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ABSTRACT

In order to meet Service Level Agreement (SLA) requirements, efficient scaling of Virtual Machine (VM)
resources in cloud computingeeds to be provisioned ahead due to the instantiation time required by

the VWM. One way to do this is by predicting future resource demands. The existing research on VM
resource provisioning are either reactive in their approach or use onlybnsimess level metrics. In this
research, a Cloud client prediction model for Wendmark web application is developed and
evaluated using three machine learning techniques: Support Vector Regression (SVR), Neural Networks
(NN) and Linear Regression (LR). Business level metrics for Response Time and Throuigichudexte

in the predicton model with the aim of providing cloud clients with a more robust scaling decision choice.
Results and analysis from the experiments carried out on Amazon Elastic Compute Cloud (EC2) show that
Support Vector Regression provides the best prediction mimdehndomlike workload traffic pattern.

Keywords— Cloud Computing, Resource Provisioning, Prediction, Machine Learning, Support Vector
Machine, Neural Network, Linear Regression

1 Introduction

The three main markets associated with cloud computing ireludrastructureasa-Service (laaS),
Platformasa-Service (PaaS) and Softwa®a-service (SaaS) [35]. Popular providers of these services are
Amazon Elastic Compute Cloud (Amazon EC2), Google App engine and Salesforce respectively. These
services (lagaaS and SaaS) can be made accessible to the public, otherwise called public cloud or
restricted for private use (private cloud). Sometimes, these services can be hosted on a hybrid cloud which
is a composition of both public and private clouds. One #ratresearchers have focused on is resource
management. Quiroz et al [37] described four stages of data center resource management: Virtual
Machine (VM) Provisioning, Resource Provisioning (includes mapping and scheduling requests onto
distributed physial resources), Rutime Management and Workload Modeling. In this work, focus will

be on VM Provisioning. In trying to meet up with both client Service Level Agreement (SLA) for Quality of
Service (QoS) and their own operating cost, cloud providers aesl faith the challenges afinder-
provisioningandover-provisioningdnderprovisioning often leads to SLA penalty resulting in revenue loss

on the part of the cloud providers [7], [19], [20] and also a poor Quality of Experience (QoE) for the cloud
clients.On the other hand, oveprovisioning can lead to excessive energy consumption, culminating in
high operating cost and waste of resources [7], [19], [20]; though this has no negative impact on the client.
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Accurate VM provisioning is a challenging researef that seeks to address the two extremes especially
where user workload requirements cannot be determined a priori. Furthermore, VM boot up time has
been reported to span various time durations before it is ready to operate [3], [28], [32], [35][39T],
specifically from between 5 and 10 minutes [3], [32], and between 5 and 15 minutes [39]. It is believed
that during this time of system and resource unavailability, requests cannot be serviced which can lead to
penalty on the part of the cloud provéds. Multiplying this lag time over several server instantiations in a
data center can result in heavy cumulative penalties. These penalties or compensations to the client
cannot redeem the poor QoE the customers must have perceivedhis end, cloud @nts can take a
proactive step to mitigate reputational loss by controlling their VM provisioning using the Cloud provider's
API. One of the numerous strategies available to the client is a predictive approach wherein insight into
the future resource usagéCPU, memory, network and disk I/O utilization) may help in scaling decisions
ahead of time, thus, compensating for the stag lag time [13]. Present monitoring metrics made
available to clients are limited to CPU utilization, memory and network. Thagenot give a holistic view

of the Qo0S. For instance, a web server may not necessarily be saturated for an SLA breach to occur.
Therefore, CPU based scaling decisions may not achieve the goal of accurate VM provisioning. Several
predictive resource usagapproaches exist, such as pattern matching and machine learning. In fact, the
use of machine learning as a predictive tool to allow dynamic scaling is one way of mitigating the challenge
of resource scaling [6]. In this work, we evaluated the ability iedasting future resource usage in a
multi-tier web application of the following machine learning techniques: Neural Network (NN), Linear
Regression (LR) and Support Vector Regression (SVR). In addition, the cloud watch metrics is extended by
including twobusiness level metrics: Throughput and Response time.

We used Amazon EC2, a public cloud for resource provisioning. The selection of this cloud provider is
based on the availability of documentation, open source Application Programming Interface (@RI) an
vast array of instance types to select from (representing eithedemand, reserved or spot instances).
Finally, being an early entrant in providing laaS, Amazon EC2 boasts of a very good technical support team.

The rest of this paper is organizedfabows. Section Il discusses the background, state of the art, and the
related work, while section Ill presents the methodology employed in this research work. Section IV
discusses the experimental setup by emphasizing feature selection, data colldetiture reduction,

CPU utilization and training, parameter selection for response time and throughput. Section V presents
the simulation and analyses the results for each model (LR, NN, and SVR). A comparison of the models is
carriedoutandasensitivigknal ysi s using Littl e’ s | andsuggestichon e .
for future work.

2 Background, State Of The Art and Related Works
2.1 Background Works

In our exploratory work [8], we developed and evaluated cloud client prediction modelsPiGWT
benchmark web application based on Neural Network (NN), Linear Regression (LR) and Support Vector
Machine (SVM), and using a linear traffic workload (W9@attern and 170 minutes of experiment time

in terms of data collection. This initial exploratavork sets the stage for a second phase based on a more
random and noHinear traffic pattern [1] implemented on a public cloud environment: Amazon Elastic
Compute Cloud (Amazon EC?2) infrastructure. In this phase, we maintained the same architedtere as t
first phase and increased the experiment time to 532 minutes (compared to 170 minutes for the first
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phase). We noticed that during the second phase of the research work the feature selection, parameter
setting for LR, NN, and SVR, and data training glagial roles in the simulation results. Due to the big
variance between the actual and predicted resource provisioning (cf. Appendix C and especially in the
case of LR and NN), we decided to take a further study of the feature selection, parametey, sattin
training to make sure the final result is as close to reality as possible. So, the content of this paper is a
more complete research that includes:

1 We maintained the same architecture as phases 1 and 2.

I We retained the inclusion of two SLA metriessponse time and throughput.

1 We studied the effects of the various FRACworkloads used in the experiment on the
system performance of the database tier.

1 We carried out simulations for the selection of parameters and features for the purposes
of data training and learning.

T We maintained the same evaluation of the prediction capability of Support Vector
Machine, Neural Network and Linear Regression using three benchmark workloads from
TPCGW in:

0 An extended experimentation time frame of 532 minutes asagga to 170
minutes in the first phase.

o Traffic patterns wherein workloads spike up and down and then stabilize in a
randomized manner; a pattern we reckon to be somewhat realistic.

Amazon EC2 offers three different instance purchasing optionsDé&nand hstances, Reserved
Instances and Spot Instances.

2.2 State of the Art
2.2.1 Amazon Elastic Compute Cloud (Amazon EC2)

Amazon EC2 is a web service that provides resizable compute capacity in the cloud. Amazon EC2 benefits
include: elasticity, multiple instance typgoperating systems and software packages, and a commitment

to 99.95% availability for each EC2 Region. Finally and importantly, EC2 offer a very low per hour pay rate
for the compute capacity consumed. Amazon EC2 has a range of instance typé8B3 summarizes

some instance types and their specifications.

Table 1 Amazon Instance Type Specifications

Instance Type| Platform CPU Memory Disk (GB)| Cost/Hr ($)
(GB)
M1.Small 32 or 64bit 1ECU 1.7 160 0.060
M1.Medium 32 or 64bit 2 ECU 3.7 410 0.120
M1.large 64-bit 4 ECU 7.5 850 0.240
M1.Extra 64-bit 8 ECU 15 1690 0.480
Large
T1.micro 32 or 64bit Upto2 0.613 8 0.020
ECU
High Memory 64-bit 6.5 ECU 17.1 420 0.410
Extra Large
HighCPU 32 or 64bit 5ECU 1.7 350 0.145
Medium
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2.3 Machine Learning

According to Wang and Summers [46], machine learning is the study of algorithms that run on computer
systems which can learn complex relationships or patterns from empirical data and make accurate
decisions. It is classified machine learning into supervised itearrsemisupervised learning and
unsupervised learning. Supervised learning is to deduce a functional relationship from training data that
generalizes well to testing data. Unsupervised learning on the other hand seeks to discover relationships
between amples or reveal the latent variables behind the observations. Sap@rvised learning falls
between supervised and unsupervised by utilizing both labeled and unlabeled data during the training
phase [46]. Supervised learning has been employed becaysgjiese matches the problem area of this
work.

2.4 Related Works

Several authors have worked in the area of resource provisioning using different approaches. This section
presents some of the related techniques (ThresHzdded, Control TheorReinforcement.earning, and
Time Series).

Han et al [24] proposed and implemented a lightweight approach to enableeffesitive elasticity for
cloud applications. Their solution which was cent
techniques to suppdrQoS requirements of the application owner: Sedhling and Resourdevel
scaling. For seliealing, idle resources of one VM can be used to release the overloaded resources in
another while resourcdevel scaling is based on using unallocated resouates particular physical
machine to scale up a VM executing on it. Though their scaling technique (scale up or down) can be
completed very fast; in a matter of milliseconds, the reactive scaling mechanism employed would
definitely lead to SLA penalty whennew VM provisioning is required. Furthermore, some resource
providers may choose not to export the access to hyperdisagl actuators of the cloud computing
infrastructure, such as controlling the CPU and memory allocations [34]. This constraintthekesrk
restrictive and not easily generalized. The work by Hasan, M.Z. et al [25] provided cloud clients (tenants)
the ability to set policies which indicated conditions under which resources should beseaitxd. Their
Integrated and Autonomic ClouResource Scaler (IACRS) integrates performance metrics from other
multiple domains (compute, network and storage) in making scaling decisions. The proposed algorithm is
a departure from scaling decisions using the regular singular metric (CPU), théhadgoais not been
implemented and thus provides no performance evaluation of any kind. In addition, their approach was
also reactive and VM boot up or lag time would result in SLA penalty.

According to LoriddBotran, T. et al [35], control theory has lreapplied to automate the management

of web server systems and data centers, and it shows interesting results in cloud computing. Control
systems are either closed loop or open loop systems. For the open loop system, control action does not
depend on the gstem output (norfeedback) while in the case of closed loop; the controller outpit p

tries to force the system outpui 0 to be equal to the reference inputy 0 at any timedirrespective

of t he diOg$51. @Ghartbaintt et al [26] udecontrol theory to find a proper reservation action
(immediate, iradvance, best effort or auction based reservation) at any given time based on the current
system state. This approach tried to minimize the average response time and at the same timaeninim
resource cost by selecting the most appropriate reservation action. Though the authors agreed that best
effort or on-demand reservation may not be provisioned in a timely manner, no discussion on how to
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handle this possible reservation action was menéd. Lim, H.C. et al [34] proposed that cloud customers
should be empowered to operate their own dynamic controllers, outside or as extensions to the cloud
platform itself. The solution centered on adapting the control policy for cases where fine geaituadors

for adjusting CPU entitlements are not made available by cloud providers. They introduced proportional
thresholding policy which modifies an integral control by using a dynamic target range (CPU utilization for
example), instead of a single tatgvalue.

Reinforcement learning (RL) is another type of automatic decisiaking approach that can be applied

to VM provisioning [35]. It is well suited to cloud computing as it does not require a priori knowledge of
the application performance moddbut rather learns it as the application runs [18]. Dutreilh, X. et al [18]
used the Q@earning algorithm for their work as the-fQnction is easy to learn from experience. The
approach is; given a controlled system, the learning agent repeatedly obs#reesurrent state
(workload, number of VMs and performance SLA), takes an action and then a transition to a new state
occurs. The new state and corresponding reward is then observed. However, because defining the policy
from which decisions can be choseandake a long time (exploration and exploitation [38]) the authors
introduced a convergence speedup phase at regular intervals to hasten the learning process.

Time series analysis could be used to find repeating patterns in the input workload ordrgtadt future

values. For example, a certain performance metric, such as average CPU load (utilization) will be
periodically sampled at fixed intervals. The result will be a-s@gesi containing a sequence of the last

0 observations [35]: & o Mo B w Several authors have used time series analysis for
dynamic VM provisioning; for example, the work presented by Sadeka, I. et al [39] also concerns the use
of time-series analysis for adaptive resource provisioninghi@ cloud. Their proposed prediction
framework used statistical models that are able to speculate the future surge in resource requirement;
thereby enabling proactive scaling to handle temporal bursty workload. The authors evaluated the
prediction capabities of two machine learning algorithms: Neural Network and Linear Regression.
Historical data was first collected by using the ‘WM?®Genchmarking €ommerce application hosted on
Amazon cloud. The sampled CPU utilization dataset was then used to tthilrdming algorithms after

which a forecast of the future CPU utilization on a 12 minute interval (the average boot up time for a new
VM instance) was carried out. The same training procedure was employed with the sliding window
technique which works bginchoring the left point of a potential segment at the first data point of a time
series, then attempting to approximate the data to the right with increasing longer segments [29].
Performance evaluatioof the two learning algorithms showed that Neural tWherk demonstrated
enhanced accurate prediction capability compared to Linear Regression.

OQur work aims at analyzing the problem of resourc:
the ability of the hosted application to make scaling decisiby not only evaluating the future resource

utilization but also considering business SLA metrics of response time and throughput; thus providing a
tripartite auto-scaling decision matrix. The prediction model that we used to achieve this in atieulti

web application is a set of machine learning techniqubleural Network, Linear Regression and Support

Vector Machine. These techniques would be evaluated using Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE) Root Mean Square Error (RRISEPRED (25).
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3 Methodology and Tools
In this section, we describe our methodology for predictive resource provisioning for-treultveb
applications using machine learning to develop the performance prediction model (Fig. 1). NN and LR have
been widelyexplored by several authors in building prediction models [13], [11], [19], and [9]. Recently
SVM, a powerful classification technique [11] has been gaining significant popularity in time series and
regression prediction [8], [10], and [14]. We introdubese learning techniques below.

3.1 Linear Regression

A linear regression model assumes that the regression fun@idi is linear in the inputd I8 hé .

It is simple and often provides an adequate and interpretable description of how the inputs affect the
output [45]. It is one of the staple methods in statistics and it finds application in numeridopiau
especially where both the output or target class and the attributes or features are numeric [47]. The linear
regression model has the form

O 1 B O .. ().

Thef ' s are the unknown p a thavardablesy ase the guartitatieef ifputscor e nt s
attributes. Typically, the parametersare estimated from a set of training datao o 8 & o [45],

[47]. Each® ho M8 o Tis a vector of feature measuremes for the'@h case. The most popular
estimation method is least squares, wherein we pick the coefficientst § M Tto minimize the

residual sum of squares (RSS) [58]

YYYY B ® Qv ? B & B o 2 @)

Linear regression is an excellent, simple scheme for numeric prediction. However, linear models suffer
from the disadvantage of nelinearity: if the data exhibits a nelmear dependency, théest fitting
straight line will be found [47].

3.2 Neural Network

A neural network (NN) is a twstage regression or classification model, typically represented by a network
diagram [58]. Several variants of neural network classifier (algorithm) exist, sombiai are; feed
forward, backpropagation, time delay and error correction neural network classiiecording to Trevor,

H. et al [45], there is typically one output unitat the top i.e.0  p for regression problems though
multiple quantitative responses can be handled in a seamless fashion. Derived featuaes created
from linear combinations of the input, and then the targetis modeled as a functioof linear
combinations of thed |,

Zm = d(agy, +ap,X),m=1,..., M,
Ty = Box + PiZ,k =1,... K, 3)
fk(X) = Qk(T],k =1,..,.K,

Where® ®,®, . ,and’Y “YRYM RY . The activation function 0 is usually chosen to be
the sigmoid, 0 ——. Sometimes, Gaussian radial basis functioesuaed for, 0 , producing what

is known as a radial basis function network [45]. The units in the middle of the network, computing the
derived featuresd , are called hidden units because the valudes are not directly observed. The neural
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network model has unknown parameters, often called weights, and we seek values for them that make
the model fit the training data well. The compl et

I h M pRRMBM O 1 p weightsandi i fQ pkBM 00 p weights (4)
For regression, the swwmf-squares errors is used as the error function [45]
Y— B B ® Qo 2 (5)
The generic approach to minimizing— is by gradient decent, called bapkopagation.

3.3 Support Vector Machine

According to Sak6.E et aJ40], Support Vector Machine (SVM) is a machine learning algorithm that uses

a linea hyperplane to create a classifier with a maximal margin. For cases where the data is not linearly
separable, the SVM maps the data into a higher dimensional space called the feature space. It has the
advantage of reducing problems of overfitting or logd@hima. In addition, it is based on structural risk
minimization as opposed to the empirical risk minimization of neural networks [30]. SVM now finds
application in regression and is termed Support Vector Regression (SVR). The goal of SVR is to find a
function that has at most (the precision by which the function is to be approximated) deviation from the
actual obtained target for all training data with as much flatness as possible [41], [42].

Given training datacffto ('Q pHB &, where xis an ndimensional input wittioN 'Y and the output
iswN Y, the linear regression model can be written as [22], [42]:

"Q® 0 who fooN Y Fov Y (6)
where Q@ is the target function and &8 denotes tre dot product iiY . To achieve the flatnes® is
minimized i.,es0$s = UM . This can further be written as a convex optimization problem: minimize

-0 $ subject to the constraint
® 0 ho ® -
o & o - (7)
Equation (7) assumes that there is always a funciihat approximates all pairs ofw o with -
precision. However, according to Dashevskiy and Luo [17]; this functignnot be obtainable thus
necessitating the introduction of slack variables [ © to handle infeasible constraints. Therefore,

equation (7) leads to

Minimize-s0ss +CB [ T° subjectto

@Q O O - 7
ol ® Q- f 8)
TR

The constan  Ttdetermines the tradeoff between the flatness otand the amount up to which
deviations larger than are tolerated. Equation (8) care reformulated and solved to give the optimal
Lagrange multipliers ¢ £ [(f with 0 andQgiven as

z

0 B | | ® and (9)
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b= - 0Ohow ©,®O®KE& Q are thesupport vectors (10)
Inserting (9) and (10) into (6) yields
MMw B | |7 o ® (11)
This generic approach is usually extended for nonlinear functions. This is done by replagthg © ;
a feature space that linearizes the relation betwaenand w [20].
Therefore, (11) can be weritten as:
Mo B | |70 o ® (12)
where 0 ®hd =<e¢ ® ,* o isthe so called kernel function.
The four basic kernels used are [20]:
Linear:0 oy @ ®
Polynomial:0 whe T[oow 19,7 T
Radial basis function (RBFj ol A @B s o) ,! T
Sigmoid:0 why OAT&@®® 1 .

= =4 4 =4

Wheref R & ¢ Qare kernel parameters

4 Setup of the Experiment

4.1 System Architecture

The cloud client prediction model for cloud resource provisioning in a multitier web application

environmenthas the following components in the overall architecture ({Fed.):

9 Client infrastructure: This is a HigliPU Instance with 1.7 GB of memory, 5 EC2 Compute Units (2
virtual cores with 2.5 EC2 Compute Units each) and 350 GB of instance storage. e TPC

emulator is executed on this infrastructure

1 Web server infrastructure: This is a 3.75 GB of memory, 2 EC2 Compute Unit (1 virtual core with
2 EC2 Compute Unit) and 410GB instance storage. The Java implementation of #4& TPC

benchmark is deployed on a Tomeeb server environment

1 Database server infrastructure: This is a 7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores
with 2 EC2 Compute Units each) and 850GB instance storage. MYSQL is the relational database

management system used.

N. number of clients

Figure 1. Architecture of the System

Copyright © Society for Science and Education United Kingdom



Samuel A. Ajila and Akindele A. Bankole ; Using Machine Learning Algorithms for Cloud Client Prediction Models in
a Web VM Resource Provisioning Environment . Transactions on Machine Learn  ing and Atrtificial Intelligence,
Volume 4 No 1 February (2016); pp: 28 -51

The Waikato Environment for Knowledge Analysis (WEKA) is used to train and test the three machine
learning techniques. WEKA is a Java data mining software that has a collection of machine learning
algorithms including SVR, NN and 2R.[In this work the Explorer application (a GUI option) which is an
environment for exploring data with WEKA is selected. The choice of WEKA is hinged on its open source
availability and rich suite of several learning algorithms including SVR, NN and LR.

4.2 Experimental Setup

4.2.1 Feature Selection

We base our prediction models on a continuous observation of a number of specific features [40]. The
following initial features are selected for the three target values (CPU utilization, response time and
throughput) RJ:

1 DiskReadOps: This metric identifies the rate at which an application reads a disk.

91 DiskWriteOps: This metric identifies the rate at which an application writes to a hard disk.

1 DiskReadBytes: This metric is used to determine the volume of the datpplieation reads from
the hard disk of the instance.

9 DiskWriteBytes: This metric is used to determine the volume of the data the application writes
onto the hard disk of the instance.

1 Networkin: This metric identifies the volume of incoming network traffian application on a
single instance.

1 NetworkOut: This metric identifies the volume of outgoing network traffic to an application on a
single instance.

1 Memory Utilized: This metric collects and sends the memory utilization excluding cache memory
and bufers.

1 Memory Available: This metric collects and sends available memory used by the operating system
and the application.

1 Swap Utilized: The amount of swap spaced utilized.

4.2.2 Data collection using TR® benchmark

TPGW has been used by several authors [128] for resource provisioning and capacity planning [39].
Similar to Sadeka et al. [39], a Java implementation ofVWWRRat emulates an online bookshop is used.

It is deployed on #wo-tier architecture as depicted in Fig. 1. The system resource mdikies<CPU
utilization and memory used are collected from the web server while the response time and throughput
are measured fr om-W lmea rénoie brewsdr enailator €RBHE) that allBWS a single
node to emulate several clients. The respotigee in this context is the time lag between when a page
request is made to the reception of the last byte of the HTML response page. Similarly, the throughput is
the total number of web interactions completed during an experimental run.-WP@as 14 web
interactions characteristics of which 6 belong to the Browsing category and the other 8 to the Ordering
category. The three workload mixes used by-WP®@rowsing, Shopping and Ordering are made up of a
combination of Browsing and Ordering categories.ikstiance, Browsing mix is made up of 95% Browsing
category (consists of 6 web interactions that make up the 95%) and 5% Ordering category (consists of 8
web interactions that make up the 5%). For this experiment, therNmber of clients in Fig. 1 refets
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the number of users participating in any of the three workload miXeble 2shows some randomly
selected workload mix used in the course of the experiments. During‘tite " minute, there are 84

Shopping mix users, 52 Browsing mix users andr82ridg mix users simultaneously making requests to

the Web server (a total of 188 user requests). Each workload mix runs for 7 minutes and the choice of this
time interval is intuitive as there is no documented time frame for how long workload mix shoul®y
adjusting the number of emulated clients in a random pattern, a changing workload that sends requests
to the web server in a continuous fashion throughout the duration of the experiment is created. Amazon

EC2 has a web service that enables momgprimanaging and publishing of various metrics [2]. The

traditional Topcommand in Linux is not used as this command give metrics for the underlying host and

not the actual instance [4]. Feature readings (defined in Section 1V) are collected every 6@ssegon
Java

s ome

the average

customi zed
get-stats CPUUtilizationstart-time 201301-08T19:17:06-endtime 201301-08T19:50:00-period 60--
a0FrdAaltADBRYSEB AN DS B&RNY INSHALBY &4 THd RA Pp&Inktd eturns

bat ch

scri

pts.

conceptual containefior metrics [2] and for this work the EC2 namespace is used.

Table 2-Experimental Workload Mix for Some Selected Time

Time
(minutes)
Shopping
mix users
Browsing
mix users
Ordering
mix users
Total user
Requests

1-7 | 56-
63

84 168
52 112
52 108
188 | 388

154- | 350-
161 357
16 180
36 320
28 224
80 724

490-

497
248

192

268

708

504-

511
160

160

160

480

For

Table 3 - Performance Metrics and their Calculations

Metric

MAPE (Mean Absolute

Percentage Error)

RMSE (Root Mean

Square Error)

MAE (Mean Absolute

Error)
PRED 25

Calculation

1 ai—py
=Y, La2il yhere a; and p; are the
n iy

actual and predicted values
respectively

VE(‘:;(“;—D.-):
n

1
;E?[LL [p: — ail

No. of observations with relative
error = 25% / No. of observation

readi ng--dimengans 6i0s stelcodh;d s w8 & B3 a0 S ¢

Theduration for the entire experiment is 532 minutes. The data is then used to build the prediction model
from which forecast can be made for future resource requirement and business level metrics of the web

server.

4.2.3 Feature reduction

The importance of selecty the right features for prediction modeling is very critical to reducing the

potenti al
can occur even if the prediction algorithm is optimal [40]. The Wek&[&8] is used to determine the
relevance of each feature in an instance to the target class (CPU, response time and throughput). Using
attribute selection functionality, the least correlated attributes are eliminated.

sour ce

4.2.4 Data preprocessing

of

error

as

t he

dat a

mi ni ng

pri

During this phas, the 6 input features (including CPU utilization, Response Time and Throughput) are
scaled to values between 0 and 1. Normalization or scaling is carried out by finding the highest value
within each input in the 532 dataset, and dividing all the valuiglsimthe same feature by the maximum
value. The main advantage for normalizing is to avoid attributes in greater numeric ranges dominating
those in smaller numeric range [16].

Co
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4.2.5 Training of Dataset

As discussed earlier, the goal of this work is to buildljpteon model that can forecast future resource
requirement (using CPU utilization) and two business level-&gponse time and throughput. Towards

this end, the normalized sampled dataset is used to train the prediction model. First, training with CPU
utilization as the target class is done using the three machine learning techniques discussed above. Next,
using the same dataset, models for both response time and throughput are trained. The meTiatdan

3 are used to evaluate both training and tewdiresults of the models. These metrics have been used by
other authors [28], [39], and since this work seeks to compare predicted and actual target values, these
metrics are good fit.

4.2.6 CPU utilization

1 Neural Network Using the Weka tool, the model is trath with the following parameters:
l earning rate p = 0.38, number of hidden | ayer
0.2 and epoch or training time =10000. These parameters gave the best results after several trials
based on simulations. Paranegt selection is usually based on heuristics as there is no
mathematical formula or theory that has been proposed to select the best parameters

9 Linear RegressiarThe Weka tool is also used to train the model. The only parameter set was the
ridge parameterwhich was set to the default of 1.6 The ridge parameter minimizes the
penalized residual sum of squares. The parameter controls the amount by which the regression
coefficients are shrank. The larger the ridge, the greater the shrinkage [45]. Vargingltre
during simulation had no significant impact on the target value.

1 Support Vector RegressiorSVR has four kernels that can be used to train a model. They are:
Linear, Polynomial, Radial Basis Function (RBF) and Sigmoid [30]. The four differdatvkemme
tried with RBF returning the most promising result with the least MAPE value. This is expected as
RBF can handle the case when the relationship between features and target value is nonlinear
[16]. Before training, the Grid Parameter Search for Begjon with cross validation is used (v
fold cross validation) [15] to estimate the C d&ndCrossvalidation is a technique used to avoid
the over fitting problem [16], [30]. The search range for C was betwedio 2°and that off
between 2'°and Z. These values are purely heuristics [16], [30]. The search returns the optimal
C and’ by using the Mean Square Error to evaluate the accuracy of the various C and
combinati ons. The best C and A was 14 and O0.C
trained with the Radial Basis Function (RBF) Kernel.

4.2.7 Response time and Throughput

The business SLA metrics were approached in a similar way as CPU utilization (above). For Throughput,
SVR’ s T&wveanad 8 and O0.009 r espectlayergHidden neNrbhs and | u e s
momentum were 0.4, 1, 3 and 0.2 respectively. Finally the ridge parameter for LR w&s AIBE, for
Response timewerQVR'.sO5C aanrdd 0. 009 respectively. N N
neurons and momentum wer0.5, 1, 3 and 0.2 respectively. The ridge parameter for LR wa8.1T@Bles

IV, V and VI list the final parameters used for training the SVM, NN and LR model.
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Table 4 - Final Parameters of the SVR CPU Table 5 - Final Parameters of The NN CPU Utilization and
Utilization and SLA Prediction Model SLA Prediction Model
Metric CPU | Respons | Throughput Metric CPU Response Throughput
Utilization e time Utilization Time
C parameter ‘ 2325 22-2% 2225 Learning Rate 0.38 0.5 0.4
searchrange | | Number of Hidden 1 1 1
y parameter 2el-2 2°10. 22 P02 Layers
searchrange | | | Number of Hidden 4 3 3
C 14 | 1.05 | 8 Neurons
) 4 ] 0.0092 | 0.009 | 0.009 Momentum 0.2 0.2 0.2

This step is very significant as it is possible to obtain impressive results fandrdata but dismal results
when it comes to testing. Furthermore, prediction accuracy is based on the held out test dataset. A
training-to-testing ratio of 60%:40% (319:213 minutes) was used as this gave the optimal prediction
output for the models after everal simulations. A 12 minute prediction interval is adopted. This is based
on reports from previous works [3], [32] regarding VM boot up time and motivation from the work of [39].
The prediction trend at the 9th, 10th, 11th and 12th minute is includedséection V to check for
consistency and reliability in the prediction models of SVR, NN and LR.

Table 6Final Parameters Of The LR CPU Utilization And !
Prediction Model

Metric CPU Response | Throughput
Utilization Time
Ridge Parameter 1.0E8 1.0E8 1.0e8

5 Simulation Results and Analysis
This section presents the results of the various experimental simulations for determining the prediction
capability of the three machine learning techniques: SVR, NN and LR. The objective is to evaluate the
accuracy ofhe selected machine techniques in forecasting future resource usage for random workload
traffic patterns over an extended period of time. In addition, the inclusion of business level metrics to the
prediction is considered. Results include both training test datasets.

5.1 Linear Regression Models

5.1.1 CPU utilization training and test results

Table 7shows the training and testing performance metric results for the LR. Furthermore, Fig. 2 and 3
present the graphical representation of the actual and predic@lJ utilization for the 319 minutes of

training and 213 minutes of testing respectively. The training MAPE value was about three times that of
testing. The reason for this is that the trainini
instarce, at the 137 minute, the CPU utilization is approximately 65 percent and this falls to about 5

percent at the 139 minute. Fig. 2 shows this graphically. Aside the test model MAPE result, the other

three metric values are worse than the training modesult. The reason for this is attributed to the

negative predicted values and also the general poor forecasting ability of LR idiaewrtrafficpattern

as captured in Fige 3.
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Table #CPU Utilization Training and Test Table 8Throughput Training and Test Performance
Performance Metric Metric
Model MAPE | RMSE MAE | Pred(25) Model | MAPE| RMSE| MAE Pred(25)
Training | 113.31| 14.70 | 11.11 0.51 Training | 75.25| 4.45 | 3.22 0.57
Test 36.19 | 22.13| 15.98 0.36 Test 24.62| 3.72 | 2.87 0.63
CPU Training for LR CPU prediction for LR
£” i ] Al
i h = Artual CPLI Litdizatio E N ; g a3 o Actual CPU
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5.1.2 Throughput training and test results
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and 5 present the graphical representation of the actual and predicted Throughput values for both training
and test dataset respectively. The training and test interval are the same as that of CPU Utilization. All test
metric results are better than training results. The variances in the actual and predicted values are not as
wide as that of CPU utilization.dan also be observed that there are more spikes in the training dataset
than in the test dataset, thus further making the test result better than the training result. Fig. 5 shows

the Throughput forecast.

5.1.3 Response time training and test results

TheRespores ti me’ s traini

ng

and

test

pable 9 FarthemaorecFgy. me t r i

6 and 7 present the graphical representation of the actual and predicted Response time values for both
training and testing dataset respectively. The differemcthe training and test results is very close as the
traffic patterns are almost similar. The accuracy for this metric is very impressive, though it can be said
that the variance between the actual and predicted values are lower than that of the CPéatiotiliZ he
minimum and maximum response timalues are between-12 seconds.
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Table 9 - Response Time Training and Test Table 10 - CPU Utilization Training and Test
Performance Metric Performance Metric
Model MAPE | RMSE | MAE | PRED(25) | | Model @ MAPE | RMSE MAE | PRED(25)
Training | 17.58 | 124 0.81 0.90 Training | 105.63 | 14.08 | 9.48 0.59
Test 12.35 13 111 0.91 Test 50.46 | 31.08 | 19.82 0.34
Response time Training for LR Response time prediction for LR
i | i
‘é | o
g : —— Actusl Responss tme E — Al Rasponsa ime
E ’ —‘—Ured»&!e::ewrmu time = === Pradicted Rasporea tima
i f q I
| |
o 50 100 :-I':'G‘I“Mimf:b:l‘ 50 o 350 Time (Minutes)
Figure 6. Response time Actual and Predicted Figure 7. Response time Actual and Predicted te
training output using LR output using LR
CPU Training for NN CPU predietion far NN
g _‘: ——Adual CPY Lk limdion i ‘ s Apwpl OPY
E m— Fredicted CPU LETzaion 8 —— e P
" Ll
= 60 hr_ﬂ:: 156 300 =50 = = Tln:::llulnurul e e

Figure8. CPU Utilization Actual and Predicted Figure9. CPU Utilization Actual and Predicted te:
training output using NN output using NN

5.2 Neural Network Models
5.2.1 CPU Utilization training and test results

The CPU utilization training and test performance metric results for NN model is shdabl&iO0. Fig. 8

and 9 present the graphical representation of the actual and predicted CPU utilization for the 319 minutes
of training and 213 minutes of testing respectively. The training MAPE value is also very high and the
reason for this is similar to thexplanation given in subection on LR. It is also observed that the test
dataset has some series of negative values in its prediction as shown in Fig. 9. The number of negative
predicted values which is more than that of LR contributed to the poorer testiovalues.

5.2.2 Throughput training and test results

The Throughput’s training and t @ablellpeaddifioo,Fi;mdh ce me
and 11 present the graphical representation of the actual and predicted Throughput values for both
training and test dataset respectively. Comparing
metric values are quite better than the training model. Some predicted throughput values in the training

model are negative (Fig. 9). However, negagixediction is absentfor the test dataset (Fig. 10).
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Table 11- Throughput Training and Test Performanc Table 12- Response Time Training and Test
Metric PerformanceMetric
Model MAPE| RMSE| MAE | PRED(25 Model MAPE | RMSE| MAE | PRED(25
Training | 56.46 | 6.85 4.96 0.30 Training | 36.28 | 3.51 2.38 0.58
Test 38.90( 6.12 4.46 0.47 Test 17.84 2.02 1.64 0.75

5.2.3 Response time training and test results

The Response time’s tr aicnmasuitggareshodn in TaldetlPughermdrep r ma n c e
Fig. 12 ad 13 present the graphical representation of the actual and predicted Response time values for
both training and test dataset respectivel y. The
training model as Fig. 12 shows more erroneous predidiian Fig. 13. That is, the high training metric

values (MAPE, RMSE and MAE) are attributed to the large variations in some predicted and actual
Response time as shown in trig12.
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Figure 12 Response time Actual arfredicted Figure 13 Response time Actual and Predicted te
training for NN for NN

5.3 Support Vector Machine (Regression) Models

Similar to the two pevious subksections, CPU utilization, Throughput and Response time training and
testing dataset results are presented.

5.3.1 CPU Utilization training and test results

The CPU utilization training and test performance metric result$Y¥@R model is shown in Tali3 Fig.
14 and 15 present the graphical representation of the actual and predicted CPU utilization for the 319
minutes of training and 213 minutes of testing respectively. As discussed in previessdigns (LR and
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NN), the training model also hadvary high MAPE value (107.8). A significant improvement is however
observed in the test dataset metric. Fig. 15 shows that all predicted values are positive and very close to

the actual values. However, some sudden spikes result itistantial variatiorin values.

Table 13 - CPU Utilization Training And Test

Performance Metric

Model MAPE RMSE | MAE | PRED(25)
Training | 107.80 | 15.48 | 10.09 0.64
Testing 22.84 11.84 | 8.74 0.64

Table 14 - Throughput Training and Test Performance

Metric
Model MAPE RMSE MAE PRED(25)
Training 78.78 4.74 2.80 0.70
Testing 22.07 3.22 2.41 0.67

5.3.2 Throughput training and test results

The

Throughput ' s

for about 12 minutes before the gap was closed.
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present the graphical representation of the actual and predicted Throughput valubstiotraining and

test dataset respectively. The significant difference in the training and test MAPE value is also attributed
to the spikes as shown in Fig. 16. For instance, at thd' 2%i@ute, the actual Throughput value is
approximately 16 requests/send while at the next minute; it drops toapproximately 1.8
requests/second. The preded value at this point is abol6 requests/second. The large variation lasted
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Throughput prediction for SVR
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Figure 15. CPU Utilization Actual and Predictet
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5.3.3 Response timdraining and test results

The Response time’'s

18 and 19 present the graphical representation of the actual and predicted Response time values for both
training and testdataset respectively. The training and test models present similar metric values. The
graph in Fig. 18 shows some variation in the predicted and actual Response time values especially between
the 140" and 160" minute and also towards the end of the trag dataset. In the case of Fig. 19, test
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dataset, the predicted values follow the trend of the actual values. Less traffic surge is also observed in
comparison to Fig. 18. Again, the range of the test dataset is between 5.5 and 12 seconds unlike the wider
range for the training dataset (1 to 12 seconds). Therefore, the test metric output result is much better
than that of the training.

5.4 Comparison of Prediction Models

The overall CPU utilization values range from 1.73% to 85.96%. The tdatisgt presated in Tables

7, 10 and 13how that the MAPE values are above 100 percent with LR having the highest of 113.31. This
abnormally high performance metric value is attributed to the fact that the traffic pattern of the workload
for the experiment is randonfor instance, at the 140minute, there is a drop from 65% to about 5%
CPU utilization. This drop lasted for about 40 minutes after which it surged again. The training behavior
of the three models (SVR, NN and LR) for this scenario is shown in Figce20bé observed that NN
shows a zigzag prediction pattern between the 3@ about the 15% minute after which it gave a near
perfect prediction of the CPU utilization. SVR and LR present a better and stable CPU utilization prediction
than NN duringhiis same interval. Isolating this randomness would significantly reduce the MAPE values;
however, one of the goals of this work is to study how these learning techniques would perform in an
almost realistic workload scenario. The PRED (25) metric foreépdRed the highest value of 0.64 or

64%. More importantly, the forecasting (prediction) ability of these techniques gives a more interesting
trend.

Table 15 Response Time Trainirapd Test Table 16- CPUUtilization Step Prediction For
PerformanceMetric MAPE
Model MAPE| RMSE| MAE | PRED(25) | Model | 9-min | 10-min | 11-min | 12-min
Training | 19.24 | 1.43 | 0.88 0.84 SVR 22.31 | 22.69 | 22.78 | 22.84
Test 9.92 1.21 | 0.87 0.93 NN 53.07 | 49.90 | 45.62 | 50.46
LR 34.43 | 35.14 | 35.92 | 36.19
Response time Training for SVR Response time prediction for SVR
if_
G P i i R ——
i Ak Acmens: e i,
i i _.
- rw I.‘iM;.' n u ”I:-f:hl N 480 [2]]
Figure 18. Response time Actual anEredicted Figure 19. Response time Actual and Predicted
training for SVR test for SVR
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SVR significantly outperforms the other two models when MAPE, RMSE and MAE performance metrics
are considered. Interestingly, the test dataset was made up of short burst oldwglCPU utilization as

shown in Fig. 3, 9 and 15. The generalization capability of SVR is brought to fore as it is the least susceptible
to the high/low test dataset values that should result in poor forecasting output. NN and LR reports
negative CPU utdation, an anomaly that exposes their weakness in random workload forecasting. The
MAPE and RMSiteppredictions in Tables 16 and i&spectively show a prediction reliability of SVR and

LR as opposed to NN. SVR yields the least MAPE, RMSE and MAEemrfore, a conclusion may be

drawn in favor of SVR as the strongest and superior prediction model for CPU utilization with LR following
closely.

Moving on to the business level metrics of which the Throughput model is analysed first; the throughput
values had a range between 1.25 and 21 requests/second. Again, Fig2@eshows the selected
throughput training result between the 132and 18¢" minute. The SVR and LR models could not adjust
immediately to the sharp drop at the 1#inute thus accountig for the high MAPE value. SVR and LR
took about 12 minutes to significantly reduce the variance between the predicted and actual throughput
values though LR’'s prediction was not as close to
prediction values for NN even though NN had the best training MAPE value of 56.46. Fig. 21 explains the
reason for this as though NN had some negative predictions, the variance between predicted and actual
throughput is the least. The step prediction outputs fiest datasé are summarised in Tables 18 and 14

The dataset is also a mix of high and low throughput values corresponding to the random workload
pattern employed in this work. SVR metrics proved to be the best by displaying a strong generalizing
attribute, i.e. using the trained model to forecast unseen data (test) in afiiomg manner. Fig. 5, 11 and

17 show the graph plots of the forecasting ability of LR, NN and SVR respectively. LR comes seabnd behin
SVR.

Table 17 - CPU Utilization Step Prediction For Table 18 - Throughput Step Prediction for MAPE
— IORM?E — Model | 9-min | 10-min | 11-min | 12-min
ode -min -min -min -min
SVR 11.86 | 11.96 11.92 1184 SVR 21.38 21.62 21.80 22.07
NN 3156  29.69 27 64 31.08 NN 38.84 | 36.87 37.39 38.90
LR 20.97 | 21.43 21.84 22.13 LR 25.60 25.25 25.01 24.62
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Table 19 - Throughput Step Prediction For RMSE
Model | 9-min | 10-min | 11-min 12-min

SVR 3.17 3.18 3.20 3.22
NN 5.94 5.94 5.97 6.12
LR 3.78 3.75 3.73 3.72

Finally on the business level metric wherein Respoime model is analysed; the overall Response time
value had a range from about 0.6 to 12 seconds. From the results obtained for thiataset presented

in Tables 9, 11 and 15VR performed best in comparison to LR and NN. Furthermore, the step predictio
output for the test dataset shown in Tables 20 andr2¥eals the superior prediction capability of SVR.

Fig. 19 shows the prediction trend for SVR. The test result shows an impressive forecasting behaviour for
the test dataset for SVR. LR had a bettergod i ct i on result than NN. LR and
can be seen to be close to that of SVR. The reason for this is the seemingly closeness of the dataset to a
linear pattern unlike the throughput and CPU utilization. Furthermore, with less eajaomes the
tendency of linearity; an area LR and NN performs well. Response time model has the least range
difference in comparison to CPU utilization and Throughput. In spite of this, SVR still shows superiority
across board. The prediction consisteinf\5VR is also brougto fore in Tables 20 and 21.

Table 20 - Responsen;ll';\n;: Step Prediction for Table 21 - Response Time Step Prediction For RMSE
Model | 9-min | 10-min | 11-min = 12-min Model | 9-min | 10-min | 11-min | 12-min
SVR | 10.99 | 11.07 1049 | 9.92 SVR 1.28 1.27 1.25 1.21
NN | 1573 | 16.40 | 17.09 | 17.84 NN 1.85 1.9 2.00 2.02
LR | 11.81 | 12.08 | 12.17 | 12.35 LR 1.37 1.39 1.39 1.39

5.5 Sensitivity analysis

Inthissubs ecti on, the wvalidity of the exper i omerst al re
(user requests) arrive at the system (web server)
states that the average number of users in a system is equal to the departure rate of the user requests

from the system multiplied by thaverage time each user request spends in the sysfEnis can be

summarized as [42]:0 _Y... ( 14 ) § = nuinberokusers in the systenkthroughput andY =

Response time

Little s Il aw is quite general and requires few as:
an arbitrary set of components suchas CPU. Usingt t | e’ s | aw, the consi stenc)
obtained from the experiment can be validated. Due to the large sample space (53%odfatts), the data

from Table 2s used as subset of the entire dataset in checking the consistency of the measiidsia.

From equation (14), the Number of users in the system is the Total User Request; the departure rate is

the Throughput. The average time spent in the system is calculated and compared with the response time
measured experimentally. During thé' fo 7" minute interval, the average throughput measured was

5.29requests/second. The average number of users during this time intervalXis¢ BUsing

equation p T, the average time spentir%— Vi QE¢. THR measured average resporisee during
this period was 4.66 seconds. The percentage variance would be:
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WOl QO EQ wp T.WVith this example, Table 22 completed.

Table 22- Data Consistency Measurement

Time (minute) 1-7 56-63 154161 350-357 490497 | 498503 | 504511
Average total user | 27 (188/7) 55 11 103 101 95 69
requests (388/7) (80/7) (72417) (708/7) (664/7) (480/7)
Average 5.29 10.52 2.47 15.92 10.00 12.23 13.27
Throughput

(Requests/second)

Average time spent 5.10 5.23 4.45 6.47 10.01 7.77 5.2
(seconds)

Measured time 4.66 4.92 9.92 7.53 9.06 9.01 9.45
spent

Time variance (%) 9.44 6.31 55.14 14.08 10.49 13.76 44.97

It can be observed that the results a&ti54"-1615' minute and that of the 504-511" minute had a high
percentage variance. While the period between 11 minute duration has an acceptable average
throughput (based on numbers of user requests), the latter {(604) has an unusually highexage
throughput for the number of users during the 7 minute window. For the5D# time interval, the logical
explanation for this anomaly could be that the web server is still processing user requests from the 498
503 window when the 50511 user requesbatch started sending requests. The measured response time
also shows that more requests i.e. greater than the actual average of 69 users must have been requesting
for service at the web server. However, the anomaly during theIl¥4window could be atibuted to
experimental error.

6 Conclusion
In this work, three forecasting models are built using Linear Regression (LR), Neural Network (NN) and
Support Vector Regression (SVR) for atieoTPGWVN web application. Asides from the traditional single
metric prediction using CPU utilization, the monitoring metric is extended to include response time and
throughput (business SLA metrics). This tHigsor combination in the prediction model provides a
broader view of the QoS. The user workload traffic empdbie random, an approach to simulate a
realistic workload pattern. After an extensive simulation lasting about 10 hours, the three machine
learning techniques are trained and validated with 60% and 40% of the historical dataset respectively. The
performance of SVR, LR and NN are measured using foucsm&tAPE, RMSE, MAE and PRED (25).

Overall, Support Vector Regression (SVR) model displayed superior prediction accuracy over both Neural
Network (NN) and Linear Regression (LR) #12 ®inute window. Specifically and in terms of the MAPE
performancetest metric the following key observations from the simulation results are presented.

1 In the CPU utilization prediction model, SVR outperformed LR and NN by 58% and 120%
respectively

9 For the Throughput prediction model, SVR again outperformed LR and NI2%yand 76%
respectively; and finally,

1 The Response time prediction model saw SVR outperforming LR and NN by 26% and 80%
respectively.

1 The clear prediction superiority of SVR shows strong generalization ability inlaneanmodel
(randomlike workload ttern). SVR can optimally map the nlimear input data to a higher
dimension feature space via the Kernel function (RBF in this case), then perform linear regression
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in the higher dimensional feature space [41]. The absence of the Kernel function ivd LliNa
makes it difficult for them to perform well in ndimear models.

Therefore, based on these experimental results SVR may be accepted as the best prediction model.
Consequently, cloud clients can employ SVR to build their prediction models. Furtkethmaddition

of business level SLA metrics (response time and throughput) into the prediction model paves the way for
a threefactor combination decision matrix for scaling VM resources. The inclusion of response time and
throughput further broadens theriew of the QoS of client applications as these business level metrics
may have degraded long before an application reaches its set CPU utilization threshold.

In this study, forecasting future resource usage using machine learning techniques has shmiging
results. However, some areas have been identified for further research and they are presented in this
section.

1 This study has focused only on the web server tier. Further work to include the database tier may
be worth investigating. With this ingdion, unsaturated/saturated webserver and database
combination can be modeled and subsequent forecasting made using the same machine learning
techniques.

1 Investigating the combination of SVR and other predicting techniques that may further increase
the prediction accuracy is another future direction.

1 In order to further validate the forecasting strength of machine learning techniques and
specifically SVR, the use of other application workloads that are not web based is another
interesting investigation tht may be pursued.
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