\mu_{1 B_{1}} b \wedge\left(\mu_{2 B} b\right)^{c} \\
& =V_{\chi_{b}^{\beta} \in G}\left(\beta \vee \mu_{2 A} b\right) \wedge\left(\mu_{2 A} b\right)^{c} \\
& =\left[\left(V_{\chi_{b}^{\beta} \in G} \beta\right) \vee \mu_{2 A} b\right] \wedge\left(\mu_{2 A} b\right)^{c} \\
& =\left(\left(V_{\chi_{b}^{\beta} \in G} \beta\right) \wedge\left(\mu_{2 A} b\right)^{c}\right) \vee\left(\mu_{2 A} b \wedge\left(\mu_{2 A} b\right)^{c}\right) \\
& =V_{\chi_{b}^{\beta} \in G}\left(\beta \wedge\left(\mu_{2 A} b\right)^{c}\right) \vee 0 \\
& =V_{\chi_{b}^{\beta} \in G}\left(\beta \wedge\left(\mu_{2 A} b\right)^{c}\right)=V_{\chi_{b}^{\beta} \in G} \beta
\end{aligned}
$$

3.9 Theorem:

$\mathrm{G}^{\sim}=\mathcal{B}$
Proof: Let $\chi_{b}^{\beta}=\left(B_{1}, B, \bar{X}\left(\mu_{1 X_{1}}, \mu_{2 X}\right), L_{X}\right)$, where $\beta \leq \bar{A} b$
$\mu_{1 X_{1}} x=\left\{\begin{array}{cc}\mu_{2 A} x, & x \neq b, x \in A \\ \beta \vee \mu_{2 A} b, & x=b \\ \alpha, & x \notin A, x \in B_{1}\end{array}\right.$ And $\mu_{2 X} x=\left\{\begin{array}{cc}\mu_{2 A} x, & x \in A \\ \alpha, & x \notin A, x \in B\end{array}\right.$
$\operatorname{LetU}_{\chi_{b}^{\beta} \in \mathrm{G}} \chi_{\mathrm{b}}^{\beta}=\mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$, where
(I) $\mathrm{C}_{1}=\mathrm{B}_{1}, \mathrm{C}=\mathrm{B}=\left\{\mathrm{b} \mid \chi_{\mathrm{b}}^{\beta} \in \mathrm{G}\right\}, \mathrm{C}_{1} \supseteq \mathrm{C}$
(II) $\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{X}}=\mathrm{V}_{\chi_{\mathrm{b}}^{\beta} \in \mathrm{G}} \mathrm{L}_{\beta}$
(III) For $b \in A, \mu_{1 C_{1}} b=V_{\chi_{b}^{B} \in G}\left(\beta \vee \mu_{2 A} b\right)=\mu_{1 B_{1}} b, \mu_{2 C} b=\mu_{2 A} b=\mu_{2 B} b$

Hence $\mathrm{G}^{\sim}=\mathcal{B}$

3.10 Definition:

For any $\mathcal{B} \subseteq \mathcal{A}$
Define $\mathcal{B}^{\sim}=\Phi$ if $\mathcal{B}=\Phi_{\mathcal{A}}$
Let $\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ and $\mathcal{B} \neq \Phi_{\mathcal{A}}$
Define $\mathcal{B}^{\sim}=\left\{\chi_{b}^{\beta} \mid b \in B, \beta \in L_{B}, \beta \leq \bar{B} b\right\}$

3.11 Theorem:

$$
\mathcal{A}=U_{\chi_{\mathrm{b}}^{\beta} \in \operatorname{FSP}(\mathcal{A})} \chi_{\mathrm{b}}^{\beta}
$$

Proof: The proof follows similar lines of the proof of 4.9

3.12 Lemma:

$\mathcal{A}^{\sim}=\operatorname{FSP}(\mathcal{A})$
Clearly $\mathcal{A}^{\sim} \subseteq \operatorname{FSP}(\mathcal{A})$
Let $\chi_{\mathrm{b}}^{\beta}=\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \in \operatorname{FSP}(\mathcal{A})$
$\therefore \chi_{\mathrm{b}}^{\beta}$ is a $(\mathrm{b}, \beta$) object
I.e. $b \in A, \beta \in L_{A}, A \subseteq B \subseteq B_{1} \subseteq A_{1}$, such that $\mu_{1 B_{1}} x, \mu_{2 B} x \in L_{B}, L_{B} \leq L_{A}, \alpha \leq \mu_{1 A_{1}} x, \forall x \in A_{1}, \beta \in L_{A}$
$\mu_{1 B_{1}} x=\left\{\begin{array}{cc}\mu_{2 A} x, & x \neq b, x \in A \\ \beta \vee \mu_{2 A} b, & x=b \\ \alpha, & x \notin A, x \in A_{1}\end{array}\right.$ And $\mu_{2 B} x=\left\{\begin{array}{cc}\mu_{2 A} x, & x \in A \\ \alpha, & x \notin A, x \in B\end{array}\right.$
Clearly $\mathrm{b} \in \mathrm{A} \subseteq \mathrm{B}, \beta \in \mathrm{L}_{\mathrm{B}}$ and $\mathrm{L}_{\mathrm{B}} \leq \mathrm{L}_{\mathrm{A}}$
Hence $\operatorname{FSP}(\mathcal{A}) \subseteq \mathcal{A}^{\sim}$
Hence $\mathcal{A}^{\sim}=\operatorname{FSP}(\mathcal{A})$

3.13 Theorem:

\mathcal{B}^{\sim} is S -closed.
Proof: Let $\chi_{b}^{\beta} \in \mathcal{B}^{\sim}$, then $b \in B, \beta \in L_{B}, \beta \leq \bar{B} b$
Let $\delta \leq \beta, \delta \in \mathrm{L}_{\mathrm{B}}, \delta \leq \overline{\mathrm{B}} \mathrm{b}$
$\therefore \chi_{\mathrm{b}}^{\delta} \in \mathcal{B}^{\sim}$
Hence \mathcal{B}^{\sim} is closed under stalks.
Let $\chi_{b}^{\beta_{i}} \in \mathcal{B}^{\sim}$ for $i \in I$ then $b \in B, \beta_{i} \in L_{B}, \beta_{i} \leq \bar{B} b$
$\Rightarrow \mathrm{b} \in \mathrm{B}, \mathrm{V}_{\mathrm{i} \in \mathrm{I}} \beta_{\mathrm{i}} \in \mathrm{L}_{\mathrm{B}}, \mathrm{V}_{\mathrm{i} \in \mathrm{I}} \beta_{\mathrm{i}} \leq \overline{\mathrm{B}} \mathrm{b}$
$\Rightarrow \chi_{\mathrm{b}}^{\vee \beta_{i}} \in \mathcal{B}^{\sim}$
Hence \mathcal{B}^{\sim} is closed under supremum.
$\therefore \mathcal{B}^{\sim}$ is S -closed.

3.14 Theorem:

For any $\mathrm{G} \subseteq \operatorname{FSP}(\mathcal{A}), \mathrm{G} \subseteq \mathrm{G}^{\sim \sim}$
Proof: Case (I):G $=\Phi \Rightarrow$ Clear
Case (II): $\mathrm{G} \neq \Phi$, we have $\mathrm{G}^{\sim \sim}=\mathcal{B}^{\sim}=\left\{\chi_{\mathrm{b}}^{\beta} \mid \mathrm{b} \in \mathrm{B}, \beta \in \mathrm{L}_{\mathrm{B}}, \beta \leq \overline{\mathrm{B}} \mathrm{b}\right\}$
Where $\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$, where

$$
B_{1} \supseteq B=\left\{b \mid \chi_{b}^{\beta} \in G\right\}, L_{B}=V_{\chi_{b}^{\beta} \in G} L_{\beta}, \mu_{1 B_{1}} b=V_{\chi_{b}^{\beta} \in G}\left(\beta \vee \mu_{2 A} b\right), \mu_{2 B} b=\mu_{2 A} b, \bar{B} b=V_{\chi_{b}^{\beta} \in G} \beta
$$

Let $\chi_{b}^{\beta} \in G \Rightarrow b \in B, \beta \in L_{B}, \bar{B} b=V_{\chi_{b}^{\beta} \in G} \beta, \beta \leq \bar{B} b \Rightarrow \chi_{b}^{\beta} \in \mathcal{B}^{\sim}=G^{\sim \sim} \Rightarrow G \subseteq G^{\sim \sim}$

3.15 Theorem:

Let \mathcal{A} be an Fs -set. Then the following are equivalent for any $\mathrm{G} \subseteq \operatorname{FSP}(\mathcal{A})$
(a) $\mathrm{G}^{\sim \sim}=\mathrm{G}$
(b) G is S-closed
(c) (i) $b \in B \Rightarrow \chi_{b}^{\bar{B} b} \in G$
(ii) $b \in B, \beta \leq \overline{\mathrm{B}} \mathrm{b} \Rightarrow \chi_{\mathrm{b}}^{\beta} \in \mathrm{G}$ where $\mathcal{B}=\mathrm{G}^{\sim}$

Proof: We have $\mathrm{G}^{\sim}=U_{\chi_{b}^{\beta} \in \mathrm{G}} \chi_{\mathrm{b}}^{\beta}$ and from 4.9, $\mathrm{G}^{\sim}=\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right)\right.$, $\left.\mathrm{L}_{\mathrm{B}}\right)$, where $B_{1} \supseteq B=\left\{b \mid \chi_{b}^{\beta} \in G\right\}, L_{B}=V_{\chi_{b}^{\beta} \in G} L_{\beta}, \mu_{1 B_{1}} b=V_{\chi_{b}^{\beta} \in G}\left(\beta \vee \mu_{2 A} b\right), \mu_{2 B} b=\mu_{2 A} b, \bar{B} b=V_{\chi_{b}^{\beta} \in G} \beta$
Also we have $\mathrm{G}^{\sim \sim}=\mathcal{B}^{\sim}=\left\{\chi_{\mathrm{b}}^{\beta} \mid \mathrm{b} \in \mathrm{B}, \beta \in \mathrm{L}_{\mathrm{B}}, \beta \leq \overline{\mathrm{B}} \mathrm{b}\right\}$
$\mathrm{G}=\mathrm{G}^{\sim \sim}=\mathcal{B}^{\sim}$ which is S-closed from 4.13 gives $(\mathrm{a}) \Rightarrow(\mathrm{b})$
(i) Here $G^{\sim}=\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$, where
$B_{1} \supseteq B=\left\{b \mid \chi_{b}^{\beta} \in G\right\}, L_{B}=V_{\chi_{b}^{\beta} \in G} L_{\beta}, \mu_{1 B_{1}} b=V_{\chi_{b}^{\beta} \in G}\left(\beta \vee \mu_{2 A} b\right), \mu_{2 B} b=\mu_{2 A} b, \bar{B} b=V_{\chi_{b}^{\beta} \in G} \beta$
For any $b \in B, \chi_{b}^{\bar{B} b} \in G$ follows from G is closed under supremums.
(ii) For any $b \in B, \beta \leq \bar{B} b$, we have $\chi_{b}^{\beta} \in G$, because $\chi_{b}^{\bar{B} b} \in G$ and G is S-closed which gives (b) \Rightarrow (c).
(c) $\Rightarrow(a)$ is clear.

3.16 Theorem:

For any \mathcal{B}_{1} and \mathcal{B}_{2} such that $\mathcal{B}_{1} \subseteq \mathcal{B}_{2} \subseteq \mathcal{A}, \mathcal{B}_{1}{ }^{\sim} \subseteq \mathcal{B}_{2}{ }^{\sim}$ provided $\mathrm{B}_{1}=\mathrm{B}_{2}$ where $\mathcal{B}_{1}=$ $\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{2 \mathrm{~B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right)$ and $\mathcal{B}_{2}=\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}, \mu_{2 \mathrm{~B}_{2}}\right), \mathrm{L}_{\mathrm{B}_{2}}\right)$

Proof: From hypotheses, we have
(1) $\mathrm{B}_{11} \subseteq \mathrm{~B}_{12}, \mathrm{~B}_{1} \supseteq \mathrm{~B}_{2}$
(2) $\mathrm{L}_{\mathrm{B}_{1}} \leq \mathrm{L}_{\mathrm{B}_{2}}$
(3) $\mu_{1 \mathrm{~B}_{11}} \leq \mu_{1 \mathrm{~B}_{12}}\left|\mathrm{~B}_{11}, \mu_{2 \mathrm{~B}_{1}}\right| \mathrm{B}_{2} \geq \mu_{2 \mathrm{~B}_{2}}$
$\chi_{\mathrm{b}}^{\beta} \in \mathcal{B}_{1}{ }^{\sim}$
Implies $b \in B_{1}, \beta \in L_{B_{1}}, \beta \leq \bar{B}_{1} b$ which implies
$\mathrm{b} \in \mathrm{B}_{2}, \beta \in \mathrm{~L}_{\mathrm{B}_{2}}, \beta \leq \overline{\mathrm{B}}_{1} \mathrm{~b} \leq \overline{\mathrm{B}}_{2} \mathrm{~b}\left(\therefore \mathcal{B}_{1} \subseteq \mathcal{B}_{2}\right)$
so that $\chi_{b}^{\beta} \in \mathcal{B}_{2}{ }^{\sim}$

3.16.1 Corollary:

$\mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathrm{FSP}(\mathcal{B}) \subseteq \mathrm{FSP}(\mathcal{A})$

3.17 Result:

$\mathcal{B}_{1} \subseteq \mathcal{B}_{2}$ implies $\mathcal{B}_{1} \subseteq \mathcal{B}_{2} \cup \mathcal{B}_{3}$ for any Fs-subset \mathcal{B}_{3}

3.18 Result:

$\chi_{\mathrm{b}}^{\beta} \subseteq \mathrm{G}^{\sim}$ for any $\chi_{\mathrm{b}}^{\beta} \in \mathrm{G}$ such that $\mathrm{G} \subseteq \operatorname{FSP}(\mathcal{A})$.

Proof: $\chi_{\mathrm{b}}^{\beta} \in \mathrm{G}$ is an Fs-point of \mathcal{A} and $\mathrm{G}^{\sim}=U_{\chi_{\mathrm{b}}^{\beta} \in \mathrm{G}} \chi_{\mathrm{b}}^{\beta}$ gives $\chi_{\mathrm{b}}^{\beta} \subseteq \mathrm{G}^{\sim}$
3.19 Recall 1.16 for any Family $\left(\mathcal{G}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}$ of Fs-subsets of \mathcal{A} such that $\mathcal{G}_{\mathrm{i}} \subseteq \mathcal{G}, \mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathcal{G}_{\mathrm{i}} \subseteq \mathcal{G}$.

3.20 Proposition:

$\mathrm{G}_{1}{ }^{\sim} \subseteq \mathrm{G}_{2}{ }^{\sim}$ for any two subsets G_{1} and G_{2} of $\operatorname{FSP}(\mathcal{A})$, such that $\mathrm{G}_{1} \subseteq \mathrm{G}_{2}$.
Proof: The proof follows clearly if $\mathrm{G}_{1}=\Phi$ because $\mathrm{G}_{1}{ }^{\sim}=\Phi_{\mathcal{A}}$ which is an Fs-empty subset of \mathcal{A}
For $\mathrm{G}_{1} \neq \Phi$,
take $\chi_{b}^{\beta} \in \mathrm{G}_{1} \subseteq \mathrm{G}_{2}$ implying $\chi_{\mathrm{b}}^{\beta} \subseteq \mathrm{G}_{2}{ }^{\sim}$ from4.18 again implying
$U_{\chi_{b}^{\beta} \in G_{1}} \chi_{b}^{\beta} \subseteq \mathrm{G}_{2}{ }^{\sim}$ from 4.19 so that $\mathrm{G}_{1}{ }^{\sim} \subseteq \mathrm{G}_{2}{ }^{\sim}$

3.21 Theorem:

For any Fs-subset \mathcal{B} of an Fs-set $\mathcal{A}, \mathcal{B}^{\sim \sim}=\mathcal{B}$.
Proof: For $\mathcal{B}=\Phi_{\mathcal{A}}$-Fs-empty subset of $\mathcal{A}, \mathcal{B}^{\sim}=\Phi$ the crisp empty subset, $\mathcal{B}^{\sim \sim}=\Phi_{\mathcal{A}}=\mathcal{B}$
For $\mathcal{B} \neq \Phi_{\mathcal{A}}, \mathcal{B}^{\sim}=\left\{\chi_{b}^{\beta} \mid \mathrm{b} \in \mathrm{B}, \beta \in \mathrm{L}_{\mathrm{B}}, \beta \leq \overline{\mathrm{B}} \mathrm{b}\right\}$.
Since each χ_{b}^{β} in \mathcal{B}^{\sim} is an Fs-subset of \mathcal{B} it follows $U_{\chi_{b}^{\beta} \in \mathcal{B}^{\mathcal{B}}} \chi_{b}^{\beta} \subseteq \mathcal{B}$.
But $G^{\sim}=U_{\chi_{b}^{\beta} \in G} \chi_{b}^{\beta}$ implies $\left(\mathcal{B}^{\sim}\right)^{\sim}=U_{\chi_{b}^{\beta} \in G^{\sim}} \chi_{b}^{\beta}$
Where $\mathcal{B}^{\sim}=\left\{\chi_{b}^{\beta} \mid \chi_{b}^{\beta} \subseteq \mathcal{B}\right\}$
$\therefore U_{\chi_{\mathrm{b}}^{\beta} \in \mathcal{B}^{\sim}} \chi_{\mathrm{b}}^{\beta} \subseteq \mathcal{B}=U_{\chi_{\mathrm{b}}^{\beta} \in \mathrm{G}} \chi_{\mathrm{b}}^{\beta}=U_{\chi_{\mathrm{b}}^{\beta} \in \mathcal{B}^{\sim}} \chi_{\mathrm{b}}^{\beta}=\left(\mathcal{B}^{\sim}\right)^{\sim}$
So that $\mathcal{B}^{\sim \sim}=\mathcal{B}$.

3.22 Theorem:

$(\mathcal{B} \cap \mathcal{C})^{\sim}=\mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$ for any Fs-subsets $\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ and $\mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$ of \mathcal{A} such that $\mathrm{B}=\mathrm{C}$.
Proof: For $\mathcal{B} \cap \mathcal{C}=\Phi_{\mathcal{A}},(\mathcal{B} \cap \mathcal{C})^{\sim}=\left(\Phi_{\mathcal{A}}\right)^{\sim}=\Phi$ which is the crisp empty set
For $\chi_{\mathrm{b}}^{\beta} \in \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}, \chi_{\mathrm{b}}^{\beta} \subseteq \mathcal{B}$ and $\chi_{\mathrm{b}}^{\beta} \subseteq \mathcal{C}$ which imply $\chi_{\mathrm{b}}^{\beta} \subseteq \mathcal{B} \cap \mathcal{C}$ again implying $\chi_{\mathrm{b}}^{\beta} \in(\mathcal{B} \cap \mathcal{C})^{\sim}-\mathrm{a}$ contradiction
For $\mathcal{B} \cap \mathcal{C} \neq \Phi_{\mathcal{A}}$
Say $\mathcal{B} \cap \mathcal{C}=\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$, where $\mathrm{D}=\mathrm{B}=\mathrm{C}$
Then $(\mathcal{B} \cap \mathcal{C})^{\sim} \subseteq \mathcal{B}^{\sim}$ and $(\mathcal{B} \cap \mathcal{C})^{\sim} \subseteq \mathcal{C}^{\sim}$ from 4.16
Implying $(\mathcal{B} \cap \mathcal{C})^{\sim} \subseteq \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$
For $\chi_{b}^{\beta} \in \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$
$b \in B, \beta \in L_{B}, \beta \leq \bar{B} b$ and $b \in C, \beta \in L_{C}, \beta \leq \bar{C} b$
Implying $\mathrm{b} \in \mathrm{B} \cap \mathrm{C}, \beta \in \mathrm{L}_{\mathrm{B}} \cap \mathrm{L}_{\mathrm{C}}, \beta \leq \overline{\mathrm{B}} \mathrm{b} \wedge \overline{\mathrm{C}} \mathrm{b}=(\overline{\mathrm{B}} \wedge \overline{\mathrm{C}}) \mathrm{b}$ again implying $\chi_{\mathrm{b}}^{\beta} \in(\mathcal{B} \cap \mathcal{C})^{\sim}$

So that $(\mathcal{B} \cap \mathcal{C})^{\sim} \supseteq \mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$
Hence $(\mathcal{B} \cap \mathcal{C})^{\sim}=\mathcal{B}^{\sim} \cap \mathcal{C}^{\sim}$

3.23 Proposition:

For any family of Fs-subset $\left(\mathcal{B}_{\mathrm{i}}\right)_{i \in \mathrm{I}}$ of $\mathcal{A},\left(\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}\right)^{\sim}=\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}}{ }^{\sim}$ provided all B_{i} 's are equal for each $\mathrm{i} \in \mathrm{I}$

3.24 Theorem:

$\left(G_{1} \cup G_{2}\right)^{\sim}=G_{1} \sim \cup G_{2}{ }^{\sim}$ for any subsets G_{1} and G_{2} of $\operatorname{FSP}(\mathcal{A})$,
Proof: For $\mathrm{G}_{1}=\Phi$, we have $\mathrm{G}_{1} \sim=\Phi_{\mathcal{A}}$ and $\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)^{\sim}=\mathrm{G}_{2} \sim$ and $\mathrm{G}_{1} \sim \cup \mathrm{G}_{2} \sim=\mathrm{G}_{2} \sim$
So that $\left(G_{1} \cup G_{2}\right)^{\sim}=G_{1}^{\sim} \cup G_{2}^{\sim}$.
Suppose G_{1} and G_{2} be non-empty
Since $\mathrm{G}_{1}, \mathrm{G}_{2} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}, \mathrm{G}_{1}{ }^{\sim}, \mathrm{G}_{2}{ }^{\sim} \subseteq\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)^{\sim}$ so that $\mathrm{G}_{1}{ }^{\sim} \cup \mathrm{G}_{2}{ }^{\sim} \subseteq\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)^{\sim}$
For $\chi_{b}^{\beta} \subseteq\left(G_{1} \cup G_{2}\right)^{\sim}, \chi_{b}^{\beta} \in G_{1} \cup G_{2}$ so that $\chi_{b}^{\beta} \in G_{1}$ or $\chi_{b}^{\beta} \in G_{2}$ implying $\chi_{b}^{\beta} \subseteq G_{1}^{\sim}$ or $\chi_{b}^{\beta} \subseteq G_{2}^{\sim}$ so that $\chi_{b}^{\beta} \subseteq G_{1}^{\sim} \cup G_{2}^{\sim}$ finally $\left(G_{1} \cup G_{2}\right)^{\sim} \subseteq G_{1}^{\sim} \cup G_{2}^{\sim}$
Hence $\left(G_{1} \cup G_{2}\right)^{\sim}=G_{1} \sim \cup G_{2}^{\sim}$

3.25 Theorem:

$\left(U_{i \in I} G_{i}\right)^{\sim}=U_{i \in I} G_{i}^{\sim}$ for any family $\left(G_{i}\right)_{i \in I}$ of subsets of $\operatorname{FSP}(\mathcal{A})$.

3.25.1 Remark:

Observe that χ_{c}^{0} is always an Fs-subset of \mathcal{B} i.e. $\chi_{c}^{0} \in \mathcal{B}^{\sim}$ i.e. $\chi_{c}^{0} \notin\left(\mathcal{B}^{\sim}\right)^{c}$

3.26 Theorem:

For $\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \subseteq \mathcal{A}, \mathrm{B}=\mathrm{A}$ andL $\mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\mathrm{B}}$,

$$
\left(\mathcal{B}^{C_{\mathcal{A}}}\right)^{\sim} \subseteq\left(\mathcal{B}^{\sim}\right)^{\mathrm{c}}
$$

Proof: Suppose $\mathcal{B}^{\mathrm{C}_{\mathcal{A}}}=\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$. From 1.18
(1) $D_{1}=C_{A} B_{1}=B_{1}^{c} \cup A, D=B=A$
(2) $\mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{A}}$
(3) $\mu_{1 D_{1}}: D_{1} \rightarrow L_{A}$, is defined by $\mu_{1 D_{1}} x=M_{A}$
$\mu_{2 D}: A \rightarrow L_{A}$, is defined by $\mu_{2 D} x=\bar{B} x=\mu_{1 B_{1}} x \wedge\left(\mu_{2 B} x\right)^{c}$
$\overline{\mathrm{D}}: \mathrm{A} \rightarrow \mathrm{L}_{\mathrm{A}}$, is defined by $\overline{\mathrm{D}} \mathrm{x}=\mu_{1 \mathrm{D}_{1}} \mathrm{x} \wedge\left(\mu_{2 \mathrm{D}} \mathrm{x}\right)^{\mathrm{c}}=\mathrm{M}_{\mathrm{A}} \wedge(\overline{\mathrm{B}} \mathrm{x})^{\mathrm{c}}=(\overline{\mathrm{B}} \mathrm{x})^{\mathrm{c}}$.
Then from $4.10\left(\mathcal{B}^{\mathcal{C}_{\mathcal{A}}}\right)^{\sim}=\mathcal{D}^{\sim}=\left\{\chi_{\mathrm{d}}^{\delta} \mid \mathrm{d} \in \mathrm{A}, \delta \in \mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\mathrm{D}}, \delta \leq \overline{\mathrm{D}} \mathrm{d}=(\overline{\mathrm{B}} \mathrm{d})^{\mathrm{c}}\right.$ i. e. $\left.\delta \wedge \overline{\mathrm{B}} \mathrm{d}=0\right\}$
And $\mathcal{B}^{\sim}=\left\{\chi_{b}^{\beta} \mid \mathrm{b} \in \mathrm{B}=\mathrm{A}, \beta \in \mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{A}}, \beta \leq \overline{\mathrm{B}} \mathrm{b}\right\}$ implying $\left(\mathcal{B}^{\sim}\right)^{\mathrm{c}}=\left\{\chi_{\mathrm{c}}^{\gamma} \mid \chi_{\mathrm{c}}^{\gamma} \notin \mathcal{B}^{\sim}\right\}$
$\chi_{\mathrm{c}}^{\gamma} \in\left(\mathcal{B}^{C_{\mathcal{A}}}\right)^{\sim}$ implying $\gamma \wedge \overline{\mathrm{B}} \mathrm{c}=0$ which implies $\gamma \nsubseteq \overline{\mathrm{B}} \mathrm{c}$ as $\chi_{\mathrm{c}}^{\gamma} \notin \mathcal{B}^{\sim} \Rightarrow \gamma \nsubseteq \overline{\mathrm{B}} \mathrm{c}$ so that $\chi_{\mathrm{c}}^{\gamma} \in\left(\mathcal{B}^{\sim}\right)^{\mathrm{c}}$
Hence $\left(\mathcal{B}^{\mathcal{C}_{\mathcal{A}}}\right)^{\sim} \subseteq\left(\mathcal{B}^{\sim}\right)^{\text {c }}$

3.26.1 Example:

Let $\mathcal{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)$, where $\mathrm{A}_{1}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{A}=\{\mathrm{a}\}, \mu_{1 \mathrm{~A}_{1}}=1, \mu_{2 \mathrm{~A}}=0$ and $\mathrm{L}_{\mathrm{A}}=\{0, \alpha \| \beta, 1\}$
Suppose $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right) \subseteq \mathcal{A}$, where $B_{1}=B=A=\{a\}, \mu_{1 B_{1}}=\alpha, \mu_{2 B}=0$ and $\quad L_{B}=$ $\mathrm{L}_{\mathrm{A}} \overline{\mathrm{B}} \mathrm{a}=\alpha$
$\mathcal{B}^{\mathrm{C}_{\mathcal{A}}}=\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$, where $\mathrm{D}_{1}=\mathrm{A}_{1}, \mathrm{D}=\mathrm{A}, \mu_{1 \mathrm{D}_{1}} \mathrm{a}=1, \mu_{2 \mathrm{D}} \mathrm{a}=\alpha, \overline{\mathrm{D}}=\beta, \mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{A}}$
$\left(\mathcal{B}^{\mathcal{C}_{\mathcal{A}}}\right)^{\sim}=\mathcal{D}^{\sim}=\left\{\chi_{d}^{\delta} \mid \mathrm{d} \in \mathrm{A}, \delta \in \mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\mathrm{B}}, \delta \leq \overline{\mathrm{D}} \mathrm{d}=(\overline{\mathrm{B}} \mathrm{d})^{c}\right.$ i. e $\left.\delta \wedge \overline{\mathrm{B}} \mathrm{d}=0\right\}$
$\mathcal{B}^{\sim}=\left\{\chi_{b}^{\beta} \mid b \in B=A, \beta \in L_{B}=L_{A}, \beta \leq \overline{\mathrm{B}} b\right\}$
$\Rightarrow \mathcal{B}^{\sim}=\left\{\chi_{a}^{0}, \chi_{a}^{\alpha}\right\}$
$\Rightarrow \chi_{\mathrm{a}}^{1} \in\left(\mathcal{B}^{\sim}\right)^{\mathrm{c}}(\because 1 \nsubseteq \overline{\mathrm{~B}} \mathrm{a}=\alpha)$
But $\chi_{a}^{1} \notin\left(\mathcal{B}^{\mathcal{C}_{\mathcal{A}}}\right)^{\sim}$
I.e. $\left(\mathcal{B}^{\sim}\right)^{c} \nsubseteq\left(\mathcal{B}^{C_{\mathcal{A}}}\right)$

3.27 Theorem:

$\left(\mathrm{G}^{\sim}\right)^{\mathrm{C}_{\mathcal{A}}} \subseteq\left(\mathrm{G}^{\mathrm{c}}\right)^{\sim}$ for any $\mathrm{G} \subseteq \operatorname{FSP}(\mathcal{A})$, where $\mathcal{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right), \mu_{1 \mathrm{~A}_{1}}=\mathrm{M}_{\mathrm{A}}, \mu_{2 \mathrm{~A}}=0$ and $\mathrm{L}_{\mathrm{A}}=\left[0, \mathrm{M}_{\mathrm{A}}\right]$.
Proof: For any $\mathrm{G} \subseteq \operatorname{FSP}(\mathcal{A}), \mathrm{G}^{\sim}=\mathrm{U}_{\chi_{\mathrm{b}}^{\beta} \in \mathrm{G}} \chi_{\mathrm{b}}^{\beta}$
Let $\quad G^{\sim}=\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$, where $\quad B_{1} \supseteq B=A=\left\{b \mid x_{b}^{\beta} \in G\right\}, L_{B}=L_{A}, \mu_{1 B_{1}} b=$ $V_{\chi_{b}^{\beta} \in G}\left(\beta \vee \mu_{2 A} b\right)=V_{\chi_{b}^{\beta} \in G} \beta, \mu_{2 B} b=\mu_{2 A} b=0, \bar{B} b=V_{\chi_{b}^{\beta} \in G} \beta$.
Let $(\mathcal{B})^{C_{\mathcal{A}}}=\mathcal{D}=\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$ then
(1) $\mathrm{D}_{1}=\mathrm{A}, \mathrm{D}=\mathrm{B}=\mathrm{A}$
(2) $\mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{A}}$
(3) $\mu_{1 D_{1}}: D_{1} \rightarrow L_{A}$, is defined by $\mu_{1 D_{1}} x=M_{A}$ $\mu_{2 \mathrm{D}}: \mathrm{A} \rightarrow \mathrm{L}_{\mathrm{A}}$, is defined by $\mu_{2 \mathrm{D}} \mathrm{b}=\overline{\mathrm{B}} \mathrm{b}=\mathrm{V}_{\chi_{\mathrm{b}}^{\beta} \in G} \beta$

Also $\left(\mathrm{G}^{\sim}\right)^{\mathrm{C}_{\mathcal{A}}}=(\mathcal{B})^{\mathrm{C}_{\mathcal{A}}}=\mathcal{D}$
Now, $\mathrm{G}^{\mathrm{c}}=\operatorname{FSP}(\mathcal{A})-\mathrm{G}$
Let $\left(\mathrm{G}^{\mathrm{c}}\right)^{\sim}=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right), \mathrm{L}_{\mathrm{E}}\right)$, where
$E_{1}=E=A=\left\{c \mid \chi_{c}^{\gamma} \in G^{c}\right\}, L_{E}=L_{A}, \mu_{1 E_{1}} c=V_{\chi_{c}^{\gamma} \in G^{c}}\left(\gamma \vee \mu_{2 A} c\right)=V_{\chi_{c}^{\gamma} \in G^{c}} \gamma, \mu_{2 E} c=\mu_{2 A} c=0, \quad \bar{E} c=$ $V_{\chi_{c}^{\gamma} \in G^{c}} \gamma$.
We prove $\left(\mathrm{G}^{\sim}\right)^{\mathrm{C}_{\mathcal{A}}} \subseteq\left(\mathrm{G}^{\mathrm{c}}\right)^{\sim}$ if $\chi_{\mathrm{b}}^{\mathrm{M}_{\mathrm{A}}} \in \mathrm{G}$ or $\chi_{\mathrm{b}}^{\mathrm{M}_{\mathrm{A}}} \notin \mathrm{G}$
If $\chi_{b}^{M_{A}} \in G$, then $G^{\sim}=U_{\chi_{b}^{\beta} G G} \chi_{b}^{\beta}=\mathcal{B}=\left(B_{1}, B, \bar{B}\left(M_{A}, 0\right), L_{A}\right), \bar{B}=M_{A}$ implying
$\left(\mathrm{G}^{\sim}\right)^{\mathrm{C}_{\mathcal{A}}}=\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mathrm{M}_{\mathrm{A}}, \mathrm{M}_{\mathrm{A}}\right), \mathrm{L}_{\mathrm{A}}\right), \overline{\mathrm{D}}=0$
That is, $\left(\mathrm{G}^{\sim}\right)^{\mathrm{C}_{\mathcal{A}}}=\Phi_{\mathcal{A}} \subseteq\left(\mathrm{G}^{c}\right)^{\sim}$
If $\chi_{\mathrm{b}}^{\mathrm{M}_{\mathrm{A}}} \notin \mathrm{G}$ then $\chi_{\mathrm{b}}^{\mathrm{M}_{\mathrm{A}}} \in \mathrm{G}^{\mathrm{c}}$ implying $\left(\mathrm{G}^{\mathrm{c}}\right)^{\sim}=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mathrm{M}_{\mathrm{A}}, 0\right), \mathrm{L}_{\mathrm{A}}\right)$
That is, $\left(\mathrm{G}^{\mathrm{c}}\right)^{\sim}=\mathcal{A} \supseteq\left(\mathrm{G}^{\sim}\right)^{\mathrm{C}_{\mathcal{A}}}$
Hence, whether $\chi_{b}^{M_{A}} \in G$ or $\chi_{b}^{M_{A}} \notin G$, we have

ACKNOWLEDGEMENTS

Nistala V.E.S. Murthy [7] the great teacher is acknowledged.
The first two authors acknowledge GITAM university management for providing facilities to do research.

REFERENCES

[1] Vaddiparthi Yogeswara, G.Srinivas and Biswajit Rath ,A Theory of Fs-sets, Fs-Complements and Fs-De Morgan Laws, IJARCS, Vol- 4, No. 10, Sep-Oct 2013
[2] Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy, A Study of Fs-Functions and Properties of Images of Fs-Subsets Under Various Fs-Functions. MS-IRJ, Vol-3,Issue-1
[3] Vaddiparthi Yogeswara, Biswajit Rath, A Study of Fs-Functions and Study of Images of FsSubsets In The Light Of Refined Definition Of Images Under Various Fs-Functions. IJATCSE, Vol3, No.3, Pages : 06-14 (2014) Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore
[4] Vaddiparthi Yogeswara, Biswajit Rath, Generalized Definition of Image of an Fs-Subset under an Fs-function- Resultant Properties of Images Mathematical Sciences International Research Journal,2015,Volume -4, Spl Issue, 40-56
[5] Vaddiparthi Yogeswara, Biswajit Rath, , Ch.Ramasanyasi Rao , Fs-Sets and Infinite Distributive Laws Mathematical Sciences International Research Journal, 2015 ,Volume-4 Issue-2, Page No-251-256
[6] Vaddiparthi Yogeswara , Biswajit Rath, Ch.Ramasanyasi Rao, K.V.Umakameswari, D. Raghu Ram Fs-Sets and Theory of FsB-Topology Mathematical Sciences International Research Journal, 2016 ,Volume-5,Issue-1, Page No-113-118
[7] Nistala V.E.S. Murthy, Is the Axiom of Choice True for Fuzzy Sets?, JFM, Vol 5(3),P495-523, 1997, U.S.A
[8] Nistala V.E.S Murthy and Vaddiparthi Yogeswara, A Representation Theorem for Fuzzy Subsystems of A Fuzzy Partial Algebra, Fuzzy Sets and System, Vol 104,P359-
371,1999,HOLLAND
[9] Nistala V.E.S. Murthy, f-Topological Spaces Proceedings of The National Seminar on Topology, Category Theory and their applications to Computer Science, P89-119, March 11-13, 2004, Department of Mathematics, St Joseph's College, Irinjalaguda, Kerala (organized by the Kerala Mathematical Society. Invited Talk).
[10] J.A.Goguen ,L-Fuzzy Sets, JMAA,Vol.18, P145-174,1967
[11] Steven Givant • Paul Halmos, Introduction to Boolean algebras, Springer
[12] Szasz, G., An Introduction to Lattice Theory, Academic Press, New York.
[13] Garret Birkhoff, Lattice Theory, American Mathematical Society Colloquium publications Volume-xxv
[14] Thomas Jech, Set Theory, The Third Millennium Edition revised and expanded, Springer
[15] George J. Klir and Bo Yuan ,Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh ,Advances in Fuzzy Systems-Applications and Theory Vol-6,World Scientific
[16] James Dugundji, Topology, Universal Book Stall, Delhi.
[17] L.Zadeh, Fuzzy Sets, Information and Control,Vol.8,P338-353,1965
[18] U.Höhle, S.E.Rodabaugh, Mathematics of fuzzy Sets Logic, topology, and measure Theory, Kluwer Academic Publishers, Boston

