
 
 

 

Support Vector Machine Regression and Artificial Neural 
Network for Channel Estimation of LTE Downlink in                 

High-Mobility Environments 
1*Anis Charrada and 2Abdelaziz Samet 

1SERCOM Laboratory, Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia; 
*Tunisian Military Academy, Tunisia; 

2INRS, EMT Center, 800 de la Gauchetière W., Suite 6900, Montreal, QC, H5A 1K6, CANADA; 
anis.charrada@gmail.com 

ABSTRACT   

In this paper we apply and assess the performance of support vector machine regression (SVR) and 
artificial neural network (ANN) channel estimation algorithms to the reference signal structure 
standardized for LTE Downlink system. SVR and ANN where applied to estimate real channel environment 
such as vehicular A channel defined by the International Telecommunications Union (ITU) in the presence 
of nonlinear impulsive noise. The proposed algorithms use the information provided by the received 
reference symbols to estimate the total frequency response of the time variant multipath fading channel 
in two phases. In the first phase, each method learns to adapt to the channel variations, and in the second 
phase it predicts all the channel frequency responses. Finally, in order to evaluate the capabilities of the 
designed channel estimators, we provide performance of SVR and ANN, which is compared with 
traditional Least Squares (LS) and Decision Feedback (DF). The simulation results show that SVR has a 
better accuracy than other estimation techniques. 

Keywords:  Complex SVR; ANN; nonlinear impulsive noise; OFDM and LTE. 

1 Introduction 
The Long Term Evolution (LTE) is a step towards the fourth generation (4G) of mobile radio technologies 
to obtain higher throughput and to increase the spectral efficiency. Fourth-generation broadband wireless 
multiple access systems have data rate specifications on the order of hundreds of Mb/s. For an LTE system 
with 20 MHz bandwidth, the objective is for the Downlink (DL) and Uplink (UL) peak data rates to require 
100 and 50 Mb/s, respectively [1].   

LTE Downlink uses Orthogonal Frequency Division Multiplex Access (OFDMA) radio interface, that is 
support high data rate capabilities and it is more resilient against severe channel conditions. OFDMA 
technique essentially distributes the symbols of a large number of carriers. By implementing this new 
access technique in the context of mobile broadband transmission, new approaches for time and 
frequency equalization, synchronization and channel estimation are needed. 

Because channel estimation is an important concern of LTE DL, some research results have been 
published, including Least Squares (LS) and Minimum Mean Square Error (MMSE)-based techniques such 
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as [2] and [3] where the authors have studied the performance of two linear channel estimators, the Least 
Squares Error (LSE) and the Linear MMSE (LMMSE).  

In LTE with a time variant highly selective multipath fading channel, where complicated nonlinearities can 
be found (the channel variations in time and in frequency domain are nonlinear in addition to the presence 
of impulsive noise), the accuracy of estimation can significantly decrease by applying the linear process.  

ANN can perform complex mapping between its input and output space and are capable of forming 
complex decision regions with nonlinear decision boundaries [4]. Further, these networks of different 
architectures have found successful application in channel estimation problems because of their nonlinear 
characteristics. ANN is proposed as a channel estimator for QPSK and QAM constellation, respectively in 
[5] and [4]. 

In this paper, we designed first a Back Propagation Algorithm BPA-based ANN channel estimation 
technique for LTE-OFDM system over frequency selective multipath fading channel in the presence of 
nonlinear impulsive noise interfering with reference symbols under high mobility conditions. 

In addition, we designed a complex Support Vector Machine Regression (SVR) based on Radial Basis 
Function (RBF) kernel for channel estimation in LTE DL that maps the input vector from a finite-
dimensional space (the input space) to a higher dimensional Hilbert space (can be infinity) which it is 
provided with a dot product. Training SVR approach is used for channel estimation of highly selective 
multipath channels for OFDMA systems where the LS algorithm was applied in the training step as a 
channel estimator: it uses the obtained estimations as a dataset for training. The idea is to exploit the 
information supplied by the pilot symbols in order to estimate the channel frequency response. 

The organization of this paper is as follows. In section 2, description of LTE Downlink system model is 
given. ANN based LTE channel estimator is introduced in section 3. In section 4, a nonlinear channel 
estimator based on the complex SVR is provided. Simulation results are offered in section 5. Finally, 
section 6 concludes the paper. 

2 LTE Downlink System Model 
The LTE DL system is based on the OFDMA air interface transmission scheme. Figure 1 shows the block 
diagram of the baseband equivalent system model. 

Let us consider an LTE Downlink system which comprises  𝑁𝑁  subcarriers, occupying a bandwidth B. The 
corresponding OFDM system consists firstly of mapping binary data streams into complex symbols by 
means of QAM modulation. Then data are transmitted in frames by means of serial-to-parallel conversion. 
Some pilot symbols are inserted into each data frame which is modulated to subcarriers through the 
Inverse Discret Fourier Transform (IDFT). These pilot symbols are inserted for channel estimation 
purposes. The IDFT is used to transform the data sequence 𝑋𝑋(𝑘𝑘) into time domain signal. 

One guard interval (GI) is inserted between every two OFDM symbols in order to eliminate Inter-Symbol 
Interference (ISI). This guard time includes the cyclically extended part of the OFDM symbol in order to 
preserve orthogonality and eliminate Inter-Carrier Interference (ICI). It is well known that if the channel 
impulse response has a maximum of 𝐿𝐿 resolvable paths, then the GI must be at least equal to 𝐿𝐿 [6]. Thus, 
each OFDM symbol is transmitted in time  𝑇𝑇 and includes a cyclic prefix of duration 𝑇𝑇𝑐𝑐𝑐𝑐. Therefore, the 
duration of each OFDM symbol is  𝑇𝑇𝑢𝑢 = 𝑇𝑇 − 𝑇𝑇𝑐𝑐𝑐𝑐. Every two adjacent subcarriers are spaced by 𝛿𝛿𝛿𝛿 = 1/𝑇𝑇𝑢𝑢. 
The output signal of the OFDM system is converted into serial signal by parallel to serial converter. A 
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complex Additive White Gaussian Noise (AWGN) process  𝑁𝑁 �0,𝜎𝜎𝑤𝑤𝑔𝑔
2 � with power spectral density  𝑁𝑁0/2  is 

added through a frequency selective time varying multipath fading channel. 

 

 Figure 1: Block diagram of the baseband equivalent system model. 

In a practical environment, impulsive noise can be present, and then the channel becomes nonlinear with 
non Gaussian impulsive noise. The impulsive noise can significantly influence the performance of the 
OFDM communication system for many reasons. First, the  time  of  the  arrival  of  an  impulse  is 
unpredictable  and  shapes  of  the  impulses  are  unknown  and  they vary considerably. Moreover, 
impulses  usually  have  very  high  amplitude,  and thus high  energy, which  can be much  greater  than 
the energy of the useful  signal [7]. 

The impulsive noise is modeled as a Bernoulli-Gaussian process and it was generated with the Bernoulli-
Gaussian process function  𝑖𝑖(𝑛𝑛) = 𝑣𝑣(𝑛𝑛) 𝜆𝜆(𝑛𝑛)  where  𝑣𝑣(𝑛𝑛) is a random process with Gaussian distribution 
and power 𝜎𝜎𝐵𝐵𝐵𝐵2 , and 𝜆𝜆(𝑛𝑛) is a random process with probability [8] 

                                              𝑃𝑃𝑟𝑟( 𝜆𝜆 (𝑛𝑛) ) = �𝑝𝑝               𝜆𝜆 = 1
1 − 𝑝𝑝,      𝜆𝜆 = 0.                                                                          (1) 

At the receiver side, and after removing guard time, the discrete-time baseband OFDM signal can be 
expressed as 

                 𝑦𝑦(𝑛𝑛)   = � 𝑋𝑋𝑃𝑃(𝑘𝑘)𝐻𝐻(𝑘𝑘)𝑒𝑒𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑘𝑘

𝑘𝑘∈{Ω𝑃𝑃}

+ � 𝑋𝑋𝐷𝐷(𝑘𝑘)𝐻𝐻(𝑘𝑘)𝑒𝑒𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑘𝑘

𝑘𝑘∉{Ω𝑃𝑃}

+ 𝑤𝑤𝑔𝑔(𝑛𝑛) + 𝑖𝑖(𝑛𝑛)                (2) 

where Ω𝑃𝑃 the subset of 𝑁𝑁𝑃𝑃  pilot subcarriers, 𝑋𝑋𝑃𝑃(𝑘𝑘) and  𝑋𝑋𝐷𝐷(𝑘𝑘) are complex pilot and data symbol 
respectively, transmitted at the 𝑘𝑘𝑡𝑡ℎ frequency and 𝐻𝐻(𝑘𝑘) = 𝐷𝐷𝐷𝐷𝑇𝑇𝑁𝑁{ℎ(𝑛𝑛)}  is the channel's frequency 
response at the 𝑘𝑘𝑡𝑡ℎ subcarrier. Note that, pilot insertion in the subcarriers of every OFDM symbol must 
satisfy the demand of the sampling theory and uniform distribution [9].  

Assuming that ISI are eliminated after DFT transformation, therefore 𝑦𝑦(𝑛𝑛) becomes 

             𝑌𝑌(𝑘𝑘) = 𝑋𝑋(𝑘𝑘)𝐻𝐻(𝑘𝑘) + 𝑊𝑊𝐵𝐵(𝑘𝑘) + 𝐼𝐼(𝑘𝑘) = 𝑋𝑋(𝑘𝑘)𝐻𝐻(𝑘𝑘) + 𝑒𝑒(𝑘𝑘),     𝑘𝑘 = 0,⋯ ,𝑁𝑁 − 1                     (3) 

where  𝑒𝑒(𝑘𝑘) is the residual noise which represents the sum of the AWGN noise  𝑊𝑊𝐵𝐵(𝑘𝑘) and impulsive 
noise  𝐼𝐼(𝑘𝑘)  in the frequency domain, respectively. 

Equation (3) may be presented in matrix notation as follows: 

                                                            𝑌𝑌 = 𝑿𝑿𝑿𝑿ℎ + 𝑊𝑊 + 𝐼𝐼 = 𝑿𝑿𝐻𝐻 + 𝑒𝑒                                                             (4) 
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where   

𝑿𝑿 =  𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝑋𝑋(0),𝑋𝑋(1),⋯ ,𝑋𝑋(𝑁𝑁 − 1)� 

𝑌𝑌 =  [𝑌𝑌(0),⋯ ,𝑌𝑌(𝑁𝑁 − 1)]𝑇𝑇                    

                                                        𝑊𝑊𝐵𝐵  =  [𝑊𝑊𝐵𝐵(0),⋯ ,𝑊𝑊𝐵𝐵(𝑁𝑁 − 1)]𝑇𝑇                   

  𝐼𝐼 =  [𝐼𝐼(0),⋯ , 𝐼𝐼(𝑁𝑁 − 1)]𝑇𝑇                       

 𝐻𝐻 =  [𝐻𝐻(0),⋯ ,𝐻𝐻(𝑁𝑁 − 1)]𝑇𝑇                    

       𝑒𝑒 =  [𝑒𝑒(0),⋯ , 𝑒𝑒(𝑁𝑁 − 1)]𝑇𝑇                           

𝑿𝑿 = �
𝐷𝐷𝑁𝑁00 ⋯ 𝐷𝐷𝑁𝑁

0(𝑁𝑁−1)

⋮ ⋱ ⋮
𝐷𝐷𝑁𝑁

(𝑁𝑁−1)0 ⋯ 𝐷𝐷𝑁𝑁
(𝑁𝑁−1)(𝑁𝑁−1)

� 

and                                               𝐷𝐷𝑁𝑁
𝑖𝑖,𝑘𝑘 = � 1

√𝑁𝑁
� 𝑒𝑒𝑒𝑒𝑝𝑝−𝑗𝑗2𝜋𝜋�

𝑖𝑖𝑖𝑖
𝑁𝑁�.                                                                              (5)  

3 ANN Estimation 
Artificial Neural Networks (ANN) are one of the widespread branches of artificial intelligence. They have 
very simple neuron-like processing elements (called artificial neurons or nodes) connected to each other 
by weighting. The weights on each connection can be dynamically adjusted until the desired output is 
generated for a given input. An artificial neuron model consists of a linear combination followed by an 
activation function. Different types of activation functions can be utilized for the network; nevertheless, 
the common ones, which are sufficient for most applications, are the sigmoid and hyperbolic tangent 
functions [10]. 

In the input and hidden layers, neural networks contain neurons with nonlinear activation functions, 
whereas in the output layer, neural networks contain neurons with linear activation functions. ANN has 
multi-layer perceptron (MLP) structure, which uses forward propagation neural network. Various training 
algorithms exist for MLP. In this work, we used the Scaled Conjugate Gradient Backpropagation (SCG) 
algorithm which is based on the conjugate directions. Block diagram of the proposed ANN based 
technique is shown in Figure 2.  

The estimator uses the information provided by the reference symbols to estimate the total channel 
frequency response. At the beginning of the estimation process, the complex signal is split into two parts: 
real and imaginary. These parts are normalized between -1 and +1 before training.  
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 Figure 2: ANN channel estimation trained by Back-Propagation Algorithm. 

The adopted architecture of neural network is chosen after multiple tests of convergence by minimizing 
the learning time and keeping low implementation complexity.   

The output of a single neuron is given by the following equation:   

                                                                       �̂�𝐴𝑗𝑗 = 𝛿𝛿 � � 𝑤𝑤𝑗𝑗,𝑖𝑖

2𝑁𝑁𝑃𝑃−1

𝑖𝑖=0

𝑃𝑃𝑖𝑖 + 𝑏𝑏𝑗𝑗�                                                   (6)  

where,  �̂�𝐴𝑗𝑗 is the neuron output in the range of (0 ≤ 𝑗𝑗 ≤ 2𝑁𝑁 − 1) since there are 𝑁𝑁  real part and 𝑁𝑁  
imaginary part of �̂�𝐴𝑗𝑗, 𝑤𝑤𝑗𝑗,𝑖𝑖 is a value of the synaptic weight connecting the stimulus 𝑖𝑖 to the neuron 𝑗𝑗,  𝑃𝑃𝑖𝑖, 
is the input stimulus, 𝑏𝑏𝑗𝑗 is the bias of neuron 𝑗𝑗, and 𝛿𝛿 is the neuron  output sigmoid function. The weights 
𝑤𝑤𝑗𝑗,𝑖𝑖 are updated with the SCG backpropagation algorithm.  

The estimator training operation consists of changing the values of interconnection weights using learning 
algorithms for obtaining the desired performance. The learning algorithm in our neural network is the 
efficient gradient back propagation based on the minimization of the average square error (for all 2 𝑁𝑁 
output neurons) expressed as 

                                                                       𝑒𝑒 =
1
𝑁𝑁𝑙𝑙

� � �𝑒𝑒𝑗𝑗𝑙𝑙�
2

 2𝑁𝑁 −1

𝑗𝑗=0

𝑁𝑁𝑙𝑙−1

𝑙𝑙=0

                                                        (7) 

where 𝑒𝑒𝑗𝑗𝑙𝑙 represents the error on the  𝑗𝑗𝑡𝑡ℎ neuron output from the  𝑙𝑙𝑡𝑡ℎ example of training set. 

After completing the training phase, the network uses the input data from the pilot channels to estimate 
all the data channels. Subsequently, the equalization is followed by a decision estimate of the OFDMA 
symbols. For a single training operation, the neural network estimates a large number of OFDM symbols 
corresponding to several radio frames LTE. 

4 Complex SVR estimation 
First, let the OFDM frame contains 𝑁𝑁𝑁𝑁 OFDM symbols which every symbol includes 𝑁𝑁  subcarriers. Then, 
we exploit the index of the pilots in the OFDM symbols in order to estimate the channel frequency 
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responses at these positions. The transmitting pilot symbols are   𝑿𝑿𝑃𝑃 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑋𝑋 (𝑖𝑖,𝑚𝑚 ∆𝑃𝑃)),𝑚𝑚 =
0,1,⋯ ,𝑁𝑁𝑃𝑃 − 1, where  𝑖𝑖  and  𝑚𝑚  are labels in time domain and frequency domain respectively, and ∆𝑃𝑃 is 
the pilot interval in frequency domain.  

The proposed channel estimation method is based on complex SVR algorithm which has two separate 
phases: learning phase and estimation phase. In training phase, we estimate first the subchannels pilot 
symbols according to LS criterion to strike  𝑚𝑚𝑖𝑖𝑛𝑛  [(𝑌𝑌𝑃𝑃 − 𝑿𝑿𝑃𝑃𝑿𝑿ℎ) (𝑌𝑌𝑃𝑃 − 𝑿𝑿𝑃𝑃𝑿𝑿ℎ)𝐻𝐻] [11], as 

                                                                         𝐻𝐻�𝑃𝑃 = 𝑿𝑿𝑃𝑃  
−1 𝑌𝑌𝑃𝑃                                                                     (8) 

where 𝑌𝑌𝑃𝑃 = 𝑌𝑌 (𝑖𝑖,𝑚𝑚 ∆𝑃𝑃)  and 𝐻𝐻�𝑃𝑃 = 𝐻𝐻� (𝑖𝑖,𝑚𝑚 ∆𝑃𝑃)  are the received pilot symbols and the estimated 
frequency responses for the 𝑖𝑖𝑡𝑡ℎ OFDM symbol at pilot positions 𝑚𝑚 ∆𝑃𝑃 , respectively. 

Then, in the estimation phase and by the interpolation mechanism, frequency responses of data 
subchannels will be predicted based on the regression model built in training space. Therefore, frequency 
responses of all the OFDM subcarriers are 

                                                               𝐻𝐻� (𝑖𝑖, 𝑞𝑞 ) = 𝛿𝛿 �𝐻𝐻�𝑃𝑃(𝑖𝑖,𝑚𝑚 ∆𝑃𝑃)�                                                          (9) 

where 𝑞𝑞 = 0,⋯ ,𝑁𝑁 − 1 , and 𝛿𝛿(∙)  is the interpolating function, which is determined by the nonlinear 
complex SVR approach. 

In fact, in a nonlinear deep fading channel, it is necessary to apply the nonlinear complex SVR technique 
for channel estimation since SVM is superior in solving nonlinear, small samples and high dimensional 
pattern recognition [12]. The basic idea of Mercer’s theorem is that a vector in the input space (finite 
dimensional space) can be mapped to a higher dimensional feature space ℋ (possibly infinity) by means 
of nonlinear transformation  𝝋𝝋. However, this transformation usually remains unknown. Hence, only the 
dot product of the corresponding space is required and can be stated as a function of the input vectors as 
following: 

                                                                         𝑲𝑲�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� = 〈𝝋𝝋(𝒙𝒙𝑖𝑖),𝝋𝝋�𝒙𝒙𝑗𝑗�〉                                                            (10)                                                                                       

Such spaces are known as Reproducing Kernel Hilbert Spaces (RKHS) where 𝑲𝑲�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗�  is the kernel that 
satisfy the conditions of Mercer’s theorem (it is the inner product of a Hilbert space). In this paper, we are 
using the Radial Basis Function (RBF) which is expressed as 

                                                                    𝑲𝑲�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� = exp�−
�𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗�

2

2𝜎𝜎2
�                                                     (11)   

After mapping the input vectors to a higher-dimensional feature space using the nonlinear 
transformation 𝝋𝝋, the linear regression function can be stated as follows: 

                                  𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃) = 𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) + 𝑏𝑏 + 𝑒𝑒𝑚𝑚,        𝑚𝑚 = 0,⋯ ,𝑁𝑁𝑃𝑃 − 1                                (12)   

where 𝒘𝒘 is the weight vector, 𝑏𝑏 is the bias term well known in the SVM literature and residuals {𝑒𝑒𝑚𝑚} 
account for the effect of both approximation errors and noise. In the SVM framework, the optimality 
criterion is a regularized and constrained version of the regularized Least Squares criterion.  

In general, SVM algorithms minimize a regularized cost function of the residuals, usually the Vapnik’s 𝜀𝜀 −
𝑖𝑖𝑛𝑛𝑁𝑁𝑒𝑒𝑛𝑛𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑦𝑦 cost function [8].  
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A robust cost function is introduced to improve the performance of the estimation algorithm which is 𝜀𝜀 -
Huber robust cost function [11] [13], given by 

                                      ℒ 
𝜀𝜀(𝑒𝑒𝑚𝑚) =

⎩
⎪
⎨

⎪
⎧

0,                                          |𝑒𝑒𝑚𝑚| ≤ 𝜀𝜀           
1

2𝛾𝛾
(|𝑒𝑒𝑚𝑚|− 𝜀𝜀)2,                  𝜀𝜀 ≤ |𝑒𝑒𝑚𝑚| ≤ 𝑒𝑒𝐶𝐶 

𝐶𝐶(|𝑒𝑒𝑚𝑚|− 𝜀𝜀) −
1
2
𝛾𝛾𝐶𝐶2,      𝑒𝑒𝐶𝐶 ≤ |𝑒𝑒𝑚𝑚|        

                                              (13) 

where 𝑒𝑒𝐶𝐶 = 𝜀𝜀 + 𝛾𝛾𝐶𝐶, 𝜀𝜀 is the insensitive parameter which is positive scalar that represents the insensitivity 
to a low noise level, parameters 𝛾𝛾 and 𝐶𝐶 control essentially the trade-off between the regularization and 
the losses, and  represent the relevance of the residuals that are in the linear or in the quadratic cost zone, 
respectively. The cost function is linear for errors above 𝑒𝑒𝐶𝐶, and quadratic for errors between 𝜀𝜀 and 𝑒𝑒𝐶𝐶. 
Note that, errors lower than 𝜀𝜀  are ignored in the 𝜀𝜀 − 𝑖𝑖𝑛𝑛𝑁𝑁𝑒𝑒𝑛𝑛𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑒𝑒  zone. On the other hand, the 
quadratic cost zone uses the  𝐿𝐿2 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚  of errors, which is appropriate for Gaussian noise, and the linear 
cost zone limits the effect of sub-Gaussian noise [14]. Therefore, the 𝜀𝜀 -Huber robust cost function can be 
adapted to different types of noise.  

Let us assume that   ℒ 
𝜀𝜀(𝑒𝑒𝑚𝑚) = ℒ 

𝜀𝜀�ℛ(𝑒𝑒𝑚𝑚)� + ℒ 
𝜀𝜀�ℑ(𝑒𝑒𝑚𝑚)�  since  {𝑒𝑒𝑚𝑚}  are complex, where   ℛ(∙)  and 

 ℑ(∙)  represent real and imaginary parts, respectively.  Now, the SVR primal problem can be stated as 
minimizing   

         
1
2

 ‖𝒘𝒘‖2 +
1

2𝛾𝛾
 � (𝜉𝜉𝑚𝑚 + 𝜉𝜉𝑚𝑚∗ )2

 

𝑚𝑚∈𝐼𝐼1

+ 𝐶𝐶 � (𝜉𝜉𝑚𝑚 + 𝜉𝜉𝑚𝑚∗ ) 
 

𝑚𝑚∈𝐼𝐼2

+
1

2𝛾𝛾
 � (𝜁𝜁𝑚𝑚 + 𝜁𝜁𝑚𝑚∗ )2

 

𝑚𝑚∈𝐼𝐼3

                 

+ 𝐶𝐶 � (𝜁𝜁𝑚𝑚 + 𝜁𝜁𝑚𝑚∗ )
 

𝑚𝑚∈𝐼𝐼4

  −
1
2

� 𝛾𝛾𝐶𝐶2
 

𝑚𝑚∈𝐼𝐼2,𝐼𝐼4

                                                                                     (14) 

constrained to 

          ℛ�𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃) −𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃)− 𝑏𝑏� ≤ 𝜀𝜀 + 𝜉𝜉𝑚𝑚                               

          ℑ�𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃)−𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) − 𝑏𝑏� ≤ 𝜀𝜀 + 𝜁𝜁𝑚𝑚                               

             ℛ(−𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃) + 𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) + 𝑏𝑏) ≤ 𝜀𝜀 + 𝜉𝜉𝑚𝑚∗                                

             ℑ(−𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃) + 𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) + 𝑏𝑏) ≤ 𝜀𝜀 + 𝜁𝜁𝑚𝑚∗                                

                                                                  𝜉𝜉𝑚𝑚
(∗), 𝜁𝜁𝑚𝑚

(∗) ≥ 0                                                                                   (15)  

for  𝑚𝑚 = 0,⋯ ,𝑁𝑁𝑃𝑃 − 1, where 𝜉𝜉𝑚𝑚 and 𝜉𝜉𝑚𝑚∗  are slack variables which stand for positive and negative errors 
in the real part, respectively. 𝜁𝜁𝑚𝑚 and 𝜁𝜁𝑚𝑚∗   are the errors for the imaginary parts. 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3 and 𝐼𝐼4 are the set 
of samples for which: 

𝐼𝐼1 ∶  real part of the residuals are in the quadratic zone; 

𝐼𝐼2 ∶  real part of the residuals are in the linear zone; 

𝐼𝐼3 ∶  imaginary part of the residuals are in the quadratic zone; 

𝐼𝐼4 ∶  imaginary part of the residuals are in the linear zone. 
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To transform the minimization of the primal functional (14) subject to constraints in (15), into the 
optimization of the dual functional, we must first introduce the constraints into the primal functional by 
means of Lagrange multipliers to obtain the primal-dual functional. Then, by making zero the primal-dual 
functional gradient with respect to 𝜛𝜛𝑖𝑖, we obtain an optimal solution for the weights  

                                                     𝒘𝒘 = � 𝜓𝜓𝑚𝑚

𝑁𝑁𝑃𝑃−1

𝑚𝑚=0

𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) = � 𝜓𝜓𝑚𝑚

𝑁𝑁𝑃𝑃−1

𝑚𝑚=0

𝝋𝝋(𝑃𝑃𝑚𝑚)                                                    (16) 

where  𝜓𝜓𝑚𝑚 = (𝛼𝛼ℛ,𝑚𝑚 − 𝛼𝛼ℛ,𝑚𝑚
∗ ) + 𝑗𝑗(𝛼𝛼𝐼𝐼,𝑚𝑚 − 𝛼𝛼𝐼𝐼,𝑚𝑚∗ ) with  𝛼𝛼ℛ,𝑚𝑚,𝛼𝛼ℛ,𝑚𝑚

∗ ,𝛼𝛼𝐼𝐼,𝑚𝑚,𝛼𝛼𝐼𝐼,𝑚𝑚∗  are the Lagrange multipliers 
(or dual variables) for real and imaginary part of the residuals and  𝑃𝑃𝑚𝑚 = (𝑚𝑚 ∆𝑃𝑃),  𝑚𝑚 = 0,⋯ ,𝑁𝑁𝑃𝑃 − 1  are 
the pilot positions. 

In order to solve the dual function, we define the Gram matrix as 

                                                𝑮𝑮(𝑢𝑢, 𝑣𝑣) =< 𝝋𝝋(𝑃𝑃𝑢𝑢),𝝋𝝋(𝑃𝑃𝑣𝑣) >= 𝐾𝐾(𝑃𝑃𝑢𝑢,𝑃𝑃𝑣𝑣)                                                   (17) 

where 𝐾𝐾(𝑃𝑃𝑢𝑢,𝑃𝑃𝑣𝑣) is a Mercer’s kernel which represents the RBF kernel matrix which allows obviating the 
explicit knowledge of the nonlinear mapping 𝝋𝝋(∙). A simplified compact form of the functional problem 
can be stated in matrix format by placing optimal solution 𝒘𝒘 into the primal dual functional and grouping 
terms. Subsequently, the dual problem consists of maximizing 

                     𝑚𝑚𝑑𝑑𝑒𝑒 −
1
2
𝝍𝝍𝐻𝐻(𝑮𝑮+ 𝛾𝛾𝑰𝑰)𝝍𝝍 + ℛ�𝝍𝝍𝑯𝑯𝑌𝑌𝑃𝑃� − (𝜶𝜶𝓡𝓡 + 𝜶𝜶𝓡𝓡∗ + 𝜶𝜶𝑰𝑰 + 𝜶𝜶𝑰𝑰∗)𝟏𝟏ℰ                             (18) 

constrained to 

                                                        0 ≤ 𝛼𝛼ℛ,𝑚𝑚,𝛼𝛼ℛ,𝑚𝑚
∗ ,𝛼𝛼𝐼𝐼,𝑚𝑚 ,𝛼𝛼𝐼𝐼,𝑚𝑚∗ ≤ 𝐶𝐶                                                             (19) 

where 𝝍𝝍 = [𝜓𝜓0,⋯ ,𝜓𝜓𝑁𝑁𝑃𝑃−1]𝑇𝑇 ; I and 1 are the identity matrix and the all-ones column vector, respectively; 
𝜶𝜶𝓡𝓡 is the vector which contains the corresponding dual variables, with the other subsets being similarly 
represented. The weight vector can be obtained by optimizing (18) with respect to 𝛼𝛼ℛ,𝑚𝑚,𝛼𝛼ℛ,𝑚𝑚

∗ ,𝛼𝛼𝐼𝐼,𝑚𝑚 ,𝛼𝛼𝐼𝐼,𝑚𝑚∗  
and then substituting into (16).  

Therefore, and after training phase, frequency responses at all subcarriers in each OFDM symbol can be 
obtained by SVR interpolation 

                                                                   𝐻𝐻�(𝑘𝑘) = � 𝜓𝜓𝑚𝑚

𝑁𝑁𝑃𝑃−1

𝑚𝑚=0

𝐾𝐾(𝑃𝑃𝑚𝑚,𝑘𝑘) + 𝑏𝑏                                                         (20) 

for 𝑘𝑘 = 1,⋯ ,𝑁𝑁. Note that, the obtained subset of Lagrange multipliers which are nonzero will provide 
with a sparse solution (and they represent the support vectors). Equation (20) will be used in the 
estimation step to predict the channel for the data symbols. As usual in the context of SVM framework, 
the free parameters of the kernel and the cost function represent limited freedom for the user and have 
to be fixed manually after gaining some a priori knowledge of the problem, or by using some validation 
set of observations [8]. 

5 Simulation results 
In this part of our analysis, we compare the proposed algorithms (ANN with Backpropagation SCG 
algorithm and nonlinear complex RBF-based SVR algorithm) with the LS, Decision Feedback and perfect 
estimation based on Bit Error Rate (BER) and Mean Square Error (MSE) curves. We will analyze the 
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performance of our algorithms in terms of robustness against fading joint with nonlinear noise, and 
complexity. 

We consider the channel impulse response of the time varying multipath fading channel model which can 
be written as 

                                                                 ℎ(𝜏𝜏, 𝑖𝑖) = �ℎ𝑙𝑙(𝑖𝑖) 𝛿𝛿(𝑖𝑖 − 𝜏𝜏𝑙𝑙)
𝐿𝐿−1

𝑙𝑙=0

                                                           (21) 

where ℎ𝑙𝑙(𝑖𝑖) is the impulse response representing the complex attenuation of the 𝑙𝑙𝑡𝑡ℎ  path,  𝜏𝜏𝑙𝑙   is the 
random delay of the 𝑙𝑙𝑡𝑡ℎ path and 𝐿𝐿 is the number of multipath replicas. The specification parameters of 
an extended vehicular A model (EVA) for LTE DL system with the excess tap delay and the relative power 
for each path of the channel are shown in table 1. These parameters are defined by 3GPP standard [15]. 

Table 1.  Extended Vehicular A model (EVA) [15]. 

Excess tap delay [ns] Relative power [dB] 
0 0.0 

30 -1.5 
150 -1.4 
310 -3.6 
370 -0.6 
710 -9.1 

1090 -7.0 
1730 -12.0 
2510 -16.9 

 

Figure 3 presents the variations in time and in frequency of the channel frequency response for a mobile 
speed equal to 350 Km/h.  

 

Figure 3: Variation in time and in frequency for a mobile speed at 350 Km/h. 

In order to demonstrate the effectiveness of the presented techniques and evaluate the performance in 
the presence of nonlinear impulsive noise under high mobility conditions (350Km/h),  two objective 
criteria are used: the signal-to-noise ratio (SNR) and signal-to-impulse ratio (SIR). 

The expressions of SNR and SIR are given by [8] 
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                                        𝑆𝑆𝑁𝑁𝑆𝑆𝑑𝑑𝐵𝐵 = 10𝑙𝑙𝑛𝑛𝑑𝑑10 �
𝐸𝐸{|𝑦𝑦(𝑛𝑛) −𝑤𝑤(𝑛𝑛) − 𝑖𝑖(𝑛𝑛)|2}

𝜎𝜎𝑤𝑤2
�                                   (22)   

and 

                                        𝑆𝑆𝐼𝐼𝑆𝑆𝑑𝑑𝐵𝐵 = 10𝑙𝑙𝑛𝑛𝑑𝑑10 �
𝐸𝐸{|𝑦𝑦(𝑛𝑛) −𝑤𝑤(𝑛𝑛) − 𝑖𝑖(𝑛𝑛)|2}

𝜎𝜎𝐵𝐵𝐵𝐵2
�                                   (23)   

Then, we simulate the OFDM LTE DL system with parameters presented in Table 2. The proposed 
algorithms estimate a number of OFDM symbols in the range of 1400 symbols, corresponding to 10 radio 
frames LTE. Note that, the LTE radio frame duration is 10 ms [16], which is divided into 10 subframes. Each 
subframe is further divided into two slots, each of 0.5ms duration, as presented in Figure 4. 

Table 3.  Parameters of simulations [16], [17] and [18]. 

Parameters Specifications 
OFDM system LTE/Downlink 
Constellation 16-QAM 

Mobile Speed (Km/h) 350 
𝑇𝑇𝑠𝑠 (µs) 72 
𝛿𝛿𝑐𝑐 (GHz) 2.15 
𝛿𝛿𝛿𝛿 (KHz) 15 
B (MHz) 5 

Size of DFT/IDFT 512 
Number of paths 9 

The variation of BER and MSE as a function of SNR in the presence of AWGN noise for a mobile speed at 
350 Km/h is shown in Figs. 5 (a) and (b). The complex RBF-based SVR method slightly outperforms ANN 
with Backpropagation SCG algorithm and noticeably outperforms LS and DF methods. For example, we 
can see a gain of 10 dB over the DF method. We can also see that the SVR and ANN performances are 
close to the perfect channel knowledge estimation compared to others estimation techniques. These 
results demonstrate the advantage of the nonlinear complex SVR and its ability to adapt to the channel 
variations, providing a better channel estimation which gives an improvement of the service quality in LTE 
DL. MSE confirms the results obtained for BER and shows that LS suffers from a high MSE, however, 
complex SVR and ANN have low MSE. 

 

Figure 4: LTE frame structure 
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(a) 

 
(b) 

Figure 5: (a) BER and (b) MSE vs. SNR for a mobile speed at 350 Km/h without impulsive noise. 

Figs. 6 (a) and (b) show the performance of LS, DF, ANN and complex SVR estimation techniques in the 
presence of AWGN noise and nonlinear impulsive noise with SIR = -5dB and p = .05 for a mobile speed at 
350 Km/h. A poor performance is exhibited by LS and DF for all noise levels and good performance is 
observed with complex SVR which still track the estimation with perfect channel and also outperforms 
ANN. The MSE performance among these techniques ranges from best to the worst as follows: complex 
RBF-SVR based technique; SCG-ANN based technique, DF and LS. 

 
(a) 

 
(b) 

Figure 6: (a) BER and (b) MSE vs. SNR for a mobile speed at 350 Km/h with SIR = -5 dB and p = .05. 

Figs. 7 (a) and (b) show the BER and MSE performances of LS, DF, ANN and complex SVR techniques in the 
presence of non-Gaussian impulsive noise with p = .05 for SNR = 30 dB as a function of SIR which is ranged 
from -20 to 20 dB. These figures confirm that nonlinear complex SVR algorithm performs better than LS, 
DF and also ANN algorithms in high-mobility environments presenting high levels of impulsive noise (SIR<0 
dB), which proves that the RBF-SVR based approach is powerful in the nonlinear environments. 

6 Conclusion 
In this paper, we analyzed the performance of the scaled conjugate gradient backpropagation ANN and 
the complex RBF-based SVR algorithms for the channel estimation in the LTE DL system. These methods 
are based on two steps: the learning step where each method tries to adapt to the channel variations and 
constructs the regression model and the estimation step where the channel frequency response will be 
estimated. 

The proposed methods where applied to vehicular A channel model according to 3GPP specifications in 
the presence of nonlinear impulsive noise interfering with OFDM pilot symbols in high-mobility 
environment. The simulation results clearly show that the nonlinear complex RBF-based SVR method 
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produces a good performance when compared to LS, Decision Feedback and ANN. The obtained results 
are very promising for improving the service quality in the LTE DL system. We still work on adopting this 
technique as channel estimator in LTE-Advanced systems. 

 
(a) 

 
(b) 

Figure 7: (a) BER and (b) MSE vs. SIR for a mobile speed at 350 Km/h with SNR = 30 dB and p = .05. 
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