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Abstract: A military system consisting of four autonomous subsystems (a tetrasystem) is 
considered: air, land, sea, and drone. During combat, each subsystem is subject to a 
stream of random events involving losses and restorations. The dynamics of random 
processes is studied using a continuous-time Markov chain with sixteen asymmetric 
possible states. The corresponding mathematical model of the random processes is 
constructed in the form of sixteenth-order Kolmogorov differential equations. Formulas 
are found for the sixteen roots of the characteristic Kolmogorov equation, expressed in 
terms of the intensities of the tetrasystem's loss and restoration flows. The analytical 
solution to the Kolmogorov differential equations for the tetrasystem is represented in 
the form of ordered matrices and sixteenth-order determinants, which allows for a 
compact description of a large volume of initial data, overcomes limitations associated 
with the problem's dimensionality, and ensures adaptability to computer technologies, 
including the problem of verification. 

Keywords: tetrasystem, Markovian peocess, Kolmogorov equation, characteristic 
equation, state probabilities, reliability of systems 

 

INTRODUCTION 

Comprehensive scientific research conducted by authoritative scientists [1] shows that the 

main factors causing negative changes in the planet's climate are caused by human activity 

and are related to emissions of gases: carbon dioxide, greenhouse gases, freon, etc. With 

the growth of birth rates and population, the consumption of the planet's resources is 

accelerating globally and outpacing the Earth's ability to regenerate. This leads to 

catastrophic consequences in the social sphere, provoking risks of social collapse, conflicts, 

wars, migration, famine, etc. The theoretical foundations for solving such global problems 

are laid out in the works of P. Teilhard de Chardin, E. Leroy, and V. I. Vernadsky on the 

evolution of the biosphere into the noosphere. The practical implementation of these ideas 

is possible with the growing role of science, the unification of the world's scientists under 

the auspices of the UN, the development of artificial intelligence (AI), computational 

experiments, analytical modeling, improving the level of education, intelligence quotient 

(IQ) of the population, government and political figures, regulation of the number of 

ruminants, and the use of coal, oil, gas, and other natural resources. 

 In connection with the consideration of the global climate problem, a number of 

urgent tasks arise in modeling, forecasting, and managing the dynamics of random processes 

in the fields of energy, ecology, sociology, biology, medicine, economics, technology, etc. 

[2, 3, 4]. Markov chains with discrete states and continuous time serve as a universal 

dynamic scheme for such tasks, and the corresponding Kolmogorov differential equations 

serve as mathematical models [5, 6, 7]. 

 The purpose of this work is to develop a universal mathematical model of Markov 

random processes in complex systems, including military tetrasystems in combat conditions, 
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and to develop accurate, analytical methods for solving Kolmogorov's equations to assess 

the reliability of a military tetrasystem over time depending on the initial conditions, loss 

and recovery rates of four autonomous military subsystems. 

 

METHODS 

Problem Statement 

We consider a military system consisting of four autonomous subsystems (tetrasystem) 

designated in the following order: 

1. Air forces (A); 

2. Ground forces (G); 

3. Naval forces (M); 

4. Drone forces (D). 

 Each subsystem is affected by a stream of random events that transition the 

subsystem from a combat-ready state, denoted by the number 1, to a non-combat-ready 

state, denoted by the number 0, and vice versa. The intensity of the loss flows λi and 

recovery flows µi of the subsystems (i = 1, 2, 3, 4) is assumed to be statistically known on 

average over a given time interval [0, T]. The state of the military tetrasystem at the initial 

moment of time is given. 

 It is necessary to determine the probabilities of possible states of the military 

tetrasystem at any current moment in time and in the future, depending on the initial state 

and the intensity of loss and recovery flows of four autonomous subsystems. 

 

Solution Algorithm 

The general algorithm for solving similar problems for two-system and three-system 

configurations is given in [8,9] and is implemented in this work for a military four-system 

configuration. 

 The possible asymmetric states of the four-system configuration are represented by 

the following matrix: 
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 Based on the constructed state matrix S, a matrix of loss and recovery flow 

intensities of the tetrasystem R(4) is formed: 
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 Kolmogorov equations for a tetrasystem are formulated as follows: 

( ) ( ) ( )4

i i

d
P t R P t

dt
   =     , ( )1,2,3, ,16i =   

 where Рi is the probability of the i-th state. 

 The characteristic determinant of the Kolmogorov equations of the sixteenth order 

is formed: 
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( ) ( ) ( ) ( )4 4 16
det( )R E = − , 

 where ( )16
E  is a unit matrix of order 16. 

 A characteristic (algebraic) equation of degree 16 is formed: 

( )
16

16 16

16

0

0j

j

j

a  −

−

=

 =  

 where 

( ) ( )( )16 16

16 deta E= −
, 

( ) ( )( )16 4

15a Sp R= −
,…, 

( ) ( )( )16 4

0 deta R=
. 

 Note that the matrix R(4) is special, i.e. 
( )4

det( ) 0R = . 

 A set of sixteen roots of the characteristic equation is established depending on the 

intensities of failure and recovery flows of the tetra system: 

1 0,  =  ( ) ( ) ( ) ( )2 1 1 2 2 3 3 4 4        = − + − + − + − + , 

( )3 1 1 ,   = − + 𝜈4 =  −(𝜆2 + 𝜇2) − (𝜆3 + 𝜇3) − (𝜆4 + 𝜇4), 

( )5 2 2  = − + , 𝜈6 = −(𝜆1 + 𝜇1) − (𝜆3 + 𝜇3) − (𝜆4 + 𝜇4), 

( )7 3 3 ,  = − + 𝜈8 = −(𝜆1 + 𝜇1) − (𝜆2 + 𝜇2)  − (𝜆4 + 𝜇4), 

( )9 4 4 ,   = − + ( ) ( ) ( )10 1 1 2 2 3 3 ,      = − + − + − +  

( ) ( )11 1 1 2 2 ,    = − + − +  𝜈12 =  −(𝜆3 + 𝜇3) − (𝜆4 + 𝜇4), 

( ) ( )13 1 1 3 3 ,    = − + − + 𝜈14 = −(𝜆2 + 𝜇2)  − (𝜆4 + 𝜇4), 

( ) ( )15 1 1 4 4 ,    = − + − + 𝜈16 =  −(𝜆2 + 𝜇2) − (𝜆3 + 𝜇3).  

 

The distribution of the set of roots of the characteristic equation in the complex plane has 

the property of symmetry about the center 
( ) ( )16

kM  : 

( ) ( )
( )16

16 15

16
k

a
M  = − , 

where:  

( ) ( ) ( ) ( ) ( )16

15 1 1 2 2 3 3 4 48  a         = + + + + + + +  . 

A resolving square matrix of the sixteenth order 
( ) ( )4

i k 
 
  is formed according to the 

characteristic determinant depending on the roots k  and states of the tetrasystem, using 

the column matrix of initial conditions ( )0iP   . A resolving column matrix of exponents is 

formed depending on the roots and time: 
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( )4

e k t

kП

  
 
  

, 

where 
( ) ( )
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4

1
k k s

s

s k

П  
=



= − . 

The desired solution to Kolmogorov's equations is determined in the form of a column matrix 

of probabilities of tetrasystem states ( )iP t    at the time interval under consideration as 

the product of a resolving square matrix and a column matrix: 

( ) ( ) ( ) ( )

4

4

e k t

i i k

k

P t
П




 

   =     
 




 ( ), 1,2,3, ,16i k =   

states of the tetrasystem, in the symmetric structure of the distribution of roots of 

Kolmogorov's characteristic equation, in the ordered matrix form of the description of 

Kolmogorov's differential equations and the dynamics of random Markov processes. 

 

CONCLUSIONS 

A universal mathematical model of a tetrasystem has been constructed for analytical 

modeling of the dynamics of random Markov processes in a wide range of applications: 

energy, military, social, environmental, medical, technical, etc. We succeeded in 

establishing formulas for the roots of the characteristic equation of the sixteenth degree, 

expressed in terms of the intensities of failure and recovery flows of four autonomous 

subsystems. The analytical solution of the Kolmogorov equations of the tetrasystem is 

presented in the form of determinants and matrices of the sixteenth order, adapted for use 

with standard math software. 
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