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ABSTRACT   

The segmentation of a DICOM standard medical image is a necessary technique which is essential for 
feature extraction, object edge detection and classification of the segments of the image. The DICOM 
image is partitioned based on the Hybrid ACO-CPM algorithm, based on the edges in the image, for 
analysis. The edges are seen as the boundaries within the image which differentiates different regions in 
the image. The factors that links to the boundary discontinuities that co-exists between the pixels of 
DICOM image, like texture, intensity and gradient are rendered redundant and are taken care with the 
application of the Hybrid ACO-CPM algorithm. DICOM image features correspond to that of meta-
heuristic characteristics, which are considered during the application of Hybrid ACO-CPM algorithm. The 
results obtained from this non-deterministic behavior needs to be optimized over a large space called as 
the search space, wherein the lists of all possible solutions are provided. Each solution is to be marked 
as a value fit to be termed problematic and needs to be synthesized for an optimized solution. Among 
various techniques that provide solutions in obtaining an equitable optimization solution, Genetic 
Algorithms (GA) corroborates as one of the persuasive techniques in a large search space.  

In this paper we propose an efficient and effective workflow based on a methodology, that provides an 
overview of the image enhancement and object classification for a DICOM image using Genetic 
Algorithm (GA). The edge detected medical standard DICOM image obtained from the Hybrid ACO-CPM 
algorithm is modified with respect to critical edge data. With the application of GA methodology, the 
process of enhancing the image ultimately suffices by rendering an image suitable for a specific 
application with an improved visual quality of the segmented image. A Figure-of-Merit is constructed to 
differentiate between the image metrics and their best fit values obtained for the images with respect 
to the Ant Colony Optimization (ACO) algorithm and proposed Hybrid ACO-CPM algorithm, upon 
enhancing the images using GA 
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1 Introduction  
The mechanism of natural selection and genetics are based on the principles of selecting and evolving 
the solution with respect to the global search space, and produce results at each genetic evolution cycle 
termed as generation. This is one of the most widely accepted and adaptive parallel search techniques 
that speculate with the potential solutions for the search points correlated within the search space. The 
Genetic Algorithm (GA) [1, 2, 3] improves the performance of a search algorithm using the genetics that 
are using the exhilarated operators corresponding to the attributes for the seizure of potential solutions 
iteratively. GAs tends to provide optimization solution to the stochastic optimization methods over 
conventional optimization methods without and priori information about the functions of the 
optimization algorithms. This is performed based on the operators used by the GA such as; 

i. Selection 
ii. Cross-over 

iii. Mutation 
An algorithmic model with a providently large population of entities operating in retrieving certain 
information for a designated analysis purpose is considered as a major concern, wherein the amount of 
solutions provided will be huge. In image processing, during the image segmentation process based on 
the information contained within the edge image, suitable optimization algorithms are applied in 
retrieving the edge information from the image for various analytical purposes. These optimization 
algorithms, stochastic in nature and continue to adapt to perform with the change in the image 
environment. The complex behavior of the optimization algorithms, with an undefined population set of 
operators performing the search operation in finding the edge within the image appeals for sourcing of 
enormous amount of possibilities of solutions.  Such an instance is provided with the application of Ant 
Colony Optimization (ACO) [6] algorithm, wherein the edge detected by defined set of ant population 
results in a functional form of image sets, without the prior knowledge of the image statistics. Similarly 
as with the case of Hybrid Ant Colony Optimization-Critical Path Methodology (ACO-CPM) [5], the pre-
defined populations of ants are being segregated as real and virtual ants in optimizing the image edge 
information retrieval process provides with huge set of solutions, with the information of the Critical 
Path identified for a particular population set.  This has to be improved with the extraction of finer 
details in the images as obtained from these optimization algorithms.  

The DICOM image is a medical standard digital image, used for various telemedicine applications. This 
kind of an image is exposed to the optimization algorithms in retrieving the information about the edge 
contained within the image.  These edges in the DICOM images contain valuable information about the 
image, used during object classification for image analysis, for various diagnostic purposed. Hence the 
resultant quality of the image obtained from the optimization algorithms bearing the necessary 
information about the image has to be improved with their visual quality attributes. And also it is 
required to optimize the solution set from the global search space, a space with collection of solutions in 
detecting the edge of the image. There is zero impact on the image data content with the application of 
GA. The application of GA and its operators increases the dynamic range of the features contained 
within the image, thereby improving the visual appearance of the image and also remove the noise from 
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the image. This process also highlights the objects edge in the selected DICOM image. The process which 
optimizes the global search by selecting an appropriate image enhancement parameter from the image 
data, automatically, is also demonstrated in this paper. 

2 Elements of Genetic Algorithm and the need for Evolution 
Genetic Algorithms are evolutionary computation methodologies [4], which considers the following 
aspects; population of chromosomes, selection based on fitness value, cross-over for the production of 
new off-springs, cross-over rate and mutation rate. GA is a kind of search algorithm that computes the 
single solution considering multiple solutions, from the search space. In Genetic Algorithm (GA), terms 
like chromosome, mutation, cross-over are clearly defined. The term chromosome in GA refers to an 
optimal solution that corresponds to a problem defined. This chromosome is considered as a bit string 
that is encoded. The term gene correspondingly refers to single bits or short blocks of adjacent bits that 
are used to encode a particular element in a solution as obtained by the processing algorithm. The bits 
that encode a parameter in the stochastic optimization algorithms are regarded to be genes. Similarly, 
cross-over means that bit string which is obtained during the exchange of genetic information between 
the parents information (i.e. the information contained in the file before the application of the GA). 
Mutation is the basic process of flipping the bit at a randomly chosen locus point with the new bit.  

The basic idea behind the application of GA in any domain is to obtain an optimized solution among a 
set of solutions which is repeated with a factor being common among them. The search space is a 
context wherein an infinite set of all possible solutions are accumulated. The terms under which the 
solution set is optimized, an assumption that there shall be a representation within the search space, 
wherein all the possible genotypes with their fitness values are being considered for sorting. The sorting 
is done if there happens to be a correlation between the quality of each of the neighboring solutions 
with the same fitness values are to be sorted and segregated as the optimized solution. Here the fitness 
values are plotted and can be seen with some evolution. Meaning, the population set tends to move 
along the pane towards the local peaks, by means of adaptation. The evolution is necessary as the 
environment in which the population is inhabited with certain fitness values, independent of the other, 
may be induced with an increase in their population value. This result in the change of the fitness values 
of the genotypes and the set with the best fit values are to be retained in contention among the other 
population set. Most often, GAs assigns the fitness scores to the number of chromosomes in the current 
population based on the fitness function defined. It is also dependent on the GA operators which are of 
three types; 

i. Selection: This value is set by the operator to decide upon the reproduction factor from the 
population set. The more fitter is the chromosome; it is likely to reproduce more number of 
times.  

ii. Crossover: The locus is chosen randomly and the bit strings are exchanged from the latter and 
former local points from the current locus. This exchange is between the chromosomes from the 
latter and former local points from the current locus, which results in the generation of two off-
springs. 

iii. Mutation: The operator which randomly flips the bits in the string of the chromosome. This is a 
random process which might happen with a infinitesimally small probabilistic value.  
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The GA basically provides a methodology with which the highly fit strings with a comparatively 
fitness values in the search space are searched and identified as the best possible optimized 
solutions.  

3 Literature Survey 
The application of the concept of Genetic Algorithm (GA) in image processing problems [7, 8, 9], in order 
to achieve an optimal solution upon the performance of an efficient and effective search in the complex 
search space. The image contrast enhancement for an image obtained through gray-level modification 
with certain image statistics, can be performed as proposed by Sankar K Pal et.al [10], with the 
application of GA. The important aspects in digital image processing is to enhance the visual quality of 
the image, much better than that of the original image that can be used for specific applications was 
proposed by Shivangini et.al [11]. They had considered a gray-scale digital image and its enhancement 
with the consideration of N-point crossover as improvised against the generic GA. Additional noise from 
the image was successfully removed and the resulting imaging was restored with originality without any 
change in the data content of the image. The effect of increasing gray intensity with a dynamic range in 
the input image was improvised with the proposal of contrast enhancement technology. This technology 
was based on the Histogram Equalization (HE), called Adaptively Increasing Histogram Equalization 
(AIVHE). This was successfully demonstrated and proposed by S Palanikumar et.al [12] for Palm-print 
Enhancement. They used the optimized gamma and beta parameters based on their entropy values, in 
order to obtain an enhanced palm-print and also maintained the integrity of the data content of the 
image. Here in this proposal they considered the entropy values as the basis of fitness functions. The 
soft computing method of GA was proposed and implemented by Komal R Hole et.al [13]. This method 
was used to enhance the quality of the image and to convert the image into segments to retrieve more 
meaningful image for analysis using GA.  

With an increase in digital imaging in the field of medicine, tumor detection is an important and 
challenging task that needs to be addressed. Amanpreet Kaur et.al [14] proposed a methodology in 
reducing the population set of brain tumor images by clustering and genetics, thereby reducing the area 
of concentration. The genetics are re-implemented for an effective detection of tumor from the 
concentrated area.   

4 Methodology and Workflow 
The concept of image enhancement promises with the process of improvising the visual quality attribute 
of the digital image. The noise from the image is removed and the qualitative features of the image are 
identified and enhanced with the application of GA. The methodology proposed in the paper considers 
the edge detected image processed from the Hybrid ACO-CPM algorithm, proposed by Chetan S et.al 
[5]. The DICOM standard medical image is converted into bitmap format (.bmp) and processed by 
Hybrid ACO-CPM upon Image Approximation [15]. The processed image from the hybrid algorithm 
which is also in the bitmap format (.bmp) is considered as an input into the GA. The behavior of the ants 
in this Hybrid ACO-CPM in detecting the edge of a DICOM image is considered as a combinatorial 
problem.  

Here in this GA for the edge detected DICOM image, the shortest possible route and the entropy values 
of the images are obtained using Critical Path Methodology during the implementation of Hybrid ACO. 
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The population set of the ants which is an empirical value, based on the resolution of the image 
segregated into two categories as real and virtual ants helps in detecting the edge of the image based on 
the intensity values of each pixels, It traverses across the entire image with the concept of 8-pixel 
neighborhood and considering the intensity values on all the 8 neighborhood cells from the current pixel 
cell. This is done once exactly in the by an ant during the iteration monitored by the Method functions in 
ACO. The chromosomes are assigned with different permutation values from 1 to n in the GA, as the 
number of pixels traversed by the ant will be based on the order of their visit to each every local 
pixel/cell in the image. We also assume that the ant traversing path is restricted to the resolution of the 
image and thus the distance between the pixels are considered to be fixed values as Ci  and Cj, where i,j є 
n. This is considered to be a closed combinatorial problem well within the prescribed resolution of the 
image, considered as the boundary.  

The chromosome value representing the solution to the problem is being solved by the GA. Each 
solution in the array is encoded as an array and is processed for optimization by the GA. The problem 
with Npar dimensions are encoded as Npar element array, as in  

chromosome = [p1, p2, …. , pNpar] 

Here in the above expression, the parameter values are devised as per the specification of the problem 
as chromosomes. Each parameter value is converted into bit string making suitable for digital imaging 
solutions across the combinatorial problem solving algorithm, as in DICOM image fitness value 
calculation and image enhancement. The GA implemented in this paper uses the randomly chosen 
chromosomes and is evaluated for the fitness value by the fitness function to make it suitable of solving 
the combinatorial problem. The selection operator in the GA chooses the chromosome for reproduction 
based probability distribution, pc. The equation that monitors this distribution is as given below,  

 

The selection operator chooses the replacement for the chromosomes and this might allow for the same 
chromosome to be chosen more than once. The crossover operator recombines the chromosomes by 
swapping the chosen chromosomes and creates off-springs. The mutation operator randomly flips 
individual bits in the bit string of the newly generated chromosome. The mutation probability is also 
considered here in this case. This is monitored by setting the suitable value for pm. Preference of calling 
the operators like, selection before the crossover can be set. Selection and crossover operators 
reproducing the newer chromosomes reproduce only fitter chromosomes making the GA to converge 
with an optimized solution too quickly. Thus the algorithm can also stop at the local optimum before the 
global optimum. This is overcome with the help of the mutant operator which helps in maintaining the 
diversity and integrity among the chosen population.  

The initial population corresponding to the initial off-springs produced by the operators like selection, 
crossover and mutation by GA will be replaced with a new set of off-springs by the initial off-springs. 
This is repeated upon each iteration cycle and will be continued until the global optimum solution is 
obtained. The next new generation of chromosomes produced is tested by the fitness function. This is 
repeated for each generation. The iterations repeat till the GA produces the chromosomes with best fit 
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values and the fitness value stabilizes and does not change for generations reproduced by the new 
chromosomes. The factors such as probability of crossover, mutation probability and the size of the 
population are being considered. The methodology involved in GA uses traditional search methods, 
within the search space to obtain optimized solutions.  

i. Search for stored Data – Retrieving the stored information from the storage device has to be 
precise. The binary search methodology befits the efficient and effective way of searching the 
correct binary data and analysis.  

ii. Search for paths to achieve optimized results – This search methodology is similar to the 
methodologies opted in various artificial intelligence algorithms. A partial search tree kind of a 
structure is formed which guides I searching for the best fit solution. The root of the tree 
represents the initial state while the nodes branching out represent all the possible results with 
its updating from one state to another. This also resembles as the methodology for 
identification of the shortest path.  

iii. Search for solutions - This is more suited for GA wherein the search for the solutions subsumes 
the search for the path in identifying the best optimized solutions. The proposed algorithm is as 
shown below in Table 1.  

Table 1 Genetic Algorithm Workflow 

 

The operators of GA are modified as functions and are as shown in the Table 2 and Table 3.   

 

1. Input bitmap image (.bmp) 
2. Set the population size to that of the image resolution bounds, as 

round(  of the input image 

3. Set the probability of the crossover, pc = 0.8 
4. Set the probability of mutation, pm = 0.08 (Note this must be minimal) 

5. Set the chromosome length to obtain an optimized solution 
6. Initialize the population size and the chromosome length 

For the size of the chosen population  
Apply the operators 

i. Selection 
ii. Crossover 
iii. Mutation 

7. Calculate the fitness values for the operators  
8. Update the initial generation with the new chromosomes 

9. Find the best fit solution 
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Table 2 Mutation Workflow 

 

Table 3 Crossover Workflow 

 

5 Analysis and Results 
The proposed algorithm is applied for the DICOM image, a CT scan image of the human brain. The image 
is processed with generic Ant Colony Optimization and Hybrid ACO-CPM algorithms. The processed 
image files are subjected to GA for finding the best fit solutions and fitness values obtained from 
number of iterations as outputs. The fitness values are compared among the images obtained with the 
application of the methods such as Sine, Gaussian, Fourier and Wave in the ACO and the Hybrid ACO-
CPM. But in Hybrid ACO-CPM the ant population is segregated into two categories as real and virtual 
ants. The image edge processed by real ants is considered as input by the virtual ants and the image 
edge is linearly covered for the uncovered regions. A figure-of-merit is constructed based on the image 
analysis, fitness values and the best fit values are plotted for comparison.  

 

Figure 1 Original Bitmap Brain Image 
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Figure 2 Hybrid ACO-CPM processed Images by Real Ants 

 

Figure 3 Hybrid ACO-CPM processed Images by Virtual Ants 

The GA is run for accessing and evaluating the fitness values and best fit value. With the fitness values 
compared for the edge processed DICOM images and the Best fit value to be considered being minimal 
suits the best possible solution. The images below represent the Fitness Values and Best fit value plots 
for original image processed by generic ACO and Hybrid ACO-CPM. This helps in evaluating the need for 
image enhancement and its inherent characteristics via figure-of-merit.  

 

Figure 4 Fitness Values and Best Fit Value for the image processed with ACO algorithm 

 

Figure 5 Fitness Values and Best Fit Value for the image processed with Hybrid ACO-CPM algorithm for Real Ants 
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Figure 6 Fitness Values and Best Fit Value for the image processed with Hybrid ACO-CPM algorithm for Virtual Ants 

Figure-of-Merit 

The figure-of-merit helps us in finding the deviations between the algorithms used in detecting the edge 
of DICOM image and its application. It also helps in evaluating the efficiency of the algorithm. The fitness 
values computed using the GA and the image enhancements factors helps in differentiating and analyze 
the productivity of the algorithm as proposed in Hybrid ACO-CPM, with the generic ACO algorithm. This 
also shows the deviations among various algorithms, wherein the image solutions being optimized 
across at different fitness value rates versus the population size. In this case and for the considered 
DICOM image, it’s the pixel count.   

 

Figure 7 Figure-of-Merit with the Fitness Values vs Population Size  

In the above figure the Series 1 corresponds to the fitness values obtained from the DICOM image 
processed by Hybrid ACO-CPM with virtual ants. While Series 2 corresponds to the fitness values 
obtained by processing the DICOM image using Hybrid ACO-CPM with real ants. Series 3 corresponds to 
the fitness values obtained from the DICOM image processed by generic ACO algorithm. The 
optimization is inferred from the plot wherein the more linear values are intended to be most optimized 
with the application of GA.  

6 Conclusion 
The solutions to the combinatorial problems like the edge detection within a DICOM image using the 
Hybrid ACO-CPM algorithmic approach are dynamic and they evolve with the dynamics of the image. 
The reliability of these algorithms rendering an optimized solution from a set of solutions is much 
desirable from the optimization algorithm. Also the need for a better visual quality image after the 
processing by the edge detection optimization algorithms enhance the diagnosis capabilities with the 
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DICOM standard medical image. This purpose of image enhancement with the provision of an optimized 
solution from a collection of solutions is successfully taken care by the application of Genetic 
Algorithms. The evolution also plays an important role in obtaining new population as well as much 
better optimized results from the search space of the solutions to the problem.  

In this paper, we could successfully implement the GA for the DICOM images processed by generic ACO 
and as well as for Hybrid ACO-CPM. The figure-of-merit is plotted and analyzed to evaluate between the 
different implementation features and characteristics of these edge detection algorithms. Also the 
impact of these algorithms is analyzed with the application of GA on the images obtained from these 
algorithms. The evaluation resulted in proving that the Hybrid ACO-CPM is more suitable with an 
optimized solution within the entire search space of solutions. This also shows that the convergence rate 
of the solutions is much faster and more adaptable with the increase in the population count.  
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ABSTRACT   

Finger movement identification is an important innovative interfacing method which has countless 
possible applications. It can be used to create a new age in human computer interfacing (HCI) devices. It 
can also be applied to medical applications, such as in the development of a more advanced prosthetic 
hand. The current research for this purpose includes methods such as computer vision and detecting 
finger motion through mechanical vibrations from skin surface. They have the limitation of being 
restrictive, in terms of the degree of movement that the hand is allowed from a certain optimum 
position, as well as being susceptible to environmental factors. In this study, the surface 
electromyography (sEMG) of the forearm from skin electrodes is developed and interfaced with 
computer. The response at the flexor carpi radialis muscle of the forearm is plotted for a group of 
subjects to observe the qualitative responsiveness of the sEMG to different types of finger movements. 
The results show that finger movement generates a corresponding response on the EMG electrodes. For 
the particular muscle being studied, the greatest individual digit amplitude response was observed for 
the ring finger (digitus annularis) across the subjects. In future studies, this research could be made 
more quantitative in nature by observing the frequency content of a variety of hand gestures across a 
sample of subjects. 

Keywords: Human computer interfacing; finger detection; surface electromyography; finger movement; 
flexor carpi radialis; digitus annularis. 

1 Introduction 
Recently, detection of finger movement has been gaining increasing attention as a new method for 
human computer interfacing (HCI) [1]. Examples of areas where this can be applied are augmented 
reality, active prosthetics, playing video games, and controlling particular devices. They can be improved 
to have a more user friendly implementation through new and novel methods of HCI such as finger 
gesture recognition [2-4]. Humans interact with computers in different ways, amongst which, the mouse 
is one of the most widely used methods. The mouse has, in essence, a very simple mechanism, which 
does not really require the array of complex motions that many of the studies related to finger detection 
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exhibit. An alternative to the mouse could be simple as individual finger detection. For this, surface 
electromyography (sEMG), in particular, of the forearm, is an important avenue of research to classify 
and differentiate each digit of the hand and can then be used by users to communicate with devices. 

Kulshreshth et al. used Microsoft Kinect as an input device to track fingers in real-time. The image was 
processed through algorithms to detect fingers by matching them to various templates to classify them 
[5]. The technique’s accuracy was restricted by the limited resolution of the Kinect, which meant that 
accuracy of the finger detection decreased as the user moved his hand away from the Kinect. Aside from 
this issue, the orientation of the hand was also limited, as it needs the hand to be parallel to the camera 
plane with the fingers at a distance from each other. 

Kishi et al. applied accelerometers to detect mechanical vibration patterns to detect finger motion while 
fingers were tapping [6]. Sensors are placed on the forearm of the subject. The difference between each 
finger in amplitude and frequency was indiscernible, so they then used template matching method to 
identify each digit of the hand. The success rate of identifying finger motion was relatively high; 
however, use of accelerometer sensors would be heavily prone to external artifacts, such as an external 
force applied on the forearm could disturb the readings. A big limitation of this method is that the finger 
motion detected is limited to finger tapping, which limits the degree of freedom for the hand. 

Using electromyography to detect finger movements is not a new idea; rather, it is something that has 
been done in a variety of ways before as well. Previous studies used an EMG sensor device to integrate 
changes in muscle potential due to finger movement to a computer interface [7-11]. These can be in 
varying arrangements with different methods of classification such as using neural networks to train and 
classify a system to correctly identify a particular finger according to the data received from the EMG 
device. 

In this study, the data from previous work is considered and brings up the question of whether the 
classification of the fingers can be achieved using only a single pair of electrodes rather than using a 
multiple sensor configuration. Also, if this can be achieved without the use of algorithms, neural 
networks and other such methods. In this study, an EMG sensing device using a single pair of surface 
electrodes was designed first, and then, finger movement is detected by placing the surface electrodes 
on the flexor carpi radialis muscle of 11 subjects. This was done to observe the response of different 
finger movements across the different subjects. The site of electrode placement was chosen as 
superficial area above the belly of the flexor carpi radialis muscle. The electrode distance was kept 
constant in all subjects as 25 mm. The subjects were prompted to do opening (extension) and closing 
(flexion) finger movements and the resulting sEMG signals were recorded and stored on a computer. 

2 Methodology 
The various system components for sensing changes in sEMG signal are shown in Figure 1. After 
acquiring a sEMG signal, qualitative observations of the sEMG signals of 11 subjects is taken while they 
open and close different fingers when prompted. 

2.1 Electrodes 

In this work, three disposable EMG surface electrodes are used per subject. Two of the electrodes are 
placed at the muscle of interest (flexor carpi radialis) at a distance of 25 mm from each other. The 
placement of the electrodes was within the range of inter-electrode distance used for kinesiological 
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electromyography [12]. The electrodes are placed at the same muscle across all the subjects [4, 13]. A 
reference electrode is placed on the styloid process of the radius [12]. 

 
Figure. 8: System Components. (a) Forearm with electrodes placed on muscle of Interest. (b) Pre-amplifier. 

(c) High-Pass filter. (d) Low-pass filter. (e) Gain amplifier (f) Microcontroller. (g) Computer with software for 
plotting and storing EMG data. 

2.2 Preamplifier 
The human body has high impedance. This requires a preamplifier so that current is not drawn from the 
body. In this study, an instrumentation amplifier, INA114 [14], is used to amplify the incoming signals 
from the electrodes by a factor of 10 before the filtering phase. 

2.3 Filter 
For surface EMG, the frequency contents are generally considered anywhere in between the range of 0 
to 500Hz [12, 15]. In this work, we implement a second order; band-pass filter from 20 to 500Hz using 
LM358 [16], the lower cut-off frequency is considered 20Hz, rather than 0Hz to remove baseline noise. A 
notch filter for the 50 Hz power line is not used as experts discourage its use, as it removes important 
EMG information along with the noise [15]. 

2.4 Amplifier 

Without any conditioning, sEMG signals amplitude range from ± 5mV [12]. Although, preamplifiers 
amplify the signal, dedicated amplifier stages are used to amplify the signal with a much higher gain 
setting. A two-stage amplifier using LM358 [16], with an overall gain of 100, is used in this work to bring 
the conditioned EMG signal to range across 0 to 5V. 

2.5 Data Acquisition 
To Interface the signals with the computer and to convert the signal from analog to the digital form, an 
ATMega328 is used [17]. ATMega328 has a 10-bit analog to digital converter. In this experiment, pin 23 
of this microcontroller is used to provide analog to digital conversion of the data. By itself, the 
microcontroller can’t relay the data to the computer, so, it is used in conjunction with an Arduino Uno 
board. The Uno board allows for interfacing with a computer and even emulating a virtual COM port for 
serial communication over USB using an ATmega16U2 on board. Programming of the microcontroller 
was done using the Arduino IDE, which has C-language based syntax. 
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2.6 Data Display/Storage 
Serial communication through USB is used to relay data to the computer. Communication is done at a 
Baud rate of 115200 bits per second. The visualization of data and storage is possible through a 
graphical program built in the processing IDE. The program emulates an oscilloscope taking the 
amplitude at each sample and plotting it as a graph. It also saves the data for further processing offline. 

After development of this sensor circuitry and interfacing it with signal graphing program, we have 
taken observations on 11 male subjects aged between 22 – 25 years, who have electrodes placed on 
their left arms. The muscle being studied in this work was the flexor carpi radialis and an inter-electrode 
distance was fixed at 25 mm. The electrodes are placed at the belly of the muscle [18]. Each subject is 
prompted to perform flexion and extension of each finger one by one. The data is visually displayed in 
real time on the computer and then, every 10 seconds the EMG data of the subject is saved. 

3 Results and Discussions 
The sample graphical results for one of the subjects using our sEMG sensing circuit are shown in Figure 
2. In Figure 2(a), it can be seen that the thumb shows no response. This is due to the muscle that can be 
studied to detect flexion of thumb finger, the flexor pollicus longus is quite distant from the flexor carpi 
radialis muscle and has no contact with it either, making it isolated, leading to the no response readings 
in each subject. The index finger showed a relatively low response, as seen in Figure 2(b). This can be 
explained, as the muscles responsible for flexion of index finger, the flexor digitorum superficialis is 
distant from the site of electrode placement, but can still have some effect as it is surrounding the 
muscle being observed in this study. A mid-level response is observed for the middle finger shown in 
Figure 2(c). This can be explained as the location of electrode placement is extremely near to the 
muscles in question, which is responsible for detection of flexion of the middle finger, the flexor carpi 
radialis and palmaris longus. Figure 2 (d) shows the subject highest relative response with ring finger 
contraction. This was because of the flexor carpi radialis muscles directly responsible to detect the 
flexion of the ring finger [4]. Like this, the baby finger shows a relatively low response, on average, as 
can be noted in Figure 2 (e). Similar to the index finger, the muscle responsible for flexion of baby finger, 
the flexor carpi ulnaris is also distant from the site of electrode placement, but can still have an effect on 
the electrodes placed on flexor carpi radialis. 

In studies like this, quantitative data collection of the EMG signals of each subject is unfeasible, as many 
factors make it impossible to reproduce the same results in subsequent trials. For example, one factor is 
electrode placement, which is difficult to get at the exact same location and even minute changes in 
position or inter distance can change the amplitude of the signal greatly. As such, even on the same 
subject, if the subject is tested once, and then, at a later time, examined again, quantitatively, the 
results will not be the same due to the factors mentioned previously. As such, the better option is to 
take qualitative observations of the signals at the muscle site to check the trend of the EMG signal 
amplitudes is done. These readings are observed and noted down, which can be studied in Table 1.   
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Figure.9.sEMG graphs corresponding to Finger movement with x- axis shows the number of samples taken in 
N, and y-axis shows the voltage in V  

Table 1 listed the relative amplitude intensity of each individual digit of the different subjects. Table 1 
shows some fluctuations in the readings, in particular, the readings of the index, middle and baby finger. 
This variation from subject to subject can be explained by minute differences in electrode placement. It 
is humanely impossible to get the same exact position for each subject, due to human error, differing 
arm size, amongst other factors. As such, the electrodes can be placed at a position in which the main 
muscle being studied is still detected correctly, however, the surrounding muscle which also have effects 
on the sEMG signal observed are not picked up as well by the electrodes, when moving from subject to 
subject.  The observations revealed that amongst all the samples taken for each subject, flexion of the 
ring finger (Digitus annularis) consistently managed to have the highest amplitude relative to the other 
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digits of the hand. The middle finger was relatively constant amongst the subjects, giving a response 
that could be easily distinguished from the higher amplitude ring finger and the other digits. The thumb 
gave no visible response whatsoever, whereas the index and baby fingers gave a low level response. This 
confirms that the flexor carpi radialis muscle is responsible for detection of ring finger flexion primarily. 
Also, the muscles surrounding it, which are also responsible for finger detection can, also have a 
resultant effect, although of a much lesser amplitude. 

Table 1: Relative amplitude intensity of each individual digit of the different subjects 

•  
Sample Thumb Index Middle Ring Baby 

A No response Low Intermediate High Low 
B No response Intermediate Low High Low 
C No response Low Low High Low 
D No response Low Intermediate High Low 
E No response Intermediate Intermediate High Low 
F No response Low Intermediate High Low 
G No response Low No response High No response 
H No response No response Intermediate Intermediate No response 
I No response Low Intermediate High Low 
J No response Low Intermediate High No response 
K No response Intermediate Intermediate High Low 

 
Where; No Response = No response, Low = Low amplitude response, Intermediate = Intermediate level response 
and High = High level response.  

The observations show that even while using a single pair of electrodes, the different fingers respond 
differently when flexed. Visually, they can be distinguished by the amplitude intensity each digit exhibits 
when closed, which is different for each finger. At the flexor carpi radialis, the highest response was 
observed for ring finger, which was constant across all the subjects. Whereas there was some variation 
between the results for the other fingers when changing from subject to subject, on average it could be 
determined that the thumb showed no response, the index and baby fingers gave low level responses 
and the middle finger gave an intermediary response. Amongst the index and baby fingers, the 
maximum amplitude reached is similar between the two, which would be hard to distinguish from each 
other for the devices. Also since thumb gave no response, it cannot be determined at the particular site 
we chose to place electrodes on. However, it is quite feasible to distinguish the other fingers due to the 
intensity difference amongst the fingers. 

4 Conclusions 
In this study, the finger movements of different subjects were observed and analyzed by plotting their 
sEMG at the forearm, using a single pair of electrodes, placed above the flexor carpi radialis. It was 
noted that different fingers gave different EMG amplitude in response to finger movement when 
monitored from the same electrode site. However, the change in amplitude in detecting the different 
fingers flexion was relatively same throughout the study. At the Flexor carpi radialis muscle, the ring 
finger gave the highest individual finger response. Other fingers also showed responses, albeit, less 
intense as compared to that of the ring finger. This study could be made more comprehensive by taking 
signal analysis on different forearm muscles or by repeating the study while having an array of electrode 
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pairs around the forearm, integrating the information from each electrode pair during gesture detection 
for a more detailed response analysis to each individual finger. It can be further improved by 
implementing digital filters to remove noise and artifacts better. In the future, a study using frequency 
analysis of the signals could give more detailed information on classifying fingers using EMG, as the 
information gathered by frequency analysis can be studied quantitatively and can then be further 
assessed to formulate a strong relationship which can correlate the response that each finger flexion 
generates to the site of electrode placement. By applying all these modifications and future 
advancements, a collection of gesture templates can be generated, starting from simple single finger 
gestures to complex gestures, involving all the fingers. These templates can then be used to reliably 
detect a multitude of different gestures, using sEMG signals. 
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ABSTRACT   

The pulmonary lung nodule is the most common indicator of lung cancer. An efficient automated 
pulmonary nodule detection system aids the radiologists to detect the lung abnormalities at an early 
stage. In this paper, an automated lung nodule detection system using a feature descriptor based on 
optimal manifold statistical thresholding to segment lung nodules in Computed Tomography (CT) scans 
is presented. The system comprises three processing stages. In the first stage, the lung region is 
extracted from thoracic CT scans using gray level thresholding and 3D connected component labeling. 
After that novel lung contour correction method is proposed using modified convex hull algorithm to 
correct the border of a diseased lung. In the second stage, optimal manifold statistical image 
thresholding is described to minimize the discrepancy between nodules and other tissues of the 
segmented lung region. Finally, a set of 2D and 3D features are extracted from the nodule candidates, 
and then the system is trained by employing support vector machines (SVM) to classify the nodules and 
non-nodules. The performance of the proposed system is assessed using Lung TIME database. The 
system is tested on 148 cases containing 36408 slices with total sensitivity of 94.3%, is achieved with 
only 2.6 false positives per scan. 

Keywords: computed tomography, lung cancer, pulmonary nodules, statistical thresholding, SVM. 

1 Introduction 
Lung Cancer is one of the prime causes of death related to cancers at global level. Majority of the 
patients suffering from lung cancer are at advanced stage (stage IV – 40%, stage III – 30%), and only 16% 
survival rate for the present five years is found [1]. Identification at an early stage and initiating the 
treatment for the lung cancer can significantly improve the survival rate of the patients. Computed 
Tomography (CT) is the most accurate imaging modality available for early detection and diagnosis of 
lung nodules (cancer). It can be used to detect pathological deposits even smaller than 1 mm in 
diameter. The nodule is a round or irregular opaque shape with a diameter up to 30 mm on a CT scan. 
Early detection of nodules is a vital step in diagnosing the lung cancer, but CT scan comprises large 
quantity of images which is time consuming for the radiologist to assess. In this connection, the 
computer aided detection (CAD) is a remedy that can provide an effective solution by assisting the 
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radiologists with significantly improving the scanning efficiency for visualization, detection and 
characterization of nodules [2, 3]. In this light we present an automated pulmonary lung nodule 
detection system from CT images on a slice method in this paper. Once the nodules have been detected 
in each slice, a 3D surface of the nodule can then be reconstructed.  Our method allows, naturally an 
extraction of pulmonary lung nodule candidates which can further be used to classify the nodules. 

2 Previous Work 
For over a decade, scholars from various strata of the globe have put forward a series of pulmonary lung 
nodule detection methods [4-21]. The primary stages employed in these lung nodule detection methods 
are lung segmentation [4-13], nodule candidate detection [14-19], and elimination of false positive 
nodules (FPNs) [10, 14, 19-21]. The first stage shows that lungs look like dark regions in CT scans, as they 
are basically bags full of air inside it, hence, the image intensities of the lung and surrounding tissues are 
clearly contrasted. This phenomenon encouraged good number of researchers to search for an effective 
thresholding method which can separate the lung region from all other tissues. A threshold to extract an 
initial lung region can basically be computed. Global thresholding is an effective technique for extracting 
the initial lung region as it segments the scans with distinctive gray levels relating to lung region and 
background [5-6]. Initial lung region can also be segmented using a fixed threshold [6-7], 3-D adaptive 
fuzzy thresholding [7], region growing [8] and hybrid segmentation [9]. In case of lung edge affecting 
pathologies, all these methods are found to be ineffective. This is because of the changes in image 
intensity at pathological regions as well as the gray levels which are closer to that of muscle, fat, or 
bone. To overcome these problems, a chain code representation method [10], morphological 
approaches [11], a rolling ball method [12] are used. In this paper a new contour correction method is 
proposed by using modified convex hull algorithm [13] for effective segmentation of lung region. 

The second stage in lung nodule detection systems is the detection of lung nodule candidates. Multi 
gray level thresholding has been applied widely to identify nodule candidates [14]. Shape based 
template matching approach was used to detect the spherical nodules [15-16]. The 3D template 
matching approach utilizes 3D of regions of interest to identify structures having properties similar to 
pulmonary nodules [17]. The Filtering based method [18] detected the nodules by improving the 
intensity of nodules and reducing the same for non-nodules. In recent times, mass spring model based 
candidate detection method has been widely used to detect nodule candidates [19].These methods are 
unable to obtain satisfactory results, when lung regions having large variance discrepancy between the 
lung nodule and background. Hence, these methods consider only the class variance sum, but neglect 
the discrepancy of class variances. As an attempt to eliminate this limitation a new optimal statistical 
thresholding method is presented. This new method takes into account both the class variance sum and 
the variance discrepancy at the same time and constructs an optimal manifold statistical criterion for 
threshold selection within the region of interest (ROI). 

The last stage in a lung nodule detection system is the classification of the lung nodules from non-
nodules based on the extracted feature vectors from the segmented nodule candidates. Over the past 
decade, several methods [7, 10, 15, 20-21] have been proposed to reduce false positives. The rule-based 
filtering and linear discriminate analysis classifiers [5, 7, 12] are widely used for classification of nodule 
candidates. A rule-based filtering is only able to detect the general shape of nodules. A linear classifier 
cannot achieve acceptable results because the features extracted from nodule candidates are not linear. 

U R L :  http://dx.doi.org/10.14738/jbemi.44.3354 21 
 

http://dx.doi.org/10.14738/jbemi.44.3354


J O U R N A L  O F  B I O M E D I C A L  E N G I N E E R I N G  A N D  M E D I C A L  I M A G I N G ,  Vol um e  4 ,  No  4 ,  Au g  2 0 1 7 
 

Moreover, machine learning based detection methods have also been used for false positive reduction 
based on genetic algorithm, neural networks [14, 19], and genetic programming [20]. It should be noted 
that though the above classifiers comparatively large number of false positives are detected the still 
remain. In this paper we have used SVM classifier by radial basis function to classify pulmonary nodule 
detection to have improved accuracy and reduced false positive rate. The proposed system is evaluated 
using Lung TIME database [22] of thoracic CT scans with manually annotated pulmonary nodules. The 
experimental results have high degree of accuracy, sensitivity with reasonable specificity. 

The remainder of this paper is organized in three major sections: In sub-section 3.1segmentation of 
lungs from the raw DICOM CT images is described. Sub-section 3.2 presents the extraction of nodule 
candidates from the segmented lung tissues. Classification of true nodules from the segmented nodule 
candidates is discussed in sub-section 3.3. Results of a detailed evaluation on 148 cases containing 
36408 slices are presented in section 4. Conclusions are given in section 5. 

3 Proposed Methodology 
An overview of different stages of the proposed pulmonary lung nodule detection system is shown in 
Fig. 1.The basic objective of the first stage is to extract the lung region from the human chest CT scan 
which contain components like fat, other tissues (including trachea, fat, ribs, examination bed, and so 
on) and air-filled regions. 

 

Figure.1 Process of proposed pulmonary lung nodule detection system 
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3.1 Lung region segmentation 
The thoracic CT scan contains the lung parenchyma as shown in Fig. 2(a). The proposed lung region 
segmentation comprises three steps: (a) detection of binary lung mask using global thresholding, (b) 
Extraction of lung region employing 3D-connected component labeling and mathematical morphology 
and (c) refining the lung contour to get complete lung region using the proposed modified convex hull 
algorithm. 

                    

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure. 2 (a) Original CT slice and tissues localization, (b) Threshold value 
selections based on histogram, (c) global threshold of (a), (d) Initial mask of 
lung region after removing background, fat, muscle, and CT bed, and mask 
after filling holes but it contains juxta-pleural nodules.(e) final mask after 

contour correction, (f) segmented lung region extraction 

As the normal attenuation range for most of the lung tissue in a CT slice is from -910 HU to -350 HU. We 
set -350 HU as the threshold value for separating the lung region from the thoracic CT scan. Hence the 
initial lung mask is attained by thresholding all the non-body pixels which is given by 

 
i iS ( x, y )  Thr ( f ( x, y ) 350HU )  ,                     (1) 

where if ( x, y )  is a pixel at ( , )x y  for the input thoracic CT  slice of f . The initial lung mask 

obtained for the CT image is as shown in Fig. 2c. 
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In the initial lung masks obtained, black borders denote non-lung region and center black areas indicate 
the lung region. The non-lung regions are removed by flood filling. After that, 3D-connected component 
labeling is used to select largest and second largest labels that are lung regions and lung regions 
containing holes, which are normally vessels or nodules. Morphological hole-filling operations are 
applied to get binary lung mask as shown in Fig. 2(d). 

If the CT slice contains juxta-pleural nodules along the contour of lung region, this will affect the 
detection of lung edges as the intensity of these nodules is same as that of the surrounding lung region. 
In this paper, a modified convex hull algorithm for the contour correction of lung region is presented. 

The modified convexity algorithm is simulated from a fast algorithm for convex hull extraction in 2D 
image [13]. It initially finds the eight extreme points on the contour of binary image. The modified 
convexity algorithm extracts the extreme points by scanning the binary image from outer to inner. The 
boundary of the lung region is scanned pixel by pixel until it reaches the last boundary pixel.  Thus, the 
monotone segments are obtained and the convex hull is extracted as presented in Fig. 3.   

The binary image is partitioned into four regions in Fig.3 (i.e.  A PYx PxY , B PXY PYX , C PyX PXy, and D Pxy Pyx)  
by employing these extreme points. Only these extreme points are processed while finding the vertex. 
By orderly monotone scanning increase then temporary convexity is extracted. The entire convexity is 
obtained by continuously improving the momentary convexity. These convex hull algorithm processes 
less storage space and time for scanned areas are less and only the vertices of temporary convexity 
require storage. After applying improved convex hull algorithm, the coarse segmented lung image is 
subtracted from the result of modified convex hull algorithm. As the resultant image contains some 
small responses and objects at the border, morphological erosion with a spherical kernel of size seven 
and connected label filtering are then applied to remove these responses. The eroded image is 
subtracted from the result of the modified convex hull algorithm to extract the final lung region. Fig. 2 
(e) shows the extracted binary mask of lung and it can be observed that the missing juxta-pleural 
nodules are added to the segmented lung. Finally, the extracted lung region is presented in Fig. 2 (f).  

 

Figure.3 Extreme points (A: PxYPYx, B:PYXPXY, 
C:PXyPyx, and D:PyxPxy ) of image convex hull and 

Scanned regions of image 
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3.2 Candidate Nodule Detection 
The effectiveness of an automated pulmonary lung nodule detection system depends on the accuracy of 
the detected nodule candidates. In the nodule candidate detection, initially ROIs are extracted based on 
the proposed optimal manifold statistical thresholding and then the nodule candidates are segmented 
from these ROIs. 

The extraction of ROIs is complicated as the lung nodules have broader gray level range and varying 
level of vessel attachment. The optimal manifold statistical threshold is to overcome these 
complications. Earlier methods employed the mean or a fixed value as the base threshold in to multiple 
thresholding [16, 17], which may not always perform well. Therefore, we have calculated the new 
optimal statistical threshold value as a base threshold. 

3.2.1 Optimal Statistical Thresholding Algorithm  

 a. Traditional Statistical Thresholding 

Let the extracted lung region having L gray levels (0 to L-1) and the total number of pixels in the image 
is 0 1 -1       ....  LN n n n= + + + .  The probability of thi gray level is defined as  

 
1

0
,    0,       1

L
i

i i
i

np p pi N
−

=
= ≥ =∑ ,                        (2) 

That is, the number of pixels in  having grey scale intensity ' 'i  as a fraction of the total number of 

pixels N .The lung region is separated into two classes BC  and OC using a gray level ' 't . Here, BC  is the 

background with levels '0 '  to ' 't , and the remaining pixels are the nodule candidates in OC . Then the 

probabilities of these classes are defined as 

 
0
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The mean of the classes is defined as 

0
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=
=∑ ,                                     (5) 
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−

= +
= ∑ ,                               (6) 

The basic idea is to estimate Bµ - the average of the all corner pixels (background) and Oµ - the average 

of object pixels.  

The variance of the classes is given by  
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Computing the intra-class variance, the inter-class variance and the total variance of the combined 
distribution is defined as  

 2 2 2
B B O OWithin n nσ σ σ= + ,                       (9) 

 2 2( )Between B BO On nσ µ µ= − ,                     (10) 

 
1

2

0

2 ( )
L

T
i

Total i µσ
−

=

−=∑ ,                 (11) 

where 
1

0

L

T i
i

ipµ
−

=

=∑ ,  According to the above equations, the following basic relation always holds:  

 2 2 2
BetweenTotal Withinσ σ σ+= ,                   (12) 

The variances intra and inter classes are functions of gray level ' 't  and the total class variance is 
independent of t . Minimization of intra-class variance is equivalent to Maximization of inter-class 
variance. Thus, the optimal threshold * ''t  can be determined by [23],  

 { }* min 2
0 1t L Withint Arg σ≤ ≤ −= ,                    (13) 

The optimal threshold maximizes the inter-class variance of real-world images, but exhibits a limitation 
to classify an image into two parts of similar sizes regardless of the practical size of the object. After 
exploring the potential reason for the weakness, Hou’s [24] developed a generalized version with a new 
threshold criterion, i.e., total class variance, and found the optimal threshold by minimizing it. The 
optimal threshold *' 't  can be defined as follows:  

 { }* min 2
0 1t L Totalt Arg σ≤ ≤ −= ,                     (14) 

 b. Proposed New Criterion 

The traditional methods only consider the sum of class variance, but neglect variance discrepancy 
between object and background of image. The typical example is in Fig. 4(a) where the nodule has slight 
gray level changes and small class variance, while the background has large gray level changes and large 
class variance. Its histogram of bimodal distribution with unequal sizes and groundtruth image are 
shown in Figs. 4(b) and (c). Manual threshold corresponding to the groundtruth image is 110, which 
locates it in between of two peaks. In this case those statistical thresholding methods find erroneous 
thresholds (i.e., 129 and 150) and fail to segment the object from background as shown in Fig. 4 (d) and 
(e). The reason is that the two approaches take only the sum of class variance into account, but neglect 
discrepancy of class variances. As an attempt to eliminate the limitations of these methods, a new 
statistical thresholding method is proposed in this paper.  

The proposed method takes class variance sum and variance discrepancy into account at the same time 
and constructs an optimal statistical criterion for threshold selection, which can be formulated as 

 2( ) ( ) ( )DiscrWithinS t t tασ σ= + ,                  (15) 

where
B On nα = − , ( ) ( ) ( )Discr B Ot t tσ σ σ= and 2 2( ) ( ) ( )Discr BO t t tσ σ σ≤ ≤  or 2 2( ) ( ) ( ) ( )  Discr B Discr Ot t t tσ σ σ σ≤ ≤ is 

used to measure variance discrepancy of two threshold classes. Here ( )B tσ  and ( )O tσ  are their 

respective standard deviations. The parameter α  is a weight that balances the contributions of variance 
sum and variance discrepancy. When 0 i.e B On nα = = , the new criterion degenerates to Otsu’s criterion 
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[23].  Thus the proposed method can be regarded as a generalized version of Otsu’s method. An optimal 
threshold *t can be found by minimizing the discrepancy in the new criterion 

    
* min

0 1( ) ( )t LS t Arg S t≤ ≤ −= ,        (16) 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure. 4 Thresholding results of juxta-pleural nodule: (a) original, (b) histogram, (c) ground 
truth (t = 110), (d) Otsu’s (t = 129), (e) Hou’s (t= 150), (f) the proposed method (t =119) 

 

Actually, equation (15) attempts to decrease the effect of class variance sum and emphasizes the 
influence of variance discrepancy simultaneously. In this way, the variance discrepancy becomes an 
explicit factor for determining the optimal threshold as shown in Fig. 4 (f).  

3.2.2 Optimal Manifold Statistical Thresholds for ROI Extraction 

The optimal statistical threshold *t  is the basic threshold for various nodule candidates and result of 
thresholding is shown in Fig. 4(f). The wide intensity range of nodules and the varying level of vessel 
attachment, make it difficult to extract ROIs. Optimal manifold statistical thresholds can be used to 
overcome these difficulties. To extract ROIs, we propose the use of optimal manifold statistical 
thresholding. Additionally six thresholds viz. * 200t − , * 100t − , * 100t + , * 200t + , * 300t + , and * 400t + are 
used for the selection of ROIs. These ROIs are cumulative into one ROI image, i.e.  

 
7

*

1
( , )n i

n
ROIs mask I t S

=
= >∑ ,                 (17) 

where I  is the extracted lung region, *
nt  is the thn  optimal statistical threshold, and iS  is the segmented 

lung region mask. For the original chest CT image with groundtruth markings presented in Fig. 5 (a) and 
the ROIs are shown in Fig. 5 (b).  
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3.3 Classification of nodules and non-nodules 
The resulting images shown in Fig. 5 (b) contain some blood vessels (non-nodules) along with the true 
nodules. We used SVM classifier to classify nodules and non-nodules based on the feature vectors 
extracted from the nodule candidates. 

  

3.3.1 Feature Extraction  

Here, we extracted ten features for training and classification, including six 2D features (area, diameter, 
circularity, elongation, compactness, and moment), and four 3D features (surface area, volume, 
sphericity, and centroid offset).   

The 2-D geometric features are extracted in the following manner:  

1. The area is obtained by using the equation:  
   

mo O
Area o

∈
= ∑ ,                   (18) 

Here, mO is a middle slice of the segmented object o  because the area of the segmented object 

at the median slice is the largest.  
2. The diameter D   is a maximum bounding box length of mO  

2D 3D 

  

(a) 

  

(b) 
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3. The Circularity reflects the similar degree of ROI region to a circle as follows:  

 
2  

4
AreaCircularity

rπ
= ,                 (19) 

where r is the radius of the circumscribed circle and is equal to / 2D . 

4. Elongation is an asymmetry degree of an object and is obtained as follows:     

 min

max
  rElongation r= ,                  (20) 

where minr , maxr are the measurement from the centroid to the nearest and farthest points on 

the boundary. 

5. Compactness is defined as  

   inside

outside

RCompactness R= ,               (21) 

insideR , and outsideR are the radius of inscribed and circumscribed circle of ROI. If the value of 

compactness approximates to 1, ROI is closed and compact to a circle. 

6. Moment of ROI is defined as  

 
( )( )211

0 0

,
  

1 -

QP

i j

f i j
Moment

i j

−−

= =
=

+∑∑ ,                   (22) 

( , )f i j is normalized gray-value of pixels of ROI; P  and Q are the number of rows and columns, 

respectively. 

The 3-D geometric features are extracted in the following process:  

7. Surface area of ROI as 
 

( , )
  ( , )

ix y S
A P x y

∈
= ∑ ,       (23) 

where ( , )P x y  is the perimeter pixel number of ROI boundary, and iS is the thi  slice of the ROI.  

8. The volume of the segmented object is calculated as V N= . Here, N is sum of numbers of 

pixels whose gray scale is nonzero in all the ROI layers and it is defined as the volume of 3D ROI. 
9. Sphericity is 

measure how much the shape of the object approximates to a spherical shape and is calculated 
as follows 

 
3/ 2

6  VSphericity
A
π= ,                  (24) 

10. Centroid offset is defined as 

 ( )
1

   
k

i i
i

Center offset x x y y
=

= − + −∑ ,               (25) 

where k is number of ROI slices, ( , )i ix y is the coordinate of centroid of the thi slice, and ( , )x y  is the 

average coordinate of all the ROI slices.  
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3.3.2 SVM Classifier  

SVM is very useful tool for object classification [10, 21, 25]. The basic SVM considers a set of input data 
and predicts two possible classes for each given input. Generally, the number of nodules is less than the 
number of non-nodules. This discrepancy affects the training of the classifier. Hence, we should balance 
the quantity of non-nodules and nodules. For this, we have randomly selected / 2N  non-nodules and 

/ 2N nodules from the obtained nodule candidates. The balanced dataset is then arbitrarily classified 
into testing and training datasets to validate the classifier. Suppose that we have a random sample of 

training dataset represented by ( )},
1

N
X  yi i i



 =

, 1,2,...,i N= , where N is the number of training samples 

of nodule candidates, Xi in d
 is a feature vector, and yi in { }1, 1+ − indicates to linearly separable 

classes. The training data pair consists of an input feature vector and its equivalent known target class. 
The optimal solution of the SVM separating hyper-plane defined by a vector w in a high-dimensional 
space is 

 
0

min 2
, 2

N

i
i

ww
λ ξξ =

+∑ ,                  (26) 

Therefore  

 ( )( )  , 1i if X y w Xi i ξ= Φ ≥ − ,                          

(27) 
where ( )f Xi  is the decision function, λ is a regularization parameter, 0iξ ≥ is slack variable, that 

indicates most of the cases are not linearly separable. In order to handle such cases, cost function need 
to be formulated for combining margin maximization and error minimization criteria.Φ is a non linear 
function that maps each data point into a higher dimensional space by a positive semi-definite kernel 

 : d dk × →   . This kernel is equivalent to an inner product in a higher dimensional space 

through ( ) ( ) ( )' ', ,k X X X X= Φ Φ . 

Here, the radial basis function (RBF) is used as the kernel:  

Radial basis function:     

( )
2

, 2exp j
r i j

X X
k X X

p

 
 
 
  
 

− −
=                                                             (28) 

where   0p > is a kernels parameter. 

The RBF kernel maps the feature space into a higher dimensional space to find an optimal segmentation 
hyper-plane. Nodules and non-nodules can be easily classified, once the classifier is trained. To obtain 
the nodule class from the test data, it requires an input feature vector of every nodule candidate. It is 
crucial to differentiate an input training and test datasets. In short, the lexicographical arrangement of 

input feature vectors is presented in a matrix ( )  
1

NnA d
n

  
 
  

=
=

 of size   N MΧ , where d  represents a 
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M dimensional feature vector, and N is the total number of feature vectors. The feature vector set is 
used to train the SVM for higher dimensional space to find an optimal segmenting hyper-plane.  

In order to evaluate the SVM classifier, we have used k-fold cross validation. In k-fold cross validation, 
the original sample is subjectively divided into k sub-samples having equal size. Of the k sub-samples, a 
single sub-sample is selected as the validation data for testing the model and the remaining k - 1 sub-
samples are used as training data. The cross validation process will be repeated for k folds with each of 
the k sub-samples. The results from the k folds are averaged to get a single estimation. 

4 Results and Discussion 
The performance of the proposed lung nodule detection system is evaluated using the publicly available 
Lung TIME database [22]. This database contains 148 CT scans. Each scan contains a varying number of 
image slices. On an average, 220 slices per scan are found and every slice has 512 × 512 pixels and 4K 
gray level values in HU, the resolution of image was 1.6 pixels per mm, slice spacing 1mm, slice thickness 
5mm, and transversal resolution 0.58 ±0.06 mm. The database consists of 394 annotated nodules which 
covers almost every nodule type with 2-10 mm in diameter. Annotation is marked by two experienced 
radiologists. The database is in DICOM format and the data was acquired on Siemens CT machine. 

Five performance measures viz. accuracy, sensitivity, specificity, geometric mean (G - mean) and 𝐹𝐹-
measure are used to evaluate the proposed lung nodule detection system based on the following four 
possibilities:  

• True positive (TP): the judgment by expert radiologists and the classifier prediction are both 
correctly labeled as object. 

• False positive (FP): the judgment by experts is background, while the classifier prediction is 
object. 

• True negative (TN): the judgment by experts and the classifier prediction are both background. 
• False negative (FN): the judgment by experts is object, while the classifier prediction is 

background. 
The accuracy is the fraction of all correctly classified pixels: 

            
TP TNAccuracy TP FP TN FN

+= + + +
,                (29) 

When all pixels are correctly labeled, then accuracy is one.  

The sensitivity is the fraction of correctly labeled object pixels: 

 ( )    Sensitivity R TP
TP FN= +

,                  (30) 

A sensitivity of one indicates that all object pixels have been labeled correctly. 

Specificity is the fraction of all correctly labeled background: 

     Specificity TN
FP TN= +

,                        (31) 

For an unbalanced data classification performance evaluation criteria is geometric mean (G - mean), 
which is defined as  
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 -    * G mean Sensitivity Specificity= ,                  (32) 

G-mean maintains the balance between classification accuracies of the two classes. 

For the evaluation of SVM, a function of 𝐹𝐹-measure is a way of evaluation of accuracy and sensitivity of 
the classification results for positive class. Here the accurate rate of classification of positive class is 
defined as 

    
TPP TP FP= +

,                                                                      (33) 

The evaluation function of 𝐹𝐹-measure can be defined as follows: 

  2* *-     
P RF measure P R= +

,                      (34) 

Obviously, the optimum of classification is that 𝐹𝐹-measure gets the maximum value 1. 

4.1 Lung region segmentation 
The results of the lung region extraction for various lung slices as shown in Fig. 6. The input thoracic CT 
images are shown in the first column. The second column presents corresponding lung region mask for 
the input CT images in first column.  To generate the lung region mask, we set a threshold of -350 HU in 
order to separate the lung region from the thoracic CT scan. From the second column it can be observed 
that the extracted lung region is under segmented as the images we have considered have parenchymal 
lung diseases which include honeycombing, ground glass opacity, emphysema, and juxta-pleural 
nodules. The results of the proposed modified convex hull algorithm are given in the third column. The 
proposed method provides more accurate lung segmentation results as the algorithm uses the 
monotonicity property to extract the convex hull of an object such that the accuracy in segmentation 
and the computing speed increases. 

 

Figure.6 Results of lung region segmentation 
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The proposed algorithm has a very less computational cost in the following ways:  (1) It divides the 
binary image into several regions by using the extreme points such that only those boundary pixels in 
few regions require computation. (2) The boundary pixels obtained by scanning are computed 
dynamically and only these vertices of temporary convex hull require storage. The segmented lung 
region is shown in the last column. Table 1 presents the results of proposed lung region segmentation 
algorithm before and after contour correction in terms of accuracy, sensitivity and specificity. The 
results yield comparable accuracies before and after contour correction. To enhance the sensitivity of 
this contour correction internal and sub-pleural lung regions are then truncated. The specificity indicates 
the probability of obtaining a negative result when the lung regions don’t have the disease after contour 
correction.  

Table 1 Summary of quantitative evaluation of lung region segmentation results before and after the contour 
correction by improved convexity algorithm. Numbers represent average ± standard deviation. 

 Accuracy Sensitivity Specificity 

Before 0.94  ± 0.06 0.90  ± 0.23 0.99  ± 0.01 

After 0.95  ± 0.04 0.98  ± 0.14 0.96  ± 0.02 
 

4.2 Nodule candidate detection 
The proposed nodule candidate detection method is performed on the segmented lung regions. ROIs for 
the nodule candidates are extracted from the segmented lung region using optimal multiple statistical 
thresholding. Fig.7 presents the detected lung nodule candidates after applying optimal multiple 
statistical thresholding. The proposed method has detected 326 nodules with 31,743 FPs with a 
sensitivity of 94.29% and FPs of 214.4 per scan. In new optimal statistical thresholding, we have 
considered sum of the class variance and variance discrepancy of the object and background for 
threshold selection, the method obtained good results while segmenting small nodules which are 
isotropic or nearer to vessels and other structures. 
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Figure. 7 The results of nodule candidate detection: extracted lung region(upper row), nodule 
candidate(bottom row) detection by proposed method 

We have selected 326 non-nodules randomly from the detected non-nodule candidates and these non-
nodules are then combined with 326 nodules to generate a balanced dataset for training. Finally, we 
have classified the detected nodule candidates into nodules and non-nodules using SVM classifier with 
radial basis function as kernel. The 2D and 3D orientations of the detected nodules and non-nodules by 
the SVM classifier are as shown in Fig. 8.  In order to evaluate the SVM classifier, we have used k-fold 
cross validation. In this work, k =7 is used for evaluation as it provides a good balance between training 
and testing data for evaluating the proposed method than 5-fold and 10-fold cross validation. Table 2 
shows the performance of SVMs for different k values. 

                        2D                         3D 

                        
                                                             (a) 

                      
(b) 

Figure. 8 The results of Fig. 5(b) nodule candidates: (a) nodule, (b) non-
nodule 
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Table 2 The k-fold cross validation results of SVM classifiers with radial basis function kernel for different k 
values 

k 

Performance for data set (%) 

FP
s/

Sc
an

 

Se
ns

iti
vi

ty
 

Sp
ec

ifi
ci

ty
 

Ac
cu

ra
cy

 

PP
C 

G-
M

ea
n 

F-
m

ea
su

re
 

5 90.09 91.99 91.98 90.09 91.04 90.09 2.7 

7 94.29 92.64 92.65 92.34 93.46 93.3 2.6 

10 90.99 92.07 92.06 90.99 91.53 90.99 2.9 
 

4.3 SVM classifier 
The proposed classification approach achieved a sensitivity of 94.29%, specificity is 92.64%, accuracy is 
92.65 %, G-mean 93.46% and an F-measure is 93.3% with 2.6 false positives per scan in the range of 2-
10 mm in diameter of nodule size. All other CAD systems have reasonable sensitivity values in 
classification of pulmonary nodules. It is extremely important to consider the small nodule size in the 
classification of a CAD system. This increases the probability of early detection of nodules. Considering 
these results, it can be said that the proposed study represents a relatively high sensitivity. The Fig. 9 
shows the ROC curve of the SVM classifiers. 

 

Figure. 9 Estimation of ROC curve for our algorithm. 

We used recently reported lung nodule detection systems [7] [14] - [16], [18], [19] to compare and 
evaluate the results of proposed lung nodule detection system. The comparison with other lung nodule 
detection systems is difficult, as they used different database having different nodule orientations and 
sizes. The reported CAD systems used LIDC database in which the size of the nodules ranges from 3 mm 
to 30 mm.  Table 3 presents the comparison of the proposed system with other systems. It can be 
observed from the table that the proposed system shows significantly better sensitivity with high 
reduced false positives. The system achieves 2.6 FPs per scan, with 93.3% sensitivity.  
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Table 3 Reported of performance comparison of CAD system 

CAD systems 
Number of 

cases 
Number of 

nodules 

Nodule size 
criterion used 

(mm) 

Sensitivity 
(%) 

Average 
FPs per 

case 

Messay et al. [7] 84 143 3–30 82.66 3 

Golosio et al. [14] 84 148 3–30 79 4 

Dehmeshki et al. [15] 70 121 3–20 90 14.6 

Pu et al [16] 22 71 ≥3 76 3 

Suzuki et al. [18] 71 121 8–20 80.3 16.1 

Cascio et al. [19] 84 148 3–30 97.66 6.1 

Proposed system 148 355 2–10 94.3 2.6 

5 Conclusions 
This paper presents an expert system to detect pulmonary nodules from chest CT scans using a feature 
descriptor based on optimal manifold statistical thresholding. The key features of the expert system are 
1. A modified convex hull algorithm that is used to correct the lung contour which may be affected by 
dense abnormalities like juxta pleural nodules, ground glass obesity, etc and 2. A novel optimal manifold 
statistical thresholding algorithm can effectively detects the nodule candidates from segmented lung 
region. The modified convex hull algorithm uses the monotonicity property to extract the convex hull of 
an object such that the accuracy in lung region segmentation and the computing speed increases. The 
proposed optimal manifold statistical thresholding is used to segment the nodule candidates by 
considering the class variance sum and variance discrepancy simultaneously. The proposed method can 
be regarded as a generalized version of Otsu’s method. The proposed system is evaluated on the 
publicly available Lung TIME database, and the results are compared with the results of recently 
reported systems. The proposed system shows the reduction of the false positive rate (2.6 FPs per scan) 
significantly while maintaining a high sensitivity of 94.3%. Hence, it is suitable for application in clinical 
lung cancer CAD systems. 
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