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ABSTRACT 

This paper first applies genetic algorithms to optimally design reinforced concrete isolated footings 
subjected to concentric loading. Based on the ACI Building Code, constraints are built by considering wide-
beam and punching shears, bending moment, allowable soil pressure, the development length for 
deformed bars and clear distance between deformed bars. Design variables consist of the width, length 
and thickness of the footing and the number of bars in the long and short directions, all of which are 
discrete. The objective function is to minimize the cost of steel and concrete in the footing. There are 
totally 144 cases of reinforced concrete isolated footings considered. The optimal results are randomly 
divided into three groups for the use of neural networks: training data, validation data and testing data. 
Two kinds of artificial neural networks are employed in this paper: two-layer feedforward 
backpropagation networks and radial basis networks. Linear regression analysis between the network 
outputs and targets of the testing data is performed to judge the accuracy of the neural networks. 
Numerical results show that the feedforward backpropagation network is very effective and has high 
accuracy with the correlation coefficients and the slope of the regression line being close to one and the 
y-intercept close to zero. Besides, it is better than the radial basis networks and needs much fewer 
neurons in the hidden layer.  

Keywords: Reinforced Concrete Isolated Footings; Genetic Algorithms; Feedforward Backpropagation 
Networks; Radial Basis Networks.  

1 Introduction 
Genetic algorithms are a heuristic search that is based on natural selection and natural genetics. It was 
inspired by the evolution theory of “survival of the fittest,” which can solve both constrained and 
unconstrained optimization problems according to the “natural selection.” The constraints used in genetic 
algorithms can be in the form of linear equality or inequality with bounds on the optimization variables. 
The concept of genetic algorithms was formally introduced in 1970s by Professor John Holland at the 
University of Michigan, who in 1975 published the ground-breaking book “Adaptation in Natural and 
Artificial System” [1] that led to many important discoveries. In 1989, Goldberg described in more detail 
the theory of genetic algorithms and its applications [2]. From then on, the continuing price/performance 
improvements of computational systems have made genetic algorithms more attractive and popular. 
Genetic algorithms have successfully been applied to many fields like engineering, economics, chemistry, 
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manufacturing, mathematics, physics and so on. In the civil engineering, there are a lot of applications, 
such as optimal design of reinforced concrete beams [3], optimal design of planar and space structures 
[4], multiobjective optimization of trusses [5], reliability analysis of structures [6], global optimization of 
grillages [7], global optimization of trusses with a modified genetic algorithm [8], optimization of pile 
groups using hybrid genetic algorithms [9] and optimization of grid shell topology and nodal positions 
[10].  

Artificial neural networks are a computational tool based on the properties of biological neural systems, 
which have been considered to be simplified models of neural processing in the brain. The artificial neural 
network was originated by McCulloch and Pitts in 1943 [11], who claimed that neurons with binary inputs 
and a step-threshold activation function were analogous to first order systems. In 1986, Rumelhart et al. 
[12] proposed the theory of parallel distributed processing and developed the most famous learning 
algorithm in ANN-backpropagation, which uses a gradient descent technique to propagate error through 
a network to adjust the weights in an attempt to reach the global error minimum, marking a milestone in 
the current artificial neural networks. Since then, a huge proliferation in the ANN methodologies has been 
taking place. In particular there are many applications to the civil engineering, such as structural 
optimization [13-15], damage identification of structural elements [16], frame optimization [17], traffic 
sign classification [18], optimal design of continuous reinforced concrete beams [19], etc.   

Owning to the abilities of genetic algorithms to deal with highly nonlinear constraints and neural networks 
to build very complicated nonlinear relationships between inputs and outputs, this paper combines these 
two techniques to optimally design the reinforced concrete isolated footings. Based on the provisions of 
the ACI Building Code Requirements for Structural Concrete and Commentary [20], the constraints of 
genetic algorithms are constructed, considering the wide-beam and punching shears, bending moment, 
allowable soil pressure and the development length for deformed bars. The design variables are the 
effective depth, width and length of the footing, the areas of bending reinforcements in the long and short 
directions; the object is to find the minimum cost of concrete and steel. 

2 Discrete Optimization  
Most optimization approaches were focused on and developed for continuous variables. However, the 
variables are usually discreet for design problems. Genetic algorithms are simple and extremely capable 
in solving discrete optimization problems. Hence, this paper adopts genetic algorithms provided by the 
MATLAB Global Optimization Toolbox [21] to optimally design reinforced concrete beams with discrete 
variables. There are three major components in the operation of genetic algorithms: (1) creating a random 
initial population of designs (individuals); (2) combining the individuals in the population in order to 
produce better individuals; (3) obtaining a new generation of designs and going to the next step. Each 
individual is real-coded in this paper, which is composed of the design variables. To create the new 
population, the algorithms performs the following steps: (1) Score each individual of the current 
population by computing its fitness value; (2) Scale the raw fitness scores to convert them into a more 
usable range of values; (3) Select individuals, called parents, based on their fitness. The lower the value of 
the fitness function, the more opportunity it has to be selected; (4) Choose some elites from the current 
population that have lower fitness function values. These elite individuals are just passed to the next 
population; (5) Produce children from the parents. Children are produced either by making random 
changes to a single parent—mutation—or by combining the vector entries of a pair of parents—crossover; 
(6) Replace the current population with the crossover and mutation children and elites to form the next 
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generation. The algorithm stops when one of the stopping criteria is met, such as the number of 
generation, the weighted average change in the fitness function value over some generations less than a 
specified tolerance, no improvement in the best fitness value for an interval of time, etc.  

The optimization problem of the reinforced concrete isolated footing is constituted as follows:  

Minimize the fitness function f(x)  

such that 

Ci(x)≤0,  i=1,…, m 

Ci(x)=0,  i=m+1,…, mt                                                                      (1) 

LB≤x≤UB 

where Ci(x) represents the nonlinear inequality and equality constraints, m is the number of nonlinear 
inequality constraints, mt is the number of nonlinear constraints, f(x) is the total cost of concrete and 
tension steels, and LB and UB are the vectors of lower and upper bounds of design variables, respectively. 
The Global Optimization Toolbox based on MATLAB uses the augmented Lagrangian genetic algorithm 
[22, 23] to solve nonlinear constraint problems with bounds. A subproblem is formulated by combining 
the fitness function and nonlinear constraint functions using the Lagrangian and the penalty parameters. 
A sequence of such optimization problems are approximately minimized using the genetic algorithm such 
that the bounds are satisfied. A subproblem formulation is defined as 
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where the components λi of the vector λ are nonnegative and known as Lagrange multiplier estimates. 
The elements si of the vector s are nonnegative shifts, and ρ is the positive penalty parameter. The 
algorithm begins by using initial values for the parameters. Parameters si and λi are updated based on the 
value of Ci(x). The genetic algorithm minimizes a sequence of the subproblem, which is an approximation 
of the original problem. When the subproblem is minimized to a required accuracy, the Lagrangian 
multiplier estimates are updated, or the penalty parameter is increased by a penalty factor. These steps 
are repeated until the stopping criteria of the genetic algorithm are met.  

3 Artificial Intelligence 
An artificial neural network is an analytical system that addresses problems without explicit solutions or 
whose solutions are very difficult to explicitly formulate. The neural network is composed of some 
computational units, called neurons, which are highly interconnected. Every interconnection has strength, 
called weight, which is represented by a number. The basic capability of neural networks is to learn 
patterns from a large number of examples by adjusting the weights of each neuron. The learning can be 
supervised or unsupervised. In this paper, the Neural Network Toolbox based on MATLAB is employed 
[24] and two kinds of artificial neural networks are used: the feedforward backpropagation and the radial 
basis. Both of them are supervised neural networks, which are briefly illustrated as follows. 
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3.1 The Feedforward Backpropagation Network 
The most commonly used neural network is the feedforward neural network with the backpropagation 
learning algorithm. The network discussed in this paper has two layers: one hidden layer and one output 
layer, whose structure is shown in Figure 1. The transfer function of the single hidden layer is the tan-
sigmoid function defined by  
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where k is the number of the artificial neurons, ni=wi1P1+ wi2P2+…+wiRPR+ bi, P1, P2,…PR are the inputs, R is 
the number of input elements, wi1 , wi2 ,…, wiR  are the weights connecting the input vector and the ith 
neuron, and bi is the bias of the ith neuron in the hidden layer. The output  

 

 

 

 

 

 

 

 

 

Figure 1 Two-layer feedforward backpropagation neural network with multiple outputs. 

layer uses the linear transfer function defined by  

qiNNfQ iii ,...,2,1,)( ===                                                       (4) 

where Ni=Wi1a1+ Wi2a2+……+Wikak+ Bi, Wi1,Wi2,…,Wis are the weights connecting the neurons of the hidden 
layer and the ith neuron of the output layer, and Bi is the bias of the ith output neuron. 

There are many variations of the backpropagation algorithm aiming to minimize the network performance 
function, i.e., the mean square error between the network outputs and the targets defined by 
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where tj and aj are the jth target and network output, respectively. Among many training functions, the 
Levenberg-Marquardt algorithm [25, 26] was chosen to minimize the network performance function. The 
formula to update the weights and biases is given by  

    eJIJJXX TT
k1k [ 1]−+ µ+−=                                                              (6) 
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where Xk is a vector of current weights and biases, J is the Jacobian matrix of the first derivative of the 
error vector e between the network outputs and target outputs with respect to the weights and biases, I 
is a unit matrix and µ is a parameter. If µ→0, Eq. (6) can be simplified as   

    eJHXeJJJXX T
k

TT
k1k [ 11] −−

+ −≈−=                                                        (7) 

which is the quasi-Newton’s method with the approximate Hessian matrix H [33]; if µ→∞, Eq. (6) turns 
out to be  

    eJXX T
k1k

1−
+ µ−=                                                                         (8) 

which is the gradient descent method with the learning rate µ-1 [24]. Therefore, this algorithm interpolates 
between the quasi-Newton’s algorithm and the gradient descent method. If a tentative step increases the 
performance function, the parameter µ will be increased, causing this algorithm to act like the gradient 
descent method, while it shifts toward Newton’s method if the reduction of the performance function is 
successful, i.e., the parameter µ will be decreased. In this way, the performance function will always be 
reduced at each iteration of the algorithm. To improve the network generalization, the error on the 
validation set is monitored simultaneously during the training process. When the network begins to 
overfit the training data, the error on the validation set typically begins to rise. Once the validation error 
increases for a specified number of iterations (The default value set by MATLAB is six), the training 
terminates and the weights and biases at the minimum of validation error are returned.  

The number of neurons required in the hidden layer is usually unknown beforehand. Bayesian 
regularization [27] provides a measure of how many network parameters (weights and biases) are being 
effectively used by the network. According to this effective number of parameters, the number of neurons 
required in the hidden layer of the two-layer neural network can be estimated by the following equation 

      (Rk+k)+(kq+q)= Num                                                                        (9) 

where R and q are the number of elements in the input and output vectors, respectively, k is the number 
of neurons to be determined in the hidden layer, and Num is the effective number of parameters found 
by the Bayesian regularization implemented by the function trainbr in MATLAB. 

3.2 The Radial Basis Network 
For comparison with the feedforward backpropagation network, this paper uses another network, the 
radial basis network that has two layers: the radial basis layer and output layer. The transfer function in 
the artificial radial basis neuron is the radial basis function defined by 

      
2

)( nenradbasa −==                                                                    (10) 

as shown in Figure 2, where n=
bPw −

is the vector distance (Euclidean distance) between the weight 
vector w and the input vector P multiplied by the bias b. As the distance between w and P decreases, the 
output increases. Thus the radial basis function acts as a detector that produces 1.0 whenever the input 
is identical to the weight vector. Each bias in the radial basis layer is set to be 0.8326/SPREAD, which 

causes radial basis function to output 0.5 when 
Pw −

= +/- SPREAD. The larger the constant SPREAD is, 
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the smoother the radial basis function will be. The constant needs to be large enough so that several radial 
basis neurons respond to overlapping region of the input space and have fairly large output at any given 
instant, but not so large that all the neurons respond in essentially same manner [24]. Different SPREADs 
are usually tried to find the best value for a given problem. There are two functions in MATLAB to design 
the radial basis network: newrb and newrbe.  

 

Figure 2 Radial basis function 

3.2.1 The Design Function newrb  

The function newrb iteratively creates one radial basis neuron at a time. At each iteration, the input vector 
that results in lowering the network error is used to create a radial basis neuron. Neurons are added to 
the network until the sum-squared error falls beneath an error goal or maximum number of neurons has 
been reached.  

3.2.2 The Design Function newrbe 

The function newrbe can produces a network with zero error on the training vectors. It creates as many 
radial basis neurons as there are input vectors, and each neuron acts as detector for a different input 
vector. The drawback to newrbe is that it produces a network with as many hidden neurons as there are 
input vectors. For this reason, it does not return an acceptable solution when many input vectors are 
needed to properly define a network, as is typically the case.  

To make the above-mentioned neural networks more efficient, it is often useful to scale inputs and targets 
so that they will always fall within a specific range. For example, the following formula  

1)(2 −
−

−
=

minmax
minxy                                                                         (11) 

is used in this paper to scale inputs and targets, where x is the original value, y is the scaled value, and 
max and min are the maximum and minimum of inputs or targets, respectively. Eq. (11) produces inputs 
and targets in the range [-1, 1]. To evaluate the performance of the trained network, this paper makes 
use of a regression analysis between the network outputs and the corresponding targets.  

4 Design of Reinforced Concrete Isolated Footings 
The reinforced concrete isolated footings considered in this paper are loaded concentrically, as shown in 
Figure 3, with width B, length L and thickness h. The dead and live loads transmitted by the column are 
denoted by PD and PL, respectively. The column size is a×b. A variety of reinforced concrete isolated 
footings are optimally designed by the genetic algorithm. The objective function is to minimize the total 
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cost of the concrete and the tension reinforcements in the long and short directions of the rectangular 
isolated footing. All the constraints required to design the isolated footing comply with the ultimate-
strength design of ACI 318-08 Code, considering wide-beam and punching shears, bending moment and 
the development length for deformed bars. The units of force and length in the following formulas are kgf 
(=9.81N) and cm, respectively. 

4.1 Shear 
The shear strength of the isolated footing in the vicinity of column reactions is governed by the more 
severe of the following two conditions: 

 
(a)                                     (b) 

Figure 3 The isolated footing: (a) elevation and (b) plan. 

4.1.1 Wide-beam Shear 

The critical section is assumed to extend in a plane across the entire width and lies at a distance d from 
the face of the column, as shown in Figure 4(a). The nominal shear strength of this section is                   

BdfV cc ′= 53.01                                                                             (12)  

or  

       LdfV cc ′= 53.02                                                                             (13) 

where d is the effective depth of the footing. The constraints for wide-beam shear are  

11 )
2

( cuu VBdaLqV φ≤−
−

=                                                                (14) 

and 

22 )
2

( cuu VLdbBqV φ≤−
−

=                                                             (15) 

where qu = (1.2PD+1.6PL)/(BL) is the factored net soil pressure and φ =0.75 is the strength reduction factor 
for shear.      
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4.1.2 Punching Shear 

The critical section occurs at a distance d/2 from the face of the column, as shown in Figure 4 (b). The 
maximum allowable nominal shear strength is the smallest of the following three equations 

dbfV
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where βc = long side a/short b of the column, b0 = perimeter of the critical section ijkl and αs = 40, 30 and 
20 for interior, edge and corner columns, respectively. In this paper, interior columns are considered; 
therefore, αs = 40. Similarly, the constraint for the punching shear is 

       min,)])(([ cuu VdbdaBLqV φ≤++−=                                                      (17) 

where Vc,min is the smallest of Eqs. (16). The area to be considered for factored shear Vu is equal to the 
total area of the footing less the area ijkl. 

 
(a) 

 
(b) 

Figure 4 Critical sections: (a) wide-beam shear and (b) punching shear 

4.2 Bending Moment 
Let Ab be the cross-sectional area of the reinforcement steel and NL and NB be the number of steels in the 
long and short directions of the footing, respectively. The critical section for bending moment is at the 
face of the column and the constraints are  
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where φmL and φmB are the strength reduction factor for moment. Let εt be the tensile strain of the 
reinforcement, then  
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To prevent sudden failure with little or no warning when the beam cracks or fails in a brittle manner, the 
ACI code limits the minimum and maximum amount of steel to be 
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where β is the stress block depth factor,   
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The formula for AsL,max in Eq. (21) or AsB,max in Eq. (22) is derived based on the requirement that the tensile 
strain must be greater than or equal to 0.004. In addition, both the steel ratios NLAb/(Bh) and NBAb /(Lh) 
must exceed the minimum value required for temperature and shrinkage: 0.0018 for grade 60 deformed 
bars and 0.002 for grade 40 or 50 deformed bars.  

4.3 Allowable Soil Pressure 
Suppose that the allowable soil pressure under the base of the footing is qa. The gross soil pressure must 
not exceed the allowable soil pressure, that is,  

  afsc
LD qhDhw

BL
PP

≤−γ++
+ )(                                                          (25) 

where Df is the distance from the base to the ground surface, as shown in Figure 3, wc is the weight of 
concrete and γs is the unit weight of soil over the footing. 

4.4 Development of Reinforcement 
According to the ACI Code, the equation for the development length of bars in tension is  

c

etyb
d f

fd
′

λψψ
=

15.0
                                                                         (26) 

for No. 6 and smaller bars with clear spacing not less than 2db and clear cover not less than db , where db is 
the bar diameter, and ψt and ψe are the bar location and coating factors, respectively.  In this paper ψt and 
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ψe are assumed to be 1.0. For normal weight concrete, λ=1. The critical section for development-length 
of the bars in tension is the same as the critical section in flexure, that is, at the face of the column. Hence,  

       0.5(L-a) - concrete cover ≥ d                                                             (27) 

and 

       0.5(B-b) - concrete cover ≥ d                                                           (28) 

The equation for the development length of bars in compression is  

        )0043.0,
075.0

(max yb
c

yb
dc fd

f
fd

′
=                                                    (29) 

The dowel bars stressed to fy are required to transfer the axial compression force in the column into the 
footing, as shown in Figure 5; hence, there should be minimum extension of the dowels  

 

Figure 5 Dowels that transfer the column load to the footing slab.into the footing. Therefore, the thickness h 
of the footing must satisfy the following constraints: 

 h – concrete cover - 2db (footing bars) - db (dowels)   ≥ dc                              (30)  

4.5 Reinforcement Distribution and Clear Distance 
In the short direction of the footing, a central band of width B shall contain the major portion of flexural 
reinforcement according to the formula 2NB/(L/B+1) but rounded up to the nearest integer and uniformly 
distributed along the band width. The remainder is also uniformly distributed outside the central band. 
The reinforcement in the long direction is uniformly distributed across the entire width of the footing. The 
clear distance s between individual steel bars both in the long and short directions must satisfy  

  )5.2,2()45,3( cmdMaxscmhMin b≥≥                                             (31) 

5 Numerical Results 
The given design conditions for the isolated footing are as follows: the concentric dead load PD, the live 
load PL applied to the column, the allowable soil pressure qa at the base of the footing, the distance from 
the footing bottom to the ground surface Df, the compressive strength of concrete cf ′ , and the yield stress 

of steel fy. In addition, the column size is assumed to be 0.45 m×0.45 m, the unit weight of soil over the 
footing is 2000 kgf/m3, and the unit weight of concrete is 2400 kgf/m3. In Taiwan, the unit prices of 
concrete and steel are 1900 NT$/m3 and 18.4 NT$/kgf, respectively. The concrete cover for the 
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reinforcement of the footing is assumed to be 7.5 cm. The optimal results obtained from genetic 
algorithms consist of the minimum cost of the footing, the thickness h, width B and length L of the footing, 
and the number of steel bars in the long and short directions, NL and NB, respectively. Based on the often-
used materials and customs in Taiwan, this paper selects two kinds of yield strength fy of the tension 
reinforcement: 2800 kgf/cm2 (40 ksi) and 4200 kgf/cm2 (60 ksi) as well as two kinds of compressive 
strength f′c of the concrete: 210 kgf/cm2 (3000 psi) and 280 kgf/cm2 (4000 psi). There are three kinds of 
qa: 25 ton/m2, 30 ton/m2 and 35 ton/m2; three kinds of Df: 1.0 m, 1.5 m and 2.0 m; four kinds of dead load 
PD: 60 ton, 80 ton, 100 ton and 120 ton as well as four kinds of PL: 40 ton, 60 ton, 80 ton and 100 ton. 
There are totally144 kinds of footings being designed depending on the combination of the six given 
conditions. For the purpose of training, monitoring and testing the neural networks, the optimal data are 
divided into 3 groups: 100 training sets (70%), 22 validation sets (15%) and 22 testing sets (15%). The 
fitness function is the total cost in New Taiwan Dollars of the footing reinforcement and concrete. All the 
constraints are built according to the formulas discussed in Sec. 4.  

5.1 Genetic Algorithms 
This paper adopts the MATLAB global optimization toolbox to carry out genetic algorithms. To run genetic 
algorithms of the MATLAB software, some parameters need to be selected beforehand. After a number 
of trials, here are the values used in this paper: The population size is set to be 100, crossover rate 0.8, 
and elite number 6. Furthermore, all the individuals are encoded as integers; “Rank” is used as the scaling 
function that scales the fitness values based on the rank of each individual; “Roulette” is the selection 
function to choose parents for the next generation; “Two-point crossover” is used as the crossover 
method to form a new child for the next generation; The “Adaptive Feasible Function” is chosen as the 
mutation function to make small random changes in the individuals and ensure that linear constraints and 
bounds are satisfied. The steel bars used in the footing can usually range from No. 5 to No. 10. In order to 
decide the appropriate size of steel bars to be used in this paper, different sizes of reinforcement bars are 
tried for a variety of random combinations of fy, cf ′ , PD, PL, qa and Df. The results show that No. 5 bars 

always lead to the minimum cost. Therefore, No. 5 steel bars are used in each direction of the footing and 
as dowels that transfer the column load to the footing slab. Taken as an example, Table 1 shows the results 
for the case of fy =2800 kgf/cm2, cf ′ =210 kgf/cm2, PD = 120 ton, PL= 100 ton, qa =35 ton/m2 and Df =1 m.  

Table 1 The optimal results for different sizes of reinforcement bars for the case of fy =2800 kgf/cm2, cf ′ =210 
kgf/cm2, PD = 120 ton, PL= 100 ton, qa =35 ton/m2 and Df =1 m.  

Size of bars h(m) B (m) L(m) NB NL cost(NT$103) 

5 0.65 2.27 2.96 42 32 14.343 

6 0.66 2.31 2.91 29 23 14.573 

7 0.66 2.31 2.91 22 17 14.624 

8 0.66 2.27 2.96 17 13 14.655 

9 0.67 2.27 2.96 13 10 14.683 

10 0.67 2.47 2.82 10 9 15.383 
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5.2 Feedforward Backpropagation Networks 

The inputs of the artificial neural network consist of six elements: fy, f′c, PD, PL, qa and Df , and the targets 
also have six components: the minimum cost, h, B, L, NB, NL and the cost. To make the network more 
efficient, all the data are normalized by using Eq. (11) or the function mapminmax introduced in the 
MATLAB software for neural network. The function trainbr is first applied to find the number of effective 
parameters required for the network, which is found to be 118.9, as shown in Figure 6; therefore the 
number of neurons required in the hidden layer is 8.685 according to Eq. (9), which is then rounded up to 
9. After the number of neurons needed in the hidden layer is determined, a very efficient training function 
trainlm, i.e., the Levenberg-Marquardt algorithm, is used to train the network. While the network is being 
trained, the training and validation data are both put into the network. During the training process, the 
network error for training data will decrease, while the network error for the validation data decreases 
first but increases later on. To avoid overfitting the data, the training will terminate when the network 
error of the validation data increases continuously for a number of epochs whose default value is six set 
by the MATLAB software. The training process is shown in Figure 7, where there are totally 23 epochs but 
the weights and biases at the epoch 17 are taken as those of the trained network. The value of the 
performance function at the epoch 17 is 0.0019623. After the normalized data are reversed to the original 
scale, the six network outputs and targets for the testing data are presented in Figs. 8-13. The 22 sets of 
testing data containing inputs and targets as well as outputs are shown in Tables 2(a) and 2(b), 
respectively. If more neurons in the hidden layer are used, for example, 12 neurons, the accuracy of the 
network can only improve a little bit, not significantly. Tables 3 shows the linear regression analysis results 
for the testing data when the hidden layer has 9 and 12 neurons, where parameters m, b and r stand for 
the slope of the straight line, the intercept with the vertical axis and correlation coefficient, respectively. 
Table 3 indicates that the networks with 9 neurons and 12 neurons in the hidden layer have almost the 
same accuracy. Based on the Figs. 8-13 and Table 3, the performance of the network is considered quite 
good on the whole, because the parameters m and r are close to one and parameter b also close to zero. 

  

Figure 6 The number of effective parameters in 
the network obtained from the training function 

trainbr 

Figure 7 The training process for the feedforward 
backpropagation neural network with 9 neurons in 

the hidden layer 
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Figure 8 Outputs and targets of the footing thickness 
h for the testing data with 9 neurons in the hidden 
layer of the feedforward backpropagation network 

Figure 9 Outputs and targets of the footing width B 
for the testing data with 9 neurons in the hidden 

layer of the feedforward backpropagation network 

  
Figure 10 Outputs and targets of the footing Length L 

for the testing data with 9 neurons in the hidden layer 
of the feedforward backpropagation network 

Figure 11 Outputs and targets of the number of steel 
bars in the short direction for the testing data with 9 

neurons in the hidden layer of the feedforward 
backpropagation network 

 

 

Figure 12 Outputs and targets of the number of 
steel bars in the long direction for the testing data 

with 9 neurons in the hidden layer of the feedforward 
backpropagation network 

Figure 13 Outputs and targets of the total cost 
for the testing data with 9 neurons in the hidden 

layer of the feedforward backpropagation network. 
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Table 2(a) Inputs and targets of the testing data with 9 neurons in the hidden layer of the feedforward 
backpropagation network.  

 Data 
index  

Inputs Targets 
fy 

(kg/cm2) 
cf ′  

(kg/cm2) 
PD 

(ton) 
PL 

(ton) 
qa 

(ton/m2) 
Df 

(m) 
h 

(cm) 
B 

(cm) 
L 

(cm) 
NB 

 
NL 

 
Cost 

(NT$103) 
1 4200 280 120 100 35 2 61 251 285 25 22 12.585 
2 4200 280 100 80 25 2 56 275 315 25 22 13.972 
3 4200 280 80 60 30 2 48 211 257 17 15 7.478 
4 4200 280 80 60 25 1.5 48 237 271 18 16 8.812 
5 4200 280 80 60 25 1 48 229 268 18 16 8.469 
6 4200 210 100 80 30 2 59 236 296 25 20 11.876 

  7 4200 210 100 80 25 2 60 258 336 29 22 15.000 
8 4200 210 80 60 35 1.5 50 199 224 16 14 6.377 
9 4200 210 80 60 30 1.5 51 209 250 18 15 7.624 

10 4200 210 60 40 35 1.5 47 199 224 15 13 5.982 
11 2800 280 120 100 30 2 62 278 308 41 37 17.397 
12 2800 280 120 100 25 1 62 293 331 44 39 19.723 
13 2800 280 100 80 25 1 55 266 297 35 31 14.189 
14 2800 280 80 60 35 2 47 197 231 22 20 6.897 
15 2800 280 80 60 35 1 47 194 220 22 19 6.476 
16 2800 280 80 60 30 1.5 47 214 244 24 22 7.990 
17 2800 210 120 100 25 1.5 67 302 336 49 44 22.422 
18 2800 210 100 80 30 1.5 59 228 295 37 29 12.957 
19 2800 210 80 60 35 2 50 191 238 25 20 7.333 
20 2800 210 80 60 35 1.5 50 189 233 24 20 7.090 
21 2800 210 80 60 25 1 52 221 278 30 24 10.319 
22 2800 210 60 40 25 1.5 42 200 229 19 17 6.106 

Table 2(b) Network outputs of the testing data with 9 neurons in the hidden layer of the feedforward 
backpropagation network 
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Table 3 The linear regression analysis of targets and outputs for the testing data with 9 and 12 neurons in the 
hidden layer of the feedforward backpropagation network.  

No. of neurons 
in the hidden 

layer 

Outputs 
(targets) m (slope) b (y-intercept) r (correlation 

coefficient) 

9 

h 1.0008 0.0044 0.9975 
b 0.9767 -0.0029 0.9933 
L 1.0168 -0.0069 0.9861 

NB 1.0191 0.0048 0.9973 
NL 0.9825 -0.00001 0.9985 

Cost 1.0031 0.0073 0.9992 

12 

h 0.9755 -0.001 0.9983 
b 0.9687 -0.0001 0.9908 
L 1.0113 0.0089 0.9906 

NB 0.9787 -0.0036 0.9966 
NL 0.9965 -0.0001 0.9986 

Cost 1.0019 0.0025 0.9996 
 

5.3 Radial Basis Networks 
There are two kinds of design functions for the radial basis network: newrb and newrbe. The newrbe 
produces as many number of radial basis neurons as the input vectors; therefore, it has zero error 
between the network output and target, while the newrb creates one neuron at a time until the preset 
mean square error between the network outputs and the targets or the number of epochs are reached. 
Because the radial basis network does not require the validation data, only training and testing data are 
considered. For comparison, these two sets of data are intended to be the same as those of feedward 
backpropagaton with 9 neurons in the hidden layer.    

5.3.1 The Function newrb  

The mean square error between the network outputs and targets is set to be 0.0019623, which is the 
same as the result of the feedforward backpropagation. Let the parameter SPREAD change from 1.0 to 
2.0 and train the network for each case. By observing the regression analysis of the network outputs and 
targets, all of them show very good performance, while the network with SPREAD=1.6 is a little bit better 
than other values; therefore, SPREAD=1.6 is selected for the radial basis layer. From the training process, 
it is found that 44 epochs are required for the mean square error to fall beneath the goal of 0.0019623; 
therefore, 44 radial basis neurons are created for the network. The testing data are then substituted into 
the trained network. The linear regression analysis of the six network outputs and targets is shown in 
Table 4, where the correlation coefficients are between 0.9801 and 0.9939. Tables 3 and 4 indicate that 
the performance of the radial basis network is a little inferior to the feedforward backpropagation 
network.   
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Table 4 The linear regression analysis of the outputs and targets for the testing data using newrb with 
SPREAD=1.6.  

 

5.3.2 The Function newrbe  
The default value for the mean square error is set to be zero. In order to compare with the newrb function, 
let SPREAD =1.6. Because the network can achieve zero error, all the training data will lead to the exactly 
fitting regression model with the parameters m = r = 1 and b = 0. Then, substitute the testing data into 
the trained network. The linear regression analysis of the six network outputs and targets for the testing 
data is shown in Table 5, where the correlation coefficients are between 0.9656 and 0.9983.  

Table 5 The linear regression analysis of the outputs and targets for the testing data using newrbe with 
SPREAD=1.6. 

Outputs 
(Targets)   

 
Parameters 
 

h B L NB NL Cost 

m 1.0406 0.9772 1.1108 1.0522 0.9823 1.0433 
b -0.0042 -0.0073 0.0241 0.0182 -0.013 0.0152 
r 0.9942 0.9819 0.9656 0.9903 0.9944 0.9983 

6 Conclusions 
This paper first applies the genetic algorithm to engage in the optimal design of the reinforced concrete 
isolated footings. There are 144 different isolated footings being designed, the results of which are used 
as the training, validation and testing data of the artificial neural networks. From the numerical results, 
the principal conclusions may be summarized as follows:  

(1) According to the effective number of parameters obtained from the trainbr function, this paper 
only uses 9 neurons in the hidden layer for the feedforward backpropagation network. Even if 
more neurons are used in the hidden layer, the accuracy does not improve significantly. The 
correlation coefficients between the network outputs and targets range from 0.9861 to 0.9992 
for testing data. In addition, the slope of the regression line is close to 1 and the intercept with 
the vertical axis close to zero. The results suggest very good performance of the feedforward 
backpropagation network.  

(2) The parameter SPREAD=1.6 is the most suitable value for the newrb design function of the radial 
basis network. The correlation coefficients between the network outputs and targets range from 
0.9801 to 0.9939 for testing data. On the whole, its performance is a little inferior to the 
feedforward backpropagation network. Besides it needs more radial basis neurons in the hidden 
layer. If the newrbe function is used, the results of the regression analysis are similar to newrb, 
although it can reach zero error during the training process. 

Outputs 
(Targets)   

 
Parameters 
 

h B L NB NL Cost 

m 0.9971 0.9488 1.0194 0.9775 0.9676 0.9747 
b -0.029 -0.0303 -0.0225 -0.0297 -0.0301 -0.0269 
r 0.9913 0.9826 0.9801 0.9899 0.9930 0.9939 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 33 
 



Jiin-Po Yeh and Shu-Yu Yeh; Application of Genetic Algorithms Coupled with Neural Networks to Optimization of 
Reinforced Concrete Footings. Transactions on Machine Learning and Artificial Intelligence, Volume 4 No 4 August 
(2016); pp: 18-35 

 

(3) After the artificial neural network is trained, it can serve as a model to optimally design the 
reinforced concrete isolated footings effectively and efficiently. For practical purposes, the 
outputs of the neural network can be rounded up to the nearest whole number. 
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