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ABSTRACT 

This paper aims to build a neural network model to optimally design two-span continuous reinforced 

concrete beams. The training and checking data of the neural network are obtained by genetic algorithms, 

whose constraints are built according to the ACI Building Code and objective function is to find the 

minimum cost of longitudinal reinforcement, stirrups and concrete. The neural network adopted in this 

paper is the feed forward back propagation network, whose input vector consists of the span, width and 

effective depth of the beam, dead load, compressive strength of concrete as well as yield strength of steel 

and the output vector the positive and negative steel ratios and minimum total cost. The correlation 

coefficients between the target and network output of the testing data can reach as high as 0.9992, 0.9980 

and 0.9999, respectively for the positive and negative steel ratios and minimum cost. Compared with the 

adaptive neuro-fuzzy inference system, the neural network shows almost the same accuracy but is much 

easier implemented.  

Keywords: Continuous reinforced concrete beams, Genetic algorithms, Feedforward backpropagation 

networks, Correlation coefficients. 

1 Introduction 

Genetic algorithms are search procedures which mimic biological evolution. They can solve the 

optimization problems by the evolution theory of “survival of the fittest,” whose constraints can be in the 

form of linear equality or inequality with bounds on the optimization variables. In 1970s, Professor John 

Holland first formally introduced its basic concept [1]. In 1989, Goldberg described in more detail the 

theory, terminology and its applications on machine learning and optimization [2]. From then on, the 

genetic algorithms became more attractive and widely used. Genetic algorithms have a variety of 

applications in fields like engineering, chemistry, economics, manufacturing and so on. Take civil 

engineering as an example. Many publications have been seen, such as multiobjective optimization of 

trusses [3], reliability analysis of structures [4], global optimization of grillages [5], global optimization of 

trusses with a modified genetic algorithm [6], optimization of pile groups using hybrid genetic algorithms 

[7], locating the critical slip surface in slope stability analyses [8-10], optimal design of reinforced concrete 

beams [11], etc. 

Neural networks, as used in artificial intelligence, have traditionally been viewed as simplified models of 

neural processing in the brain. They are a computational tool based on the properties of biological neural 

systems, which are simplified models of neural processing in the brain and could capture and represent 

complex input/output relationships. The motivation for the development of neural network technology 
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arose from the desire to have an artificial system to perform intelligent tasks similar to those done by 

humans. The artificial neural network was originated by McCulloch and Pitts in 1943 [12], which paved 

the way for neural network research. Rosenblatt [13] created the perceptron, an algorithm for pattern 

recognition based on a two-layer learning computer network using simple addition and subtraction. Also 

key later advance was the backpropagation algorithm by Werbos in 1975 [14]. In 1986, Rumelhart et al. 

[15] proposed the theory of parallel distributed processing that computed through the parallel 

cooperative and competitive interactions of a large number of simple neuron-like processing units in 

contrast to conventional programs that computed through the sequential application of stored 

commands. They developed the most famous learning algorithm to modify the weights on connections 

between these units so that the global error minimum could be achieved, which marked a milestone in 

the current artificial neural networks. Since then, a huge proliferation in the ANN methodologies and 

applications have been published, such as control of chaotic pendulum [16], flood forecasting [17], 

structural optimization [18-20], facilitating the accurate estimation of probabilistic constraints in 

optimization problem [21], frame optimization [22], traffic sign classification [23], modeling the financial 

market with multiple prices [24], etc.  

2 Genetic Algorithms and Neural Networks 

Because genetic algorithms could deal with high nonlinear constraints and neural networks could build 

complicated nonlinear relationships between inputs and outputs, this paper combines these two 

techniques to optimally design two-span continuous reinforced concrete beams and compares the results 

with the previous work [11], which uses the adaptive neuro-fuzzy inference system [25]. 

2.1 Genetic Algorithms 

The genetic algorithm belongs to the field of artificial intelligence, which is a heuristic and multi-point 

search that imitates the course of natural selection. Without the need to find the derivatives of the 

objective function, it can solve optimization problems by the skills similar to natural evolution. To start 

the algorithm, the initial population of candidate solutions is generated at random across the search 

space, and then a sequence of new populations is produced. First, evaluate the fitness value of each 

member; Secondly, select members called parents according to their fitness, where fitter members are 

more likely to be chosen; Thirdly, retain a specified number of individuals, called elites, which have fittest 

values. They will pass to the next population unchanged; Fourthly, produce children by combining the 

vector entries of a pair of parents, i.e., crossover, where offspring under “crossover” will combine parental 

traits and will not be identical to its parents; Fifthly, make random changes to a single parent, i.e., 

mutation, which is more like walking randomly in the vicinity of a candidate solution; Finally, replace the 

current population with the crossover and mutation children and elites to form the next generation. The 

above steps are repeated until a terminating condition is met.  

 The optimization problem for two-span continuous reinforced concrete beams discussed in this paper 

can be formulated as follows:  

Minimize f(x)  

to find x 

subject to  
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Ci(x) 0,  i=1,…, m 

Cj(x) =0,  j=1,…, n 

LB  x  UB 

(1) 

where x is the vector of design variables, Ci(x) and Cj(x) represents the nonlinear inequality and equality 

constraints, respectively, f(x) is the fitness function, which is the total cost of concrete, longitudinal 

reinforcement and stirrups, and LB and UB are the vectors of lower and upper bounds of design variables, 

respectively.  

2.2 Artificial Neural Networks 

The neural network used in this paper is the two-layer feedforward backpropagation network, whose 

structure is shown in Figure 1. The transfer function of the single hidden layer is the tan-sigmoid function  
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where k is the number of the neurons in the hidden layer, neti=wi1P1+ wi2P2+…+wiRPR+ bi, P1, P2,…PR are 

the inputs, R is the number of elements in the input veator, wi1 , wi2 ,…, wiR  are the weights connecting the 

input vector and the ith neuron, and bi is the bias of the ith neuron in the hidden layer. The output layer 

uses the linear transfer function  

q,...,,i,Net)Net(fO iii 21  
(3) 

where Neti=Wi1a1+ Wi2a2+……+Wikak+ Bi, Wi1,Wi2,…,Wik are the weights connecting the neurons in the 

hidden layer and the ith neuron of the output layer, Bi is the bias of the ith output neuron and q is the 

number of the network outputs. The square error between the network outputs and the targets can be 

expressed as   

2

1

)( jj

q

j

P atE 


 (4) 

 

Figure 1 The structure of two-layer feed forward back propagation neural networks 

where tj and aj are the jth target and network output, respectively, and p is a particular input-output pair. 

For the whole training set, the mean square error is given by  
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where m is the total number of training pairs. The Levenberg-Marquardt algorithm [26-28] is chosen as 

the training function to minimize the mean square error (i.e., the network performance function). If a 

tentative step increases the performance function, this algorithm will act like the gradient descent 

method, while it shifts toward Newton’s method if the reduction of the performance function is 

successful. It interpolates between the quasi-Newton’s algorithm and the gradient descent method; 

therefore, the mean square error in Eq. (5) will always be reduced at each iteration.  

 In order to generalize the network, the validation set is also presented to the network during the training 

process. When the network begins to overfit the training data, the error on the validation set typically 

begins to rise. Once the validation error increases for a specified number of iterations, e.g., 6 iterations, 

the training terminates and the weights and biases corresponding to the minimum of validation error are 

returned. 

3 Design of Two-Span Beams and the Constraints 

Based on the provisions of the ACI Building Code Requirements for Structural Concrete and Commentary 

[29], the constraints for the two-span continuous beam are formulated, taking into account the strength 

requirements of the maximum positive and negative moments, shear, the service requirement of 

deflection as well as the development length of flexural reinforcement. Design variables are the width b, 

-span continuous reinforced 

concrete beams. The beams considered in this paper are subjected to a uniformly distributed load wu 

=1.2 wD+1.6 wL , as shown in Figure 2, where wD and wL are dead load and live load. The beams with 

span length L are singly reinforced and vertical stirrups are used. Top reinforcement in the negative 

moment region will be cut off, while there are no cutoffs for the bottom reinforcement to simplify the 

design, as shown in Figure 3. Force and length are measured in the units of kgf (=9.81N) and cm, 

respectively, for the following formulas. 

3.1 Shear 

Suppose that Vc is the shear capacity of the plain web concrete and Vu is the factored shear force. The 

shear diagram of the two-span continuous beam is shown in Figure 2, where VA=0.375wu L=VE and 


CV

=0.625wu L=
_

CV . First, consider the segment AB in Figure 2. The design of web steel for shear may be 

considered by dividing the shear diagram into four regions: (1) Region I: If cu VV  5.0 , where  =0.75 is 

the strength reduction factor, there is no need for shear reinforcement; (2) Region II: If cuc VVV  5.0

, a minimum web steel area 

)
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,2.0(
yy
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f
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(6) 

is the yield strength of steel. According to the ACI code, the spacing s must not be larger than Min (d/2, 

60) cm. Because the size of stirrups is usually fixed along the span of the beam, the spacing  
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must be satisfied by combining Eq. (6) and the requirement of Min (d/2, 60) cm; (3) Region III: If 

cuc VVV 3 , web reinforcement  

c
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s V
V
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
  (8) 

has to be provided to carry the difference and the spacing  

cu

yv

VV

dfA
s




  (9) 

 

Figure 2 Two-span continuous reinforced concrete beam 

 

Figure 3 The top and bottom reinforcement in the left span 

must not be larger than Min (d/2, 60, 
bf

fA

c

yv

2.0
, 

b

fA yv

5.3
) cm; (4) Region IV: If cuc VVV  35 , the web 

reinforcement in Eq. (8) similarly has to be provided to carry the difference, but the spacing s in Eq. (9) 

must not be larger than Min (d/4, 30, 
bf

fA

c

yv

2.0
, b

fA yv

5.3 ) cm. 

Web reinforcement for segments BC, CD and DE shown in Figure 2 will be arranged in the same way as 

the segment AB. Because the reaction in the direction of applied shear introduces compression into the 
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end regions of a member, the critical section is taken at a distance d from the face of support. If the 

factored shear force Vud at a distance d from the face of the support is larger than 5Vc, the beam section 

has to be enlarged. Therefore, another constraint is given by 

cdu VV  5  
(10) 

After the spacing for each region is found, the total number of vertical stirrups can be computed right 

away.  

3.2 Bending Moment 

The moment diagram can be seen in Figure 2. The maximum positive moment is MB = 9wuL2/128 located 

at 0.375L from A (or E) and the negative moment at the support C is Mc=0.125wuL2. For simplicity, the 

strain t in the tension reinforcement is assumed to be equal to 0.005; therefore, the section is tension-

controlled and the strength reduction factor for moment is fixed at 0.9, not a function of strain in the 

tension reinforcement any more. The constraint for both positive and negative moment then takes the 

form   

005.0,nu M0.9M   (11) 

where Mu is the factored negative moment MC or the factored maximum positive moment MB, and  
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where the area of reinforcement  

8
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due to the net tensile strain of 0.005 in the extreme tensile reinforcement, and 1 is the stress block depth 

factor. To prevent sudden failure with little or no warning when the beam cracks or fails in a brittle 

manner, the ACI code limits the reinforcement ratio to be between  
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where max in Eq. (14) is to make sure that the tensile strain must be greater than or equal to 0.004. 

Therefore, the constraint for reinforcement ratio is given by 

maxmin   (16) 
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where  is the steel ratio 1 for positive moment MB or the steel ratio 2 for negative moment Mc . 

3.3 Development of Reinforcement 

The ACI Code stipulates that at least one-third of the total tension reinforcement provided for negative 

bending moment at the support should extend beyond the inflection point (P.I) not less than the effective 

depth d of the member, 12db, or 1/16 of the clear span, as shown in Figure 3. The inflection point P.I. is 

located 0.25L from the support. For practical purposes, let span length L  clear spam. Therefore, the 

length of top reinforcement in Figure 3  

dbpitop )
L

,d,d(MaxL.L.  
16

12250250  (17) 

where d  is development length of tension reinforcement and db is the nominal diameter of the 

horizontal longitudinal bar.  

3.4 Immediate and Long-Term Deflections 

Because the deflection of the beam can be magnified by creep and shrinkage, both immediate and long-

term deflection must be considered according to the ACI code. The creep and shrinkage deflection under 

sustained load can be evaluated using a multiplying factor 






501
 (18) 

where  is the compression reinforcement ratio at midspan for simple and continuous beams and  is a 

time factor that is taken as 1.0 for loading time duration of 3 months, 1.2 for 6 months, 1.4 for 12months 

and 2.0 for 5 years or more, respectively. Suppose that the beam considered in this paper will support 

partitions and other construction likely to be damaged by large deflections. Hence, the long-term 

deflection  

480

L
DiLiLT   (19) 

where iL is immediate live-load deflection and iD is immediate dead-load deflection under service 

loading. 

4 Numerical Results 

Given the span length, uniformly distributed dead and live loads, compressive strength of concrete and 

yield strength of steel of the two-span continuous singly reinforced concrete beams with rectangular 

cross-section, the optimal design is accomplished by using the genetic algorithm, whose design variables 

are the width b, effective depth d, positive steel ratio 1 and negative steel ratio 2, and the objective 

function is to find the minimum cost of concrete, longitudinal reinforcement and stirrups in New Taiwan 

Dollars. The unit prices are 1800 NT$/m3 and 19.5 NT$/kgf for concrete and steel, respectively, in Taiwan. 

The concrete cover for the reinforcement is 4 cm and No. 3 vertical stirrups are used. On the basis of 

materials often used in Taiwan, this paper uses three kinds of yield strength fy of the tension 

reinforcement: 2800 kgf/cm2 (40 ksi), 3500 kgf/cm2 (50 ksi) and 4200 kgf/cm2 (60 ksi) as well as three 

kinds of compressive strength fc of the concrete: 210 kgf/cm2 (3000 psi), 280 kgf/cm2 (4000 psi) and 350 
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kgf/cm2 (5000 psi). Besides, three kinds of span length: 6 m, 8 m and 10 m and four kinds of uniformly 

distributed dead load: 2100 kgf/ cm, 2300 kgf/cm, 2500 kgf/cm and 2700kgf/cm are adopted; uniformly 

distributed live load is fixed at 1800 kgf/cm. Hence, there are totally 108 cases to be designed, which will 

be used as training, validation and testing data for the neural networks.  

4.1 Genetic Algorithms 

The Global Optimization Toolbox based on MATLAB [30] is employed to execute the genetic algorithm, 

where some parameters are specified as follows: the population size 20, crossover rate 0.8, and elite 

number 2. In addition, all the individuals are real-number codes; “Rank” is taken as the scaling function to 

scale the fitness values; “Roulette” is the selection function to choose parents for crossover; “Two-point 

crossover” is the strategy to produce offspring; The mutation function “Adaptive Feasible Function” is 

applied to avoid being trapped into the local minimum. The genetic algorithm is executed 30 times for 

each case, from which the minimum cost is singled out. Then, the total 108 optimal sets of data are 

randomly divided into 3 groups: 64 training sets (60 %), 22 validation sets (20 %) and 22 testing sets (20 

%).   

4.2 Feedforward Backpropagation Neural Networks 

This paper applies the Neural Network Toolbox based on MATLAB [31] to build the neural network, whose 

inputs of the neural network consist of six elements: fy, fc, wD, L, b as well as d, and targets have three 

components: the minimum cost, the steel ratios 1 and 2. Because the input vector has six elements, the 

number of neurons in the hidden layer is first set to be six by the past experience. The Levenberg-

Marquardt algorithm is chosen to train the neural networks. The training process is shown in Figure 4. The 

weights and biases at epoch 64 are returned to the trained network. After the training of the network is 

completed, the testing set is then used to examine the network performance. The graphs of the network 

outputs and targets are plotted in Figs. 5-7. The inputs, targets and network outputs of the 22 sets of the 

testing data are listed Table 1. To further evaluate the performance of the trained network, this paper 

makes use of a linear regression analysis between the network outputs and the corresponding targets. 

The scatter plots are shown in Figs. 8-10. The regression results of the steel ratios 1 and 2 and the 

minimum cost (103 NT$) are shown in Table 2, where the symbols m, b and r stand for the slope, the y-

intercept and correlation coefficient, respectively. The correlation coefficients between the network 

output and target are 0.9992, 0.9980 and 0.9999, respectively for the positive and negative steel ratios 

and minimum cost. Besides, the slope m is close to 1 and y-intercept b approximately equals 0. Based on 

Figs. 5-10 and Table 2, the performance of the feedforward backpropagation networks can be considered 

excellent, which is as good as the adaptive neuro-fuzzy inference system. The networks with 12, 18 and 

24 neurons in the hidden layer are also explored for comparison with 6 neurons. Their linear regression 

results can be seen in Table 2, which indicates that even the number of neurons used in the hidden layer 

increases, the network output accuracy doesn’t improve significantly.   
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Figure 4 The training process for the neural network with 6 neurons in the hidden layer 

 

Figure 5 The network outputs and targets of the steel ratio of the positive moment for the testing sets with 6 
neurons in the hidden layer 

 

Figure 6 The network outputs and targets of the steel ratio of the negative moment for the testing sets with 
6 neurons in the hidden layer 
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Figure 7 The network outputs and targets of the minimum cost for the testing sets with 6 neurons in the 
hidden layer 

 

Figure 8 The scatter plot of the steel ratio of positive moment for the testing set with 6  neurons in the 
hidden layer 
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Figure 9 The scatter plot of the steel ratio of negative moment for the testing set with 6 neurons in the 
hidden layer 

 

Figure 10 The scatter plot of the minimum cost (103 NT$) for the testing set with 6 neurons in the hidden 
layer 

Table 1 Optimal results and outputs of the 22 sets of testing data for the neural network with 6 neurons in the 
hidden layer 
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Table 2 The regression analysis of the targets with network outputs of the testing data for different number of 
neurons in the hidden layer 

No. of neurons in 
the hidden layer 

Targets vs. network 
outputs 

m b r 

6 

1 0.9910 0.0001 0.9992 

2  1.0071 -0.0001 0.9980 

Cost 1.0004 0.0079 0.9999 

12 

1 1.0036 0.0000 0.9993 

2 1.0023 0.0000 0.9982 

Cost 0.9986 0.0351 0.9998 

18 

1 1.0185 -0.0001 0.9952 

2 1.0119 -0.0002 0.9977 

Cost 0.9709 0.2512 0.9972 

24 

1 1.0241 -0.0002 0.9981 

2 1.0341 -0.0005 0.9959 

Cost 0.9962 0.0046 0.9995 

 

5 Conclusions 

This paper uses the feedforward backpropagation neural network to form a design model for two-span 

continuous reinforced concrete beams with rectangular cross-section and compares the results with the 

adaptive neuro-fuzzy inference system. The training, validation and testing data are obtained from the 

optimal results of the genetic algorithm. The inputs of these models are the yield strength of steel, 

compressive strength of concrete, dead load (live load is fixed) and span length, width and effective depth 

of the beam, while the targets are the minimum cost, the steel ratios for the positive and negative 

moment. The reason for the inputs of the neural networks to be a little bit different from the given 

conditions of the genetic algorithm is to make the design model more practical. Numerical results show 

that the performance of the feedforward backpropagation neural network is excellent with all correlation 

coefficients being greater than 0.998, the slope and y-intercept of the regression line close to 1 and 0, 

respectively, which is as good as the adaptive neuro-fuzzy inference system. Furthermore, if more neurons 

in the hidden layer are used, the effectiveness of the neural network doesn’t improve significantly. In 

addition to having the same accuracy, the feedforward backpropagation neural network is much easier to 

be implemented than the adaptive neuro-fuzzy inference system. 
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