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Abstract: A military system consisting of four autonomous subsystems (a tetrasystem) is
considered: air, land, sea, and drone. During combat, each subsystem is subject to a
stream of random events involving losses and restorations. The dynamics of random
processes is studied using a continuous-time Markov chain with sixteen asymmetric
possible states. The corresponding mathematical model of the random processes is
constructed in the form of sixteenth-order Kolmogorov differential equations. Formulas
are found for the sixteen roots of the characteristic Kolmogorov equation, expressed in
terms of the intensities of the tetrasystem's loss and restoration flows. The analytical
solution to the Kolmogorov differential equations for the tetrasystem is represented in
the form of ordered matrices and sixteenth-order determinants, which allows for a
compact description of a large volume of initial data, overcomes limitations associated
with the problem’'s dimensionality, and ensures adaptability to computer technologies,
including the problem of verification.
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INTRODUCTION

Comprehensive scientific research conducted by authoritative scientists [1] shows that the
main factors causing negative changes in the planet's climate are caused by human activity
and are related to emissions of gases: carbon dioxide, greenhouse gases, freon, etc. With
the growth of birth rates and population, the consumption of the planet's resources is
accelerating globally and outpacing the Earth's ability to regenerate. This leads to
catastrophic consequences in the social sphere, provoking risks of social collapse, conflicts,
wars, migration, famine, etc. The theoretical foundations for solving such global problems
are laid out in the works of P. Teilhard de Chardin, E. Leroy, and V. |. Vernadsky on the
evolution of the biosphere into the noosphere. The practical implementation of these ideas
is possible with the growing role of science, the unification of the world's scientists under
the auspices of the UN, the development of artificial intelligence (Al), computational
experiments, analytical modeling, improving the level of education, intelligence quotient
(IQ) of the population, government and political figures, regulation of the number of
ruminants, and the use of coal, oil, gas, and other natural resources.

In connection with the consideration of the global climate problem, a number of
urgent tasks arise in modeling, forecasting, and managing the dynamics of random processes
in the fields of energy, ecology, sociology, biology, medicine, economics, technology, etc.
[2, 3, 4]. Markov chains with discrete states and continuous time serve as a universal
dynamic scheme for such tasks, and the corresponding Kolmogorov differential equations
serve as mathematical models [5, 6, 7].

The purpose of this work is to develop a universal mathematical model of Markov
random processes in complex systems, including military tetrasystems in combat conditions,
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and to develop accurate, analytical methods for solving Kolmogorov's equations to assess
the reliability of a military tetrasystem over time depending on the initial conditions, loss
and recovery rates of four autonomous military subsystems.

METHODS
Problem Statement

We consider a military system consisting of four autonomous subsystems (tetrasystem)
designated in the following order:

1. Air forces (A);

2. Ground forces (G);
3. Naval forces (M);
4. Drone forces (D).

Each subsystem is affected by a stream of random events that transition the
subsystem from a combat-ready state, denoted by the number 1, to a non-combat-ready
state, denoted by the number 0, and vice versa. The intensity of the loss flows A and
recovery flows pi of the subsystems (i = 1, 2, 3, 4) is assumed to be statistically known on
average over a given time interval [0, T]. The state of the military tetrasystem at the initial
moment of time is given.

It is necessary to determine the probabilities of possible states of the military
tetrasystem at any current moment in time and in the future, depending on the initial state
and the intensity of loss and recovery flows of four autonomous subsystems.

Solution Algorithm

The general algorithm for solving similar problems for two-system and three-system
configurations is given in [8,9] and is implemented in this work for a military four-system
configuration.

The possible asymmetric states of the four-system configuration are represented by
the following matrix:
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Based on the constructed state matrix S, a matrix of loss and recovery flow
intensities of the tetrasystem R is formed:

RY RS RYRY
o R R R R
R RS RYRY
RY R RERY
where:
—(A+Ah+A4+4,) 0 m 0
Rl(f): 0 —(t+ 1y + 113+ 1) 0 A
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—(A+ 1+ A+ 2,) 0 0 0
R _ 0 ~(p+ 2+ 1+ 1) 0 0
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0 Hy _(/"1"'/12'*'23"']'4) 0
2 0 0 (At Ayt 1)
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Kolmogorov equations for a tetrasystem are formulated as follows:
d .
=[P)]=R¥.[RP(t)], (i=123,...,16
L[RO]=RY[R)]. ( )

where P; is the probability of the i-th state.

The characteristic determinant of the Kolmogorov equations of the sixteenth order
is formed:
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AY (v)=det(R" —vE™)y,

where E®® is a unit matrix of order 16.

A characteristic (algebraic) equation of degree 16 is formed:
< (16)  16-j
D v =0
j=0

Al —det(~E0) i = sp(R) o =det(R")

yeoey

where
Note that the matrix R™ is special, i.e. det(R*¥)=0.

A set of sixteen roots of the characteristic equation is established depending on the
intensities of failure and recovery flows of the tetra system:

=0 v =—(A+ )= (A + ) = (A + 1) = (A + 124)
Vi=—(A+),va= =g + 1) — (A3 + pt3) — (Ag + a),
ve=—(h+i), Ve =~ + 1) — (A3 + pis) — (Aa + pa),
vi=—(At+ ), vs = —(A + 1) — (o + 12) — (A + pa),

Vo =—(Autt) vio ==(A+ )= (Ao + 1) = (A + 1),
Vo= (At )= (ALt 1,), viz = =g + pz) = (Ag + 1),
Vig=—(h+14) = (At 1) v1a = =g + ) — (g + pia),

Vis =_(ﬂ1+/11)_(/14 +ﬂ4)’V16 = —(Az +up) — (A3 + u3).

The distribution of the set of roots of the characteristic equation in the complex plane has
the property of symmetry about the center M (v):

)

where:
31%6) :8[(/11"'#1)"'(22 +,u2)+(23+,u3)+(24 +,u4):|.

A resolving square matrix of the sixteenth order [Af") (vk)} is formed according to the
characteristic determinant depending on the roots v, and states of the tetrasystem, using

the column matrix of initial conditions [Pi (0)} A resolving column matrix of exponents is

formed depending on the roots and time:
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16

where 17\ = [Tv—ve).
s=1
s#k

The desired solution to Kolmogorov's equations is determined in the form of a column matrix
of probabilities of tetrasystem states [Pi (t)] at the time interval under consideration as

the product of a resolving square matrix and a column matrix:

Vit

[a(t)]{Ag‘*)(vk)][;_d (i.k=123,...16)

states of the tetrasystem, in the symmetric structure of the distribution of roots of
Kolmogorov's characteristic equation, in the ordered matrix form of the description of
Kolmogorov's differential equations and the dynamics of random Markov processes.

CONCLUSIONS

A universal mathematical model of a tetrasystem has been constructed for analytical
modeling of the dynamics of random Markov processes in a wide range of applications:
energy, military, social, environmental, medical, technical, etc. We succeeded in
establishing formulas for the roots of the characteristic equation of the sixteenth degree,
expressed in terms of the intensities of failure and recovery flows of four autonomous
subsystems. The analytical solution of the Kolmogorov equations of the tetrasystem is
presented in the form of determinants and matrices of the sixteenth order, adapted for use
with standard math software.
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