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ABSTRACT 

Retinal image analysis holds an imperative position for the identification and classification of retinal 
diseases such as Diabetic Retinopathy, Hypertensive Retinopathy, Glacuma, Age Related Macular 
Degeneration, Retinal Detachment, and other retinal disease. Automated identification of retinal diseases 
is a big step towards early diagnosis and prevention of exacerbation of the disease. A number of state-of-
the-art methods have been developed in the past that helped in the automatic segmentation and 
identification of retinal landmarks and pathology. However, the current unprecedented advancements in 
deep learning and modern imaging modalities in ophthalmology have opened a whole new arena for 
researchers. This paper is a review of deep learning techniques applied to 2-D fundus and 3D-OCT retinal 
images for automated identification of retinal landmarks, pathology, and disease classification. The 
methodologies are analyzed in terms of sensitivity, specificity, Area under ROC curve, accuracy, and F 
score on publically available datasets which include DRIVE, STARE, CHASE-DB1, DRiDB, NIH AREDS, ARIA, 
MESSIDOR-2, E-OPTHA, EyePACS-1 DIARETDB and OCT image datasets. 

Keywords— Retinal Imaging, Retinal Image Analysis, Computer aided diagnosis, Systemic Review 

1 Introduction 
Automatic classification of ophthalmologic and cardiovascular diseases using retinal images in increasingly 
used in diagnostics. Earlier techniques involved manual segmentation and deniliation of retinal anatomical 
structures followed by morphometric analysis, which was time-consuming, subjective, and need domain 
expertise and skill [1]. In contrast, computer-assisted detection of retinal anatomical structures is cost-
effective and objective [2]. Development of screening systems are helpful in early diagnosis and real time 
classification of retinal diseases which includes Diabetic Retinopathy [3], Age Related Macular 
Degeneration [4], Macular Edema[5, 6], Retinoblastoma, Retinal Detachment [7], and Retinitis 
Pigmentosa [8].  

All these state-of-the-art methods required manual feature designing through SURF, SIFT, and HOG 
feature descriptors [9-11]. The specific domain knowledge about retinal imaging is mandatory 
requirement for generating this kind of meaningful hand crafted feature extraction [12]. In geneal, the 
generated hand crafted features are not generalizable across the datasets [13]. Recent advancements in 
visual recognition via deep learning motivated the researchers to use convolutional neural networks for 
recognizing varius retinal landmarks. Convolutional Neual Netorks can learnd the intricate retinal features 
automatically. The supervised and unsupervised multi-layer Deep Neural Networks (DNN) allow 
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generalized high level feature extraction from raw data image [12]. Whereas, retinal image analysis based 
on deep learning has outperformed the traditional methods both for 2-D fundus images and 3-D OCT 
images. 

Abràmoff et al., [2] have discussed retinal imaging and retinal image analysis based on 2-D fundus and 3-
D OCT images. However, this review encompasses only conventional techniques for retinal deformity 
detection. Moreover there are many other reviews and survey papers which cover the domains of retinal 
landmark detection, retinal pathology segmentation [7, 14] , and retinal disease classification [1, 15]. The 
major contribution of this paper lies in the fact that there is no existing survey paper which covers deep 
learning based retinal image analysis. This work is a review of 2-D fundus and 3-D OCT retinal images’ 
analysis using modern deep learning techniques for automated identification of retinal landmarks, 
pathology, and disease classification. We have analyzed and compared algorithms on the basis of a diverse 
set of performance metrics which include: sensitivity, specificity, area under ROC curve, accuracy, F-score, 
positive predictive value, and Kappa measure. The objective of this work is to summarize the current 
progress made in the field of ophthalmology using deep learning techniques. 

1.1 Methodology of literature Search 
A systematic methodology has been developed for searching literature for this study. This systematic 
methodology includes the following stages: 

• Defining research problem 
• Finding pertinent articles that satisfy the pre-set  inclusion criteria 
• Extracting relevant data from articles 
• Assessment of quality of extracted data 

All the literature that has been reviewed in this survey was retrieved by conducting iterative and 
exhaustive searches on following databases: 

1. IEEE Xplore Digital Library, (http://ieeexplore.ieee.org) 
2. Springer Link, (http://link.springer.com/) 
3. ScienceDirect, (http://www.sciencedirect.com/)  
4. American academy of Ophthalmology, (http://www.aaojournal.org/) 
5. The JAMA Network, (http://jamanetwork.com/journals/jama) 
6. Investigative Ophthalmology and Visual Science, (http://iovs.arvojournals.org/)  

All journal papers as well as conference papers that have been published in the proceeding of above 
mentioned bibliographic databases have been included in this review. Keywords that have been used to 
perform the search are: deep learning, deep neural network, convolutional neural network, auto-encoder, 
sparse stacked auto-encoder, de-noised sparse auto-encoder, softmax, random forest, rectified linear 
unit, hidden layers, diabetic retinopathy, exudate detection, exudate segmentation, micro-aneurysms 
detection, micro-aneurysms segmentation, OD localization, fovea localization, retinal blood vessel 
segmentation, age related macular degeneration, automated screening, retinal disease classification. 

http://ieeexplore.ieee.org/
http://link.springer.com/
http://www.sciencedirect.com/
http://www.aaojournal.org/
http://jamanetwork.com/journals/jama
http://iovs.arvojournals.org/
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1.2 Inclusion Criteria 
“Application of deep learning for retinal image analysis” has been set as the cue statement for literature 
search. Abstracts and titles of all collected articles are checked against the research cue and only those 
articles are selected which provide deep learning based algorithms for segmentation of retinal anatomical 
structures and retinal disease classification. All the relevant content up till July, 2017 has been included in 
this survey. 

1.3 Exclusion Criteria 
The main focus of this survey is to review deep learning based techniques for retinal image analysis. 
Therefore, the articles whose algorithms are not based on deep learning concepts are excluded from this 
survey. Moreover, the articles from impact factor journals and reputed conferences have been selected 
in this review. We have avoided inclusion of such papers which were published in local journals and 
conferences. 

1.4 Selection of papers 
Articles were selected through vigilant scrutiny of inclusion and exclusion criteria. Selected articles were 
downloaded in pdf format and saved. The nomenclature used for saving selected papers depict publishing 
year, journal name/conference name, publisher, main author name, and title. This type of nomenclature 
helped in indexing the articles and resulted in efficient retrieval in accordance with queries. Citations of 
all the articles have also been downloaded and saved in EndNote library.  

2 Diagnostic analysis and Screening of retinal images 
Retinal image analysis allows detection and diagnosis of many diseases originating in brain, eye or 
cardiovascular system, as these diseases manifest themselves in retina.  

2.1 Retinal imaging modalities 
Precise imaging of retinal tissues and brain tissues is very important for the diagnosis and treatment of 
retinal impairments. Czech scientist Jan Evangelista Purkyně [16] invented principles of ophthalmoscope 
in 1823 as a first attempt towards direct inspection of retina. Since then many imaging modalities have 
been developed for non-destructive visualization of retinal anatomical structures. Fundus photography 
has been found to be effective for early screening and diagnosis of three most important causes of 
blindness in industrialized world [17]. The 2-D representation of retinal world obtained by preliminary 
fundus cameras lacked the ability to apprehend depth during examination of fundus image which lead to 
inaccurate diagnosis of certain retinal pathology (e.g. cotton wool spots). Tomography based imaging has 
resolved this problem. Optical coherence tomography (OCT) has now been successfully employed to 
develop 3-D view of retina [18]. 

2.1.1 Fundus photography 

The process of obtaining a 2-D representation of 3-D ocular fundus through projection of reflected light 
on to an imaging plane is termed as fundus photography. Fundus photography, mydriatic or non mydriatic, 
involves use of a low power intricate microscope with an attached camera for imaging the interior surface 
of the eye which includes retina, OD, retinal vasculature, posterior pole, and macula. Digital Imaging of 
inner lining of eye surface through fundus photography follows the same footings as those of conventional 
image capturing except that instead of a photographic film, digital cameras have sensors (charge coupled 
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device or complementary metal oxide semiconductor active pixel). Each sensor converts light signal into 
electric signal and result is stored in the form of a single pixel. The resolution of image can be increased 
by increasing number of sensors.  

 

Figure 1 Retinal fundus images (a) OD centered (b) Macula centered 

Advancements in the models of fundus photography have been  witnessed since the last century [2]. The 
modern fundus photography includes the following imaging modalities:  

Color fundus photography modifies spectral range of illumination source through the use of contrast 
filters (red, blue, and green filters). This variability in spectral range of illuminating source enhances 
visibility of several ocular structures. For instance, blue color improves perceptibility of anterior retinal 
layers, which appear transparent in the presence of white light. Moreover, blood vessels and retinal 
pigments absorb blue light resulting in a dark background which enhances specular reflections and 
scattering in anterior fundus layers. On the other hand, green light provides the best global retinal view 
because the retinal pigmentations reflect green light more than blue light providing excellent contrast. 
Hence, green filter is employed in color fundus photography for improved visualization of retinal 
vasculature, drusen, exudates, and hemorrhages. Retinal pigments, blood vessels and optic nerve appear 
almost featureless in red light and overall contrast of retinal images is reduced. Hence, red light is only 
used for revealing the choroidal pattern, pigmentary disturbances, choroidal ruptures, choroidal naevi, 
and choroidal melanomas [19]. 

Red free photography is the process of retinal image acquisition in the presence of an illumination source 
with a specific color filter to block red light, usually green filter is used for this purpose. This kind of fundus 
photography is effective in viewing retinal blood vessels, hemorrhages, pale lesions (exudates and 
drusen), epiretinal membranes, and retinal nerve fiber layer defects [20].  

Stereo fundus photography [21] helps in documenting the retinal structures because of its increased 
depth resolution feature. This type of photography involves simultaneous or sequential visualization of 
retina through two cameras with different angles of observation insuring least stress to the patient and it 
is viable for diagnosis of macular edema (ME) and sub retinal neovascularization. 

(a) (b) 



Adewale Ayuba and Tunde King; Deep Learning in Retinal Image Analysis: A Review. Journal of Biomedical Engineering and 
Medical Imaging, Volume 6, No 3, June (2019) , pp 29-60 

 

U R L :  http://dx.doi.org/10.14738/jbemi.63.9492       33 
 

Hyper-spectral imaging allows efficient visualization of retinal lesions with high spatial and spectral 
resolution. The illumination source has multiple wavelength bands and their reflection is recorded in the 
form of hyper-spectrali image intensities. This type of imaging modality is feasible for retinal blood oxygen 
saturation analysis (oximetry) [22] through likening of spectral absorptions by retinal arteries, veins, and 
surrounding regions. Hyper-spectral imaging is appropriate for screening and diagnosis of diseases such 
as: diabetes, age related macular degeneration, and glaucoma [23].   

Scanning Laser Ophthalmoscopy (SLO) [24]  uses a focused laser beam to illuminate the retinal fundus 
and provides retinal images with high spatial sensitivity. It is helpful in diagnosis of retinal disorders such 
as macular degeneration and glaucoma. 

Adaptive Optics SLO [25] utilizes SLO and enhances the results by removing aberrations from retinal 
images through adaptive optics. The retinal images obtained by adaptive SLO are sharper than those 
obtained by SLO. 

Angiography is the process of injecting fluorescent dye in retinal blood vessels and projection of emitted 
photons from the dye on to an imaging plane. The fluorescent dye, which is injected in circulation, is 
sensitive to the light reaching it i.e. the fluorescence is different for different wavelengths of light. This 
chameleon  behavior of fluorescent dye makes angiography an apposite imaging modality for inspection 
of retinal blood circulation [26].  

1. Sodium Fluorescein Angiography (FAG) is a variation of angiography. However, the fluorescent 
dye injected in retinal blood circulation is sodium. When the retinal blood vessels and neighboring 
retinal tissues are illuminated with blue light (490nm wavelength), the dye fluoresces yellow light 
(530nm wavelength). It is helpful in documenting the retinal manifestaions of cystoid macular 
oedema and diabetic retinopathy [26]. 

2. Indocyanine Green Angiography (ICG) is another variant of angiography which employs 
indocyanine as fluorescence agent. The injected indocyanine glows only in infrared spectrum 
thereby making the blood, fluids, and choroidal pigments, present in posterior part of eye, 
transparent for the observer. This behavior makes it appropriate for diagnostic analysis of deep 
choroidal disorders such as  choroidal neovascularization, abnormal vessels supplying ocular 
tumors, and hyperpermeable vessels leading to central serous chorioretinopathy [27]. 

A diverse set of datasets based on retinal fundus photography, from different ethnicities, has been 
developed. Some of them are publically available while others can be obtained on demand. A brief 
overview of these datasets is presented in Table 1. 
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Table 1 Specifications of 2-D fundus Retinal Image Datasets 

Sr. Dataset Source Camera Specs. 

Field 
of 

view 
(FOV) 

Image format 
Number 

of 
groups 

Image 
size(pixels) 

Number 
of 

Images 
Ground Truth Availability 

1 DRIVE [28] 
DR screening 
test held in 
Netherlands 

Canon CR5 non-
mydriatic 

3-CCD camera 
450 JPEG 

compressed 
1 768 × 584  40 

Blood Vessel 
demarcation 

Public 

2 STARE [29] 

Shiley Eye 
Center at the 
University of 
California, San 
Diego, Veterans 
Administration 
Medical Center 
in San Diego. 

TopCon TRV-50 
fundus camera 

350 - 1 605x700 20 
Blood Vessel 
demarcation 

Public 

3 ARIA [30] 

St. Paul’s Eye 
Unit, Royal 
Liverpool 
University 
Hospital Trust, 
Liverpool, UK 
and the 
Department of 
Ophthalmology, 
Clinical 
Sciences, 
University of 
Liverpool, 
Liverpool, 
UK 

Zeiss FF450+ 
fundus camera 

500 Uncompressed 
TIFF 

3 768x576 

 

 

92 

 

 Trace of blood 
vessels, the 

optic 
disc and fovea 

location 

Public  

 

59 

 

 

61 

4 
CHASE-

DB1 [31] 

Child Heart and 
Health Study in 
England 
(CHASE), 

Nidek NM-200-
D 

300 TIFF 1 1280x960 28 
Blood Vessel 
demarcation 

Public 

5 DIARETDB0 
Captured under 
IMAGERET 
project 

Several digital 
fundus cameras 

500 PNG 1 1500x1152 130 

Each image is 
marked as 

having any red 
small dots,  

hemorrhages,  
hard exudates,  
soft exudates, 

neovascularizat
ion or not 

Public 

6 DIARETDB1 
Captured under 
IMAGERET 
project 

Several digital 
fundus cameras 500 PNG 1 1500x1152 89 

Demarcation of 
red small dots, 
hemorrhages, 
hard exudates, 

and soft 
exudates 

Public 

7 450 TIFF 3 1440 x 960 1748  On demand 
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MESSIDOR-
2 [32], [33] 

 LaTIM 
laboratory and 
the Messidor 
program 
partners 

TopCon TR NW 
6 3CCD fundus 

camera 

2240 x 1488 

2304 x 1536 

8 
E-Ophtha 

EX [34] 

ANR-TECSAN-
TELEOPHTA 
project 

- - JPEG 1 

2544x1696 

82 
Exudates 
marked 

Public 2048x1360 

1440x960 

 
E-Ophtha 
MA [34] 

ANR-TECSAN-
TELEOPHTA 
project 

- - JPEG 1 
2544x169 

381 
Micro-

aneurysms 
marked 

Public 
1440x960 

9 NIH AREDS 
Project funded 
by NIH 

- -  1  5600  Public 

10 DriDB [35] 
university 
hospital in 
Zagreb 

Zeiss VISUCAM 
200 fundus 

camera 
450 Uncompressed 

BMP 
1 720 x 576 50 

location of OD, 
blood vessels, 
hard exudates, 
soft exudates, 
dot and blot 

hemorrhages, 
and 

neovascularizat
ion 

On Demand 

11 EYE-PACS1 

Captured 
during regular 
screening of DR 
affected 
patients under 
EYEPACS 
program 

Canon 
CR1/DGi/CR2, 

Centervue DRS, 
and Topcon NW 

camera 

450 JPEG 1 Varying sizes 9963 

Each image 
marked as 

having: No DR, 
Mild, 

Moderate, 
Severe or 

Proliferative DR 

Public 

 

2.1.2 3-D Optical coherence tomography 

Optical coherence tomography (OCT)[36]  is a widely accepted noninvasive imaging modality among 
ophthalmologists. This technique captures 3D cross-sectional maps of retina by utilizing the principle of 
interferometry and confocal microscopy. Accuracy of 3D OCT images is usually 10 to 15 microns. 
Depending on the light source used, resolution of images can be improved. The illumination source with 
large wavelength is preferable because it provides efficient scattering of light in retinal cross-section. 
These images are efficient in diagnosis of macular pucker, vitreomacular traction, macular hole. However, 
OCT has recently been regarded as a new standard for detection of diabetic macular edema. The 
advancement in technologies has made OCT capable of generating angiograms for assessment of retinal 
vasculature. 

2.2 Retinal Anatomical structures 
Human eye, which is mostly a hollow organ, is internally lined by light sensitive tissues collectively named 
as the retina. The posterior pole of the eye is tightly knit with neuronal cells, photoreceptor cells, and glial 
cell. Rods, cones and ganglion cells are three types of photoreceptor cells. The optic nerve fibers originate 
from nerve fiber layers which emanate from axons of ganglion cells. The ocular structures focus the image 
on retina and nerve fibers transfer the information to brain in the form of electrical signals which then 
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interprets the received signals as visual images. Optic nerve head or OD, oval in shape, serves as the exit 
point for nerve fibers and is located 4.5 mm to 5 mm nasal to the center of retina as depicted in Figure 1. 
The maximum resolving power of the eye comes from the anatomical center of eye i.e. macula. Fovea and 
foveola are present in the macular region and both of them contain a large number of photoreceptors 
(cones) making them specialized retinal region for high acuity vision [37]. Visual capacity of human brain 
is primarily dependent on visual input from macula but progressive damage to macula results in 
inculcation of diseases like macular degeneration or in severe cases can create macular hole bursting the 
blood vessels coursing towards macula.   

Ophthalmic artery provides the circulation to the retina. Retinal blood vessels exist in the form a network 
of arterioles and venules which circulate the whole retinal region. Due to nonfenestration of the vascular 
endothelium a blood-retina barrier is maintained by retinal blood vessels. Micro-aneurysms and 
hemorrhages are produced as a result of damage to this blood-retinal barrier. Moreover, out pouching of 
retinal blood vessels appear as neovascularization disturbing their morphology. Various systemic and 
retinal diseases manifest themselves in the form of variation in retinal blood vessels’ features. 

2.3 Disease Manifestations as Retinal Impairments 
Analysis of retinal morphology provides an insight to general health state of entire human body as many 
systemic and retinal diseases manifest themselves as ocular structures’ impairments[14, 38, 39]. 
Following paragraphs  provide a compact overview of such diseases. 

2.3.1 Diabetic Retinopathy 

Diabetes mellitus (DM) is a disease caused by fluctuating levels of glycemia (hypoglycemia, 
hyperglycemia). Repercussions of DM can emanate as asymptomatic development of diabetic retinopathy 
(damage to the eyes), diabetic nephropathy (damage to kidneys), and diabetic neuropathy (damage to 
nerve) [40]. The most prevalent consequence of DM is diabetic retinopathy. Despite the use of intensive 
glycemic control therapy DR remains a vision threatening complication of diabetes.  Severe symptoms of 
DR include development of micro-aneurysms, neovascularization, hemorrhages, cotton wool spots, and 
exudates in the retinal region. Extreme progression of polygenic disease puts the patient’s eyesight at 
stake [41]. Pathogenesis like capillary closure and dysfunction of blood-retina barrier are the main 
anatomical changes in retina that lead to DR. Their brief detail is mentioned in the following sections. 

2.3.1.1 Retinal Vessel closure 
Many retinal disorders stem from obliteration of retinal capillaries such as neovascularization is reported 
to be preceded by nonperfusion and closure of small retinal blood vessels[38, 42, 43]. Retinal vessel 
closure instigates the development of neovascularization, micro-aneurysms, cotton wool spots, and 
hemorrhages. 

Neovascularization: Retinal blood vessel closure leads to limited supply of oxygen to retinal regions 
corresponding to these vessels. This condition is often termed as retinal ischemia [44]. The vascular 
endothelial growth tries to compensate the decreased oxygen supply resulting in the formation of weak 
small blood vessels on the surface of retina thereby leading to vision loss.  

Micro-aneurysms: Limited oxygen supply results in unusual dilation of retinal capillaries. These bulgings 
of capillary endothelial linings often appear in the form of small sac like structures named as micro-
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aneurysms. The fragility of capillary walls is considered to be the main reason behind development of 
micro-aneurysms [45]. They appear as small red dots in retinal images as depicted in Figure 2. 

Cotton wool spots: Oxygen supply to certain retinal areas may completely close off due to blockage in 
arterioles. Consequently large regions of retina become completely deprived of oxygen and result in 
emanation of fluffy white patches identified as cotton wool spots or soft exudates [45]. 

Hemorrhages: The blockade in arterioles may instigate a pressure build up within the vessels. Significant 
amount of pressure could burst the vessels and result in origination of hemorrhages [45] as shown in 
Figure 2. 

2.3.1.2 Mutilation of blood-retina barrier 
Retinal blood vessels are permeable i.e. they allow motion of fluids through their walls. In DR, the retinal 
vessels become fenestrated and abnormal leakage of blood cells, proteins, water and other large 
molecules starts.  

Hard Exudates: They appear as a consequence of leakage of fats and proteins along with water from 
abnormally permeable walls of retinal vessels. Mostly hard exudates appear on the outer layer of retina 
individually, in the form of patches, or surrounding micro-aneurysms in the form of a crescent. They 
appear as yellowish, waxy, and glistering structures in retinal images as presented in Figure 2. 

 

Figure 2 (a) A sample retinal image showing pathological structures 

The central region of retina is macular region and is responsible for high acuity vision. Macular edema 
(ME) is a consequence of retinal thickening near macula and fenestration of retinal blood vessels. The 
anomalous vasopermeability allows abnormal flow of large molecules like water, blood cells, lipids, and 
proteins through retinal vascular walls. Accumulation of such fluids in the macular region results in the 
development of pigments such as exudates leading to ME. Treatment of ME is only recommended when 
the pigmentations develop at the center of macula i.e. fovea. This condition is termed as clinically 
significant macular edema (CSME). CSME is actually defined as presence of hard exudates within 500µm 
of the macular or retinal thickening within 500µm of the macular region [46]. Prolonged and asymptotic 

http://dx.doi.org/10.14738/jbemi.63.9492


J O U R N A L  O F  B I O M E D I C A L  E N G I N E E R I N G  A N D  M E D I C A L  I M A G I N G ,  V ol u me  6 ,  N o  3 ,  J une  2 0 1 9 
 

C O P Y R I G H T ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  3 8  
 

DM results in the origination of diabetic macular edema preceded by proliferative and non-proliferative 
DR [47].   

Severity levels of DR have been graded based on the variants of pathology present in retina. A brief detail 
about grading levels of DR, in accordance with the severity, is presented below: 

• Proliferative DR (PDR) is marked by presence of retinal hemorrhages. 
• Moderate PDR manifests itself in the form of neovascularization and retinal hemorrhages. 
• Severe PDR is indicated by the presence of detachment of retina and neovascularization on iris. 
• Insignificant non-proliferative PDR (NPDR) signs are micro-aneurysms, retinal hemorrhages, and 

the presence of hard exudates 
• Significant NPDR has similar signs as those of insignificant NPDR with vessel closure. 
• High Risk NPDR depicts itself as retinal hemorrhages and vessel closure. 
• Moderate ME is indicated by hard exudates, origination of Oedema outside fovea region, and 

thickening of retina. 
• Severe ME manifestations are similar as those of moderate ME except that Oedema develops 

inside the fovea region. 

2.3.2 Age Related Macular Degeneration 

For people of age above 50 years, AMD is found to be the chief cause of irreversible vision loss. Presence 
of age related macular degeneration (AMD) is characterized by excessive presence of drusen, yellow dots, 
in the macular region of eye. Small number of hard drusen is not regarded as symptoms of AMD because 
people with age more than 50 years are likely to develop drusens as a normal anatomy of retina. But 
anomalously large number of drusen can result in mutilation of retinal pigment epithelium [48]. AMD can 
be classified into the following categories: 

Early AMD is marked by the presence of less than 20 medium sized drusen or other abnormal retinal 
pigments [49].  

Intermediate AMD is characterized by the presence of many medium sized drusen, one large druse or 
geographic atrophy that is away from the center of macula [49]. 

Advanced non-neovascular AMD (Dry AMD) manifests itself in the form of drusen and geographic atrophy 
that extends to fovea i.e. the center of macula [49]. 

Advanced neovascular AMD (Wet AMD) is indicated by presence of exudates, neovascularization, and 
sequelae of neovascularization [49].  



Adewale Ayuba and Tunde King; Deep Learning in Retinal Image Analysis: A Review. Journal of Biomedical Engineering and 
Medical Imaging, Volume 6, No 3, June (2019) , pp 29-60 

 

U R L :  http://dx.doi.org/10.14738/jbemi.63.9492       39 
 

 

Figure 3 Retinal image diagnosed (a) with Dry AMD (b) with Wet AMD 

2.3.3 Cardiovascular Diseases 

Coronary heart disease is directly linked with micro-vascular circulation [50]. Changes in microvasculature, 
structure and pathology of human circulation can be studied through in vivo examination of retina [51]. 
Therefore, retinal image analysis provides a window in the health of human heart. Common retinal 
vascular signs include formation of micro-aneurysms, hemorrhages, arterio-venous nicking, and focal 
arteriolar narrowing [4]. These signs reflect vascular damage because of hypertension, aging, and other 
processes. Retinal vascular narrowing is found to be associated with reduced myocardial perfusion 
measures on cardiac magnetic resonance imaging. Moreover, it has also been found that other 
retinopathy lesions are linked to coronary artery calcification. These kind of anatomical and pathological 
reasons suggest that changes in retinal microvasculature can be useful for assessing the coronary heart 
disease risk stratification [52].   

2.3.4 Glaucoma  

The second most prevalent cause of permanent vision loss in the developed world is glaucoma. This 
disease directly damages the optic nerve and the ganglion cells [53]. Optic nerve of glaucoma affected eye 
shows cupping of optic nerve up to an abnormal amount. Obesity, high blood pressure, migraines, and 
increased pressure in eye are the factors that instigate glaucoma [54].  Glaucoma is classified as open 
angle, close angle, and normal tension glaucoma. Open angle glaucoma  is the most prevalent type of 
glaucoma. It grows gradually and is painless but it has the potential of making the patient completely blind 
if left untreated. However, closed angle glaucoma has the ability to manifest itself slowly or abruptly.  
Normal tension glaucoma is associated with blood circulation issues in retinal area and other organ 
perfusion whereas the classic hallmark of intra-occular pressure has no association with this kind of 
glaucoma.  Glaucoma is diagnosed by analysis of intra-ocular pressure, cup to disk ratio [3], retinal vascular 
morphology [55], optic nerve structure, and anterior chamber angle [56]. 

(a) (b) 
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2.4 Quantitative Measures for Retinal Image Analysis 
An algorithm is considered efficient if its predictions and ground truth stand in close proximity to each 
other. This proximity can only be tested by the use of some quantitative measures. These quantitative 
measures also help in evaluating and comparing the capabilities of different algorithms. Sophisticated 
performance metrics are derived from basic performance measures (true positives, false positives, true 
negatives, and false negatives). The performance metrics which are used for analysis and comparison of 
algorithms in this study are recorded in Table 2. 

Table 2 Performance Metrics for Retinal Image Analysis 

Performance Metric Description 

Sensitivity( SN) TP/TP+FN 

Specificity (SP) TN/TN+FP 

Accuracy (Acc) TP+TN/FOV pixel point 

Positive Predictive Value (PPV) TP/TP+FP 

Negative Predictive Value (NPV) 
TN/TN+FN 

 

F-score SN.PPV/PPV+SN 

Kappa Acc-Accr/1-Accr 
 

3 Deep-Learning 
Creation of self-taught and self-thinking machines has remained utter desire of humans since antiquity. 
With the invention of programmable computers, scientists remained focused towards tackling problems 
which were intellectually difficult for humans in early days of artificial intelligence. Artificial intelligence 
has coursed through the following phases before turning the milestone of self-taught machines [57]: 

Knowledge based AI: This approach of AI required the programmers to feed the machine with all the 
details about the problem. Surprisingly the use of knowledge base approach made a number of 
monotonous tasks easier for machines to solve. Through knowledge base approach to artificial 
intelligence (AI), computers have defeated even the best chess player, Garry Kasparov [58].  

Machine Learning: Solving intuitive and subjective problems, such as recognizing voices and contents of 
an image, proved to be a taxing task for AI.  Solution of such intuitive tasks required immense amount of 
knowledge about the surrounding world and a large database of decision statements. These challenges 
suggested that instead of hard-coded knowledge, AI systems required to develop self-learning ability from 
raw data. This concept surfaced as the field of machine learning. Performance of machine learning 
algorithms was primarily dependent on representation of data provided to them. Maiden machine 
learning algorithms required manual representation of data in the form of features. The algorithms 
deduced results on the basis of correlation between features and output. Logistic regression and Naïve 
Bayes are examples of machine learning algorithms.  
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Representation Learning: Hand crafting of features for tedious tasks is laborious and time consuming. It 
may take decades for a community of researchers to devise maximally correlated features for such 
complex tasks. This problem was tackled by the development of representation learning which is learning 
of mapping from initial representation of data to an intermediate representation and then back to the 
original representation. A classic example of representation learning is auto-encoder. 

Deep Learning: Many factors of variation are associated with learned features in case of representational 
learning. An example of factors of variation is the different viewing angles with which an image of a car is 
captured. Concepts of deep learning or experience based learning come handy in solving this crucial 
problem of representation learning. Hierarchical nature of deep learning techniques allows building of 
complex concepts out of simpler ones. Quintessential example of deep learning technique is feed forward 
network termed as multi-layer perceptron (MLP). These techniques are well established in audio 
recognition, natural language processing, and automatic speech recognition [59]. 

Benefits of deep learning are achieved through the use of Deep Neural Network (DNN). It is a form of 
artificial neural network (ANN) in which arrangement of neurons is inspired by neuron disposition of 
animal visual cortex. DNN provide the following major commendatory advantages: 

1. Hierarchical feature extraction i.e. no need of handcrafted features. 
2. Limited pre-processing of input images 

DNN have three kinds of layers: input layer, hidden layers, and output layer. Each layer has non-linear 
units known as nodes which help in modeling of complex features. DNN can learn features by following 
either the supervised learning method or the unsupervised method. A brief introduction of these methods 
is listed under the following rubrics. 

3.1 Supervised Learning  
In supervised method DNN is provided with training data along with output labels and network tries to 
learn labeling using a specified learning method under the supervision of available ground truths. 
Classification problems are solved using supervised learning approach.  

As cortical neurons in animals consider a restricted region of space to generate response, similarly 
convolutional neural network (CNN) neurons respond to a restricted region of input image known as 
receptive field. This receptive field can be viewed as an image processing filter or kernel. Receptive fields 
are overlapping, to give an effect of sliding over input image. Response is generated by convolution of 
receptive field of neuron with weight matrix (generated by individual weights of neurons in same layer). 
Each node of input layer gets an input image patch, and output is generated for central pixel of patch as 
shown in Figure 4. Output label maps for all pixels of input image patch can also be generated 
simultaneously using structured prediction method.  

Usually CNNs have convolutional layers, pooling layers, and a terminating classification layer. Pooling 
layers are used to reduce dimension of feature vector which further increases computational efficiency of 
the network as shown in Figure 4c. Softmax, LSVM, multi-class SVM, random forest etc. can serve the 
purpose of classification layer. CNNs have many variations depending on number of layers, pooling, and 
classifier. These include LeNet-5, VGG16, and GoogleNet etc. 
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3.2 Unsupervised Learning 
This approach is used for pattern recognition. Unsupervised DNNs also have input layer, hidden layers, 
and output layer. These layers can be partially or fully connected, we can also have a terminating fully 
connected classification layer. Unsupervised DNN take input image and compress it, their principle is to 
reconstruct input image from compressed version of input image. This reconstruction is probabilistic. A 
number of network variants exist which include: auto-encoders, stacked auto-encoders, stacked de-
noised auto-encoders, restricted Boltzman machines etc. Usually noise is added in input images and 
stacked de-noising auto-encoder is then used to reconstruct original image from compressed noisy image. 

 

Figure 4 Deep Neural Networks (a) Receptive field of CNN (b) Supervised CNN (c) Structure of CNN 

3.1 Challenges to Deep Learning 
In recent years deep learning techniques have emerged as revolutionary methods which have surpassed 
the state-of-the-art techniques. The ability of deep networks to exploit simple as well as complex 
compositional features of data representations is referred to as the reason behind their success. 
Notwithstanding, there are some issues with deep learning techniques which are yet to be solved.  

3.2.1 Lack of real cognizance behind Deep learning techniques 

Despite achieving remarkable performance, the real cognizance behind the achievements of deep 
learning has remained unknown.  A small number of efforts have been put forth by researchers to 
understand how deep networks achieve such exceptionally good results. However, there is a utmost need 
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to develop a comprehensive theoretical background about tuning and performance assessment strategies 
of deep networks [60]. The following questions are still unanswered. 

i. How to choose features to be extracted? 
ii. How to tune parameters of network models? 

3.2.2 Difficult training 

Training of deep neural network has always remained a difficult task as there are numerous chances that 
they network may get stuck in local optima. Moreover, training of deep networks is very slow and requires 
massive computational resources for both medium and large sized data-sets to reach performance of 
state-of-the-art performance especially in case of offline learning. Once trained the network becomes 
non-adaptive for new data [60]. 

4 Learning Methods applied for Retinal Image Analysis 

4.1 Healthy and Abnormal Retinal Anatomy Segmentation 

4.1.1 Supervised Methods 

Supervised Retinal vessel segmentation problem can be broken down into two stages: (i) feature 
extraction, (ii) classification. Wang et al., [61] have exploited the same approach with CNN as a hierarchical 
feature extractor. Ensemble Random Forest (RF), which has good generalization ability, is used as 
classifier. This classifier gives a binary output for each pixel as vessel pixel or background pixel. The green 
channel of RGB images contains the best retinal vessel and background contrast therefore green channel 
of images is used in proposed methodology. To reduce the noise and normalize uneven illumination in 
images Histogram equalization and Gaussian smoothing filter are utilized. Training of network is compute 
intensive therefore super-pixel based sample selection is done using Simple Linear iterative clustering 
(LISC). However CNN, which is used as a trainable feature extractor, has alternating convolution and 
subsampling layers. The network has five layers (classic LeNet5) with one fully connected output layer. 
Features learned from intermediate subsampling layers and last fully connected layer are fed into three 
RF classifiers.  During training, input nodes of network are supplied with square shaped image patches. 
Each node’s output is a single pixel in activation map. After training of CNN, each RF is trained with learned 
features extracted from the network. An ensemble classifier with winner-takes-all strategy has been 
employed after complete training of RFs. DRIVE and STARE datasets are used to test efficacy of proposed 
method. Table 4 shows average case performance metrics of algorithm for both datasets. Robustness of 
algorithm is inspected using cross training. Accuracy in case of DRIVE (trained on STARE) is 0.9803 and for 
STARE (trained on DRIVE) accuracy is 0.9710. 

Classification of each pixel as vessel or non-vessel poses two problems: (i) system is not robust to 
pathology presence and (ii) pixel-pixel training of network is exhaustive. Structured prediction i.e. output 
label map for all pixels in input image patch instead of a single label for central pixel is more 
computationally efficient. It makes the system independent of pathology presence. This approach is 
presented in detail by Fang et al., [62]. Their DNN has five layers with three hidden layers and nodes of 
hidden layers are twice as those of input layer, network is made wide to make feature extraction effective. 
To allow learning of complex relationship between cross-modalities, input image patch and output label 
map, network is made deep. The label map is used to construct probability map which is of the same size 
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as that of original retinal image. Probability map is enhanced by histogram equalization. The scale space 
helps in highlighting fine details in image. Enhanced probability map is smoothed with Gaussian kernels 
of varying standard deviation to get different scale space images. Hessian matrix for each pixel is obtained 
by computation of second derivatives of distinct scale space images. Coherent pixels are extracted from 
candidate pixels through non-maxima suppression of determinant of hessian matrix, determinant fine-
tunes high curvature points. This approach is more objective and results are not affected by image noise 
and other unwanted image artifacts. Results are tested on DRIVE dataset and compared with state-of-the-
art SIFT and COSFIRE methods. The proposed method has superseded the traditional methods in 
identification of bifurcation points, extreme curvature and cross-over points. 

Table 3 Deep Learning Based Retinal Image Analysis Methods 

Algorithm Year Photography Dataset Focus Method 
Deep Learning 

Technique 
Network 

Architecture 
Classifier 

 

Maji et al., [63] 2015 Fundus images DRIVE 
Retinal vessel 

detection 
Hybrid DAE - 

Random 
Forest 

Healthy and Abnorm
al Retinal Anatom

y Segm
entation     

Wang  et al., 
[61] 

2015 Fundus images 
DRIVE 

STARE 

Retinal vessel 
Segmentation 

Supervised CNN LeNet5 
Ensemble 
Random 
Forest 

Fang  et al., 
[62] 

2015 Fundus images DRIVE 
Retinal vessel 

detection 
Supervised CNN 5 layers - 

Melinščak  et 
al., [64] 

2015 Fundus images DRIVE 
Retinal vessel 

detection 
Supervised CNN 

2 convolutional 
layers, 2 max 

pooling layers, 2 
fully connected 

layers 

Softmax 

Fu  et al., [65] 2016 Fundus images 
DRIVE 

STARE 

Retinal vessel 
Segmentation 

Supervised CNN 

4 convolutional 
layers with 3 

alternating max 
pooling layers, a 
side output layer 

CRFs 

Fu  et al., [66] 2016 Fundus images 

DRIVE 

STARE 

CHASE-DB1 

Retinal vessel 
Segmentation 

Supervised 
DeepVessel 

Network 

4 convolutional 
layers with 3 

alternating max 
pooling layers, a 
side output layer 

RNN 

Liskowski & 
Krawiec [67] 

2016 Fundus images 
DRIVE 

STARE 

Retinal vessel 
Segmentation 

Supervised 
CNN with 
structured 
Prediction 

Convolutional 
layers with max 

pooling 
- 

Li  et al., [68] 2016 Fundus images 

DRIVE 

STARE 

CHASE-DB1 

Retinal vessel 
Segmentation 

Supervised CNN 5 layers - 

Yao  et al., [69] 2016 Fundus images DRIVE 
Retinal vessel 
Segmentation 

Supervised CNN 

3 convolutional 
layers, 3 pooling 

layers, 1 fully 
connected layer 

Softmax+ 

local and 
global 

binarization 
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Melinščak  et al., [64] have improved computational efficiency of their deep neural network by using GPU 
for training of network. Network has four layers of alternating convolutional and max pooling layers with 
two fully connected layers at the end. Convolutional layers have ReLu activation function and last fully 
connected layer has Softmax activation function. The DRIVE dataset is used for training of network. 

Dasgupta & 
Singh [70] 

2016 Fundus images DRIVE 
Retinal vessel 
Segmentation 

Supervised CNN 

6 convolutional 
layers, 1 pooling 

layer, 1 
unsampling layer 

Softmax 

Lahiri  et al., 
[12] 

2016 Fundus images DRIVE 
Retinal vessel 
Segmentation 

Unsupervised SDAE 
Two parallel SDAE 

networks 
Softmax 

Maninis  et al., 
[71] 

2016 Fundus images 

DRIVE 

STARE 

DRIONS-DB 
RIM-ONE 

Segmentation of 
OD and retinal 

vessels 
Supervised CNN 

Variation of VGG 
with last FC layer 

excluded 
- 

Tan  et al., [72] 2017 Fundus images DRIVE 
Segmentation of 

OD, fovea and 
retinal vessels 

Supervised CNN 
6 layers with max 

pooling 
Softmax 

Prentašić & 
Lončarić [73] 

2015 Fundus images DRiDB 
Exudates 
detection 

Supervised CNN 
10 layers with 
max pooling 

Softmax 

Prentašić & 
Lončarić [74] 

2016 Fundus images DRiDB 
Exudates 
detection 

Supervised CNN 
10 layers with 
max pooling 

Softmax 

Shan & Li [75] 2016 Fundus images DIARETDB 
Micro-aneurysm 

detection 
Unsupervised SSAE 4 layers Softmax 

Pratt  et al., 
[76] 

2016 Fundus images Kaggle DR identification Supervised CNN 
10 convolutional 

layers, 8 max 
pooling layers 

Softmax 

Retinal Disease Classification 

Abràmoff et 
al., [77] 

2016 Fundus images MESSIDOR-2 DR Identification Supervised 
CNN based  IDx-
DR X2.1 system 

- - 

Gulshan  et al., 
[78] 

2016 Fundus images 
EyePACS-1 

MESSIDOR-2 

DR detection 
and 

classification 
Supervised CNN 

Inception-v3 
architecture 

- 

Colas  et al., 
[79] 

2016 Fundus images 
Kaggle DR 

dataset 
DR identification Supervised DNN - - 

Gargeya & 
Leng [80] 

2017 Fundus images 
MESSIDOR 

E-OPHTHA 
DR Identification Supervised DNN 

34  convolutional 
layers , 1 avg. 
pooling layer 

Softmax 

Burlina  et al., 
[81] 

2016 Fundus images NIH AREDS AMD detection Supervised CNN - LSVM 

Burlina  et al., 
[82] 

2017 Fundus images NIH AREDS AMD detection Supervised CNN - LSVM 

Lee  et al., [83] 2017 OCT images - AMD detection Supervised CNN 21 layers (VGG16) - 

Arunkumar & 
Karthigaikumar  

[8] 
2017 Fundus images ARIA 

Retinal disease 
Classification 

Unsupervised CNN GRNN 
SVM multi-

class 
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Vessels are extracted from green channel of raw input images i.e. no pre-processing. However, 
Backpropagation algorithm is used for training of network. The statistical measures obtained after testing 
of network are shown in Table 4. 

Fu et al., [65] have also used probability maps for segmentation of retinal blood vessels. They formulated 
the problem of vessel extraction as a boundary detection problem. Probability map is constructed by a 
fully connected four layered CNN with max pooling. Network is a derived form of holistically-nested edge 
detection (HED) network [84]. Probability maps from all side-output layers are fused together and a single 
probability map is generated. Instead of sigmoid, rectified linear units (ReLu) are employed in network. 
The fully connected Conditional Random Fields (CRF) are used for binary segmentation of vessels. The CRF 
uses probability map and correlation among image pixels to do efficient segmentation. Maximum 
posterior marginal inference is obtained through mean field approximation of CRF distribution. ARIA 
dataset is used for fine-tuning of network. Results obtained after examination of algorithm using DRIVE 
and STARE datasets are presented in Table 4.  

Fu et al., [65] presented improved version of their work in reference [66]. Network details are kept same 
except that CRF is formulated using Recurrent Neural Network (RNN). The network is renamed as 
DeepVessel network. Training is done following the same footing as presented in old version. Results are 
depicted in Table 4. 

This work has been further extended by Li et al., [68]. Their DNN has five layers with three hidden layers; 
initially weights of first layer are obtained by pre-training of a de-noising autoencoder. De-noising 
autoencoder is used to find the relationship between two modalities, image patch and label map. The 
optimization of network is directly related with this kind of training because naïve learning of weights 
through backpropagation has high probability of erroneous convergence into local minima. Weights learnt 
via auto-encoder are employed as initial weights of first layer of deep network and the rest of the weights 
are randomly initialized. Overall learning and fine tuning of weights is done using backpropagation 
algorithm. Network is trained with a batch size of 100 and 30 epochs. The probability map, which has the 
same dimensions as that of original image, is constructed by using label maps obtained from output layer 
of deep network. Instead of using hessian matrix, vessel segmentation is done via thresholding of 
probability map. Threshold is chosen so as to increase accuracy. The proposed methodology is tested 
through ROC analysis using three datasets: DRIVE, STARE, and CHASE-DB1 and results are shown in Table 
4. However, methodology is also tested by cross training of network i.e. testing of one dataset on network 
trained by other two datasets. Accuracy measure decreased from 0.9581, 0.9628, and 0.9527 to 0.9417, 
0.9535, and 0.9485 for the CHASE-DB1, STARE and DRIVE datasets when they are trained on DRIVE, 
CHASE_DB1 and STARE datasets, respectively. Cross training gives an estimate for feasibility criteria of 
algorithm from clinical point of view.  

Yao et al., [69] have used CAFFE architecture[85] for initial segmentation of blood vessels. Their network 
contains three convolutional layers, three intermediate pooling layers, one fully connected layer and a 
terminating Softmax classification layer. The preliminary weight selection is done with Gaussian 
distribution of specified mean and variance whereas further weight learning is done via back-propagation. 
The output of Softmax layer is confidence level, being blood vessel pixel, with values in the range (0, 1). 
Classification is perfected by two stage binarization based on three dimensional characteristics of input 
image; confidence level image from CNN, green channel of RGB retinal input image, and their difference. 
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The initial binarization is done by global thresholding of image which classifies each pixel as belonging to 
vessel class or non-vessel class. The local binarization is employed with respect to pixel-class centroid 
distance. This two stage binarization results in formation of unwanted artifacts which can be removed 
through morphological post processing i.e. erosion. Structuring elements of varying sizes are used for post 
processing procedure. Efficacy of algorithm is validated using DRIVE dataset. Results, as shown in Table 4, 
are comparable to human observer performance measures. 

Dasgupta & Singh [70] provided an improved version of supervised structured prediction based multi label 
method for retinal vessel segmentation. Their CNN has 6 layers including a max pooling layer, an 
unsampling layer, and a final fully connected Softmax layer. Each convolutional layer has ReLu activation 
function. Input layer of network is fed with preprocessed green channel extracted image patches. Pre-
processing steps include: image normalization, CLAHE, and gamma adjustment. Intensity values are scaled 
in the range (0, 1). The DRIVE dataset is used for training and testing purposes. This dataset has small 
number of images therefore; neuron dropout method is used for increasing robustness of network. The 
results obtained after testing are depicted in Table 4. 

Liskowski & Krawiec [67] have compared single pixel classification and structured prediction (SP) based 
segmentation of vessels. This extensive study is based on different network architectures and pre-
processing techniques. Neural Networks can learn features from raw images but pre-processing allows 
the network to focus on higher order feature extraction. The uneven illumination in input image patches 
is normalized through global contrast normalization (GCN). Zero phase component analysis (ZCA) is 
employed for the purpose of single pixel based classification. Neighboring pixels, in normalized image 
patches, are uncorrelated by multiplication of data matrix with whitening matrix. To increase the number 
of input samples, normalized and uncorrelated input patches are augmented. Six different types of CNN 
architectures are developed: PLAIN, GCN, ZCA, AUGMENT, NO-POOL, and BALANCED. As the name 
suggests NO-POOL network has no intermediate pooling layers, it has four preliminary convolutional 
layers and four fully connected layers. The PLAIN architecture has two initial convolutional layers followed 
by a max-pooling layer which is further followed by 2 convolutional layers, one max max-pooling layer and 
three fully connected layers. GCN, ZCA, AUGMENT architectures are exact replica of PLAIN, they differ in 
training set-up. For BALANCED network, PLAIN network is trained with equal share of decision classes. 
Output units have sigmoidal activation whereas hidden layers have ReLu activation units. Results of single 
pixel based segmentation method for NO-POOL network are verified on DRIVE AND STARE datasets as 
represented in Table 4.  

For structured prediction network architecture, prediction is made for the whole window “s x s” (input 
image patch). Network is same as that of NO-POOL architecture except that the last layer is replaced by 
s2 neurons and is fully connected with the second last layer. This set-up is done for construction of label 
map. BALANCED and NO-POOL configurations are considered for structural prediction. DRIVE and STARE 
datasets are used for validation of algorithm; results for NO-POOL structured prediction based network 
are shown in Table 4. 

Structured prediction is more sensitive to false negatives i.e. it is less sensitive to segmentation of fine 
vessels. On the contrary non structured prediction is reliable for reconstruction of retinal vasculature 
because it gives less false negative errors. 

Table 4 Performance measures for Retinal Vessel landmark detection 
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Sr. 
No  Dataset Learning 

Method SN SP Acc AUC Kappa 

1 Wang et al., [61] 
DRIVE 

Supervised 

0.8173 0.9733 0.9767 0.9475 - 

STARE 0.8104 0.9791 0.9813 0.9751 - 

2 Melinščak  et al., [64] DRIVE - - 0.9466 0.9749 - 

3 Fu et al., [65] 
DRIVE 0.7294 - 0.9470 - - 

STARE 0.7140 - 0.9545 - - 

4 Fu et al., [66] 

DRIVE 0.7603 - 0.9523 - - 

STARE 0.7142 - 0.9585 - - 

CHASE_DB1 0.7130 - 0.9489 - - 

5 Li et al., [68] 

DRIVE 0.7569 0.9816 0.9527 0.9738 - 

STARE 0.7726 0.9844 0.9628 0.9879 - 

CHASE-DB1 0.7507 0.9793 0.9581 0.9761 - 

6 Yao et al., [69] DRIVE 0.7731 0.9603 0.9360 - - 

7 Dasgupta & Singh [70] DRIVE 0.7691 0.9801 0.9533 0.9744 - 

8 Liskowski & Krawiec 
[67] 

DRIVE 

Supervised 
without SP 0.7763 0.9768 0.9495 0.9720 0.7781 

Supervised with 
SP 0.7811 0.9807 0.9535 0.9790 0.7910 

STARE 

Supervised 
without SP 0.7867 0.9754 0.9566 0.9785 0.7622 

Supervised with 
SP 0.8554 0.9862 0.9729 0.9928 0.8021 

9 Lahiri et al., [12] DRIVE Unsupervised - - 0.9530 - 0.7090 

10 Maji et al., [63] DRIVE Hybrid - - 0.9237 - 0.6287 

 

Simultaneous segmentation of retinal landmarks is also possible through deep learning. Maninis  et al., 
[71] presented the problem of landmark detection as image-image regression problem. They formulated 
a variation of VGG 16 deep neural network for segmentation of OD and retinal blood vessels. The network 
is inspired from VGG except that last fully connected (FC) layer is removed. It has 5 stages with multiple 
convolutional layers and intermediate 4 max pooling layers. Each convolutional layer has ReLu activation 
unit. Network weights are learned by backpropagation algorithm and stochastic gradient descent. Initial 
layers of network are efficient in detection of fine features and features become coarser as network 
proceeds towards output. Therefore, two feature maps are used, one for retinal vessel segmentation and 
the other for OD segmentation. Datasets are small therefore to increase generalization ability of network; 
dataset is augmented with rotated and scaled versions of input images. Also, mean is subtracted from 
each color channel. Efficiency of algorithm towards blood vessel detection is scrutinized using DRIVE and 
STARE datasets whereas OD segmentation is tested using DRIONS-DB and RIM-ONE dataset. For DRIVE 
dataset the method achieved 0.822 F1-measure and for stare F1-measure is recorded at 0.831. OD 
segmentation using DRIONS-DB dataset achieved 0.971 F1-measure while that of RIM-ONE is found to be 
0.959. Results are also formulated in Table 5. 

Tan et al., [72] have recommended and tested a CNN based deep network for concurrent segmentation 
of OD, fovea and retinal blood vessels. Three convolution layers with intermediate max pooling layers 
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constitute the model. Each layer has leaky ReLu activation units. Last fully connected layer has Softmax 
activation unit. Layer one weights are initialized using Xavier initialization algorithm. Network is trained 
using backpropagation and stochastic gradient descent. Before any classification input images are 
normalized using L channel of LUC color space, then images are converted back to RGB color space and 
green channel is extracted for further processing. Training and testing of network is conducted on DRIVE 
dataset and Outcomes are articulated in Table 5. 

Table 5 Performance measures for simultaneous detection of different retinal landmarks 

Sr. No  Dataset Segmentation SN SP F-score 

1 Maninis  et al., [71] 

DRIVE 
Blood Vessels 

- - 0.822 
STARE - - 0.831 
DRIONS-DB 

OD 
- - 0.971 

RIM-ONE - - 0.959 

2 Tan et al., [72] DRIVE 

Background 0.9547 0.8063 - 

OD 0.8790 0.9927 - 
Fovea 0.8853 0.9914 - 
Blood Vessels 0.7537 0.9694 - 

 

Exudates, lipids and lipoproteins are pre-eminent signs of DR. The exudates are of varying sizes, they can 
vary from very small size to the size as large as that of an OD. Deep neural networks provide a worthwhile 
arrangement for detection of exudates in retinal fundus images. This technique has been followed by 
Prentašić & Lončarić [73] in their study for automatic detection of exudates. Network is fed with green 
plane of RGB retinal image. OD is the less potential area in retina for detection of exudates therefore OD 
is detected and masked using HIS component of image. DRiDB data is used for training and testing of deep 
network. Table 6 shows the results obtained after testing. 

Prentašić & Lončarić [74] extended their work and presented a novel approach of combining probability 
maps from CNN with other landmark detection probability maps. This approach is used to exploit the 
domain knowledge that exudates don’t appear inside retinal blood vessels and OD. Deep network has the 
same setting as described in their previous work [73]. Probability maps from OD detection, retinal vessel 
detection, and parabola fitting are combined to give one probability map which is then combined with 
output of CNN. The OD detection probability map is obtained from an ensemble of strategies which 
include: entropy based approach [86], Laplacian of Gaussian approach, brightness approach [87], and 
Hough transformation method. Unevenly illuminated fundus images have bright borders which may result 
in detection of false positives. Therefore, an estimated border is subtracted form green channel of image 
to get rid of bright borders. Blood vessel probability map is generated by using Farangi vesselness filter 
[88]. After blood vessel and OD detection a parabola is fitted at the center of OD which encapsulates the 
regions where there is less potential of exudate presence. The CNN is trained and tested with DRiDB 
dataset. At the time of training, input image is de-noised using total variation (TV) regularization de-
noising. Probability map obtained by last Softmax activation function layer is combined with landmark 
detection probability map and exudates are detected. Results are formulated in Table 6. 

Table 6 Performance measures for detection of exudates 

Sr. 
No  Dataset SN PPV F-score 

1 Prentašić & Lončarić [73] DRiDB 0.77 0.77 0.77 

2 Prentašić & Lončarić [74] DRiDB 0.78 0.78 0.78 
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4.1.2 Hybrid Method 

Hybrid DNN is constructed using an unsupervised training followed by supervised classifier training. Maji 
et al., [63] have followed this technique for retinal vessel segmentation. They have used two DAEs 
followed by an RF classifier for extraction of vessels. The unsupervised pre-training of stacked auto-
encoder is used for learning weights of network. Once pre-training is done, an ensemble RF classifier is 
trained in a supervised manner in the presence of ground truth and algorithm is tested on DRIVE dataset. 
The maximum accuracy obtained with a Kappa coefficient (0.6287) is 0.9237 as depicted in Table 4. The 
results obtained are not good compared to traditional methods but they give a state-of-the-art for hybrid 
DNNs. 

4.1.3 Unsupervised Methods 

Retinal vessel segmentation can also be done using unsupervised deep learning methods, although this 
field is not that much explored but it has the potential to surpass statistical measures obtained from 
current state-of-the-art methods. 

Lahiri et al., [12] has presented a two level stacked de-noised auto-encoder (SDAE) network for retinal 
vessel segmentation. In order to get the best contrast of vessels with background, green plane of RGB 
image is extracted. Contrast limited adaptive histogram equalization (CLAHE) is employed to get rid of 
uneven illumination. Vessel and background patches of image, for training of de-noised auto-encoder 
(DAE), are obtained through sampling of a manually annotated vasculature. Redundant foreground pixel 
sampling is avoided through skeletonization. Efficient segregation of vessel and background pixels is 
obtained by sampling background pixels from a dilated image. Diversification is added by feeding DAE 
with alternate vessel and background patches. A simple DAE has three layers with one hidden layer. 
Random noise is deliberately added in the input to achieve unsupervised learning. The backpropagation 
is exploited to minimize loss function and weight matrix is updated using L-BFG (Limited Memory Broyden-
Fletcher-Goldfarb-Shanno). Stacked DAE is obtained by taking hidden layer output of first DAE as input to 
second DAE and training it. After this training the last output layer is replaced with a single node Softmax 
classifier. The first level of ensemble is formed by making a collection of n DAEs termed as E1.net. Multiple 
DAE kernels allow the vessel feature learning in multiple directions. An SDAE (2 hidden layers) with 
Softmax classified output makes the second level of ensemble. Further diversification is added by parallel 
training of two E1.nets with different architecture. Convex weighted average is used to get the combined 
decision of both E1.nets. The algorithm is tested using publically available DRIVE dataset. The maximum 
average accuracy is recorded at 0.953 and Kappa agreement coefficient at 0.709 as presented in Table 4. 
This method outperformed the human observer accuracy which was recorded at 0.947.  

Micro-aneurysms (MA) rupture retinal blood vessels and make blood to leak from them. These miniature 
lesions appear as early signs of DR, therefore they play a pivotal role in timely detection of DR. Automatic 
extraction of these lesions from 2-D fundus images has been demonstrated by Shan & Li [75]. There is no 
need to extract blood vessels from images. Extraction of MA features is done straightaway from raw image 
patches. Image patches are segregated into two classes i.e. lesion present and non-lesion present. 
Sampling of image patches is done from green channel of input image. Before sampling, pixel values are 
adjusted so that they lie in the range (0, 1). Computer-aided feature extraction is done with the help of 
stacked sparse auto-encoder (SSAE) and Softmax classifier is used to label features. Two hidden layers 
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constitute SSAE. First layer is used to extract features from raw image patches and second layer learns 
intricate features from output of first layer. Softmax binary classifier is connected with second layer of 
SSAE. Algorithm is scrutinized with the help of DIARETDB dataset. Classification results from Softmax 
classifier are tuned by varying patch-sizes. Fine tuning has provided steady state and more efficient results 
as compared to previous ones. Results, as depicted in Table 7, are classified on the basis of tuning.  

Table 7 Performance measures for detection of micro-aneurysms using DIARET-DB dataset 

 Datase
t 

Tunin
g 

Precisio
n 

Reca
ll SP F-

score Acc AUC 

Shan & Li 
[75] 

 
DIARET

-DB 

Before 0.8850 0.86
52 0.8873 0.87

42 0.8762 0.934
1 

After 0.9157 0.91
16 0.9160 0.91

34 0.9138 0.962
0 

 

4.2 Retinal Disease Classification 
4.2.1 Supervised Methods 

Distinctive characterization of retinal diseases requires experienced clinicians but the advancement in the 
fields of image processing and machine learning helped in completely automating this process. As the 
traditional methods for classification of retinal diseases reached excellence, advent of deep learning has 
provided afresh way for efficient and accurate diagnosis of retinal diseases. 

An automated screening algorithm for classification of DR into severe, proliferative, and non-proliferative 
is recommended by Colas et al., [79]. They developed a deep learning based neural network. The 
algorithm is tested using Kaggle DR Detection challenge dataset. This dataset has 10,000 images captured 
from 5000 patients. The algorithm achieved an AUC of 0.946, sensitivity of 0.962, and 0.666 specificity as 
shown in Table 8. 

Pratt et al., [76] proposed a method for identification and classification of DR into four categories: mild 
DR, moderate DR, severe DR, and proliferative DR. Deep network extracts features form retinal image 
which are required for classification of DR. It consists of ten convolutional layers with intermediate max 
pooling layers followed by two fully connected and a Softmax classification layer. Each layer has leaky 
ReLu activation unit and L2 normalization for weights and biases. Color normalization, using OpenCV 
package, is done to even out unnecessary variations in input images. Gaussian initialized weights are batch 
normalized after each layer. To avoid over fitting, weighted class weights and node dropout strategy is 
used. Network is trained through stochastic gradient descent and Nestrov momentum weight learning 
methods. After pre-training, network is further trained with real time augmented image patches. This is 
done to improve localization ability of system. Legitimacy of algorithm is tested on Kaggle dataset. 
Proposed method provided 95% sensitivity and 75% accuracy as presented in Table 8. 

Abràmoff et al., [77] provided an improved version of their algorithm for classification of DR and ME, older 
version of algorithm was developed without incorporating deep learning. New algorithm provides 
automatic identification and Classification of DR into moderate, severe non proliferative DR (NPDR), 
proliferative DR (PDR), and ME with improved statistical measures. They used IDX-DR version X2.1 
automated system. The device was trained using EyeCheck project dataset. Evaluation of system is done 
using Messidor-2 dataset. The findings are presented in Table 8. 
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A method for identification of DR and diabetic is presented by Gulshan  et al., [78]. They used Inception 
v3 deep neural network architecture [89]. EyePACS-1 and MESSIDOR-2 datasets are used for training and 
testing of network. ImageNet dataset is used for initialization of network weights. The weights are learned 
via distributed stochastic gradient and training of network is made efficient by using batch normalization. 
Algorithm is inspected using two operating points. Focus of first operating point is high specificity and that 
of second is high sensitivity. Results obtained are shown in Table 8. 

Clinician could be aided in grading of DR through a visualization heatmap. Gargeya & Leng  [80] have 
provided an automated convolutional neural network based model for grading of DR and they also 
generated heatmap for easy abnormality detection by clinicians. Network has convolutional blocks with 
4, 6, 8, and 10 layers. Each layer incorporates batch normalization and ReLu activation units. Last layer is 
Softmax classification layer preceded by an average pooling layer and a visualization layer. Heatmap is 
generated using visualization layer which has functionality similar to that of a convolutional layer. Training 
of model is done on EyePACS dataset. Input images are normalized, downsized and augmented to reduce 
the unnecessary varying brightness and contrast. Some meta-data, related to original image, is appended 
with feature vector to normalize the effect of environmental variables. Algorithm provided 0.97 AUC, with 
0.94 and 0.98 sensitivity and specificity respectively for EyePACS dataset. Generalization ability of 
algorithm is tested using MESSIDOR-2 and E-OPTHA datasets. Results are presented in Table 8. 

Table 8 Performance measures for grading DR severity 

Sr. 
No  Dataset SN SP Acc AUC 

1 Colas et al., [79] From Kaggle 
competition 0.962 0.666 - 0.9460 

2 Pratt et al., [76] From Kaggle 
competition 0.950 - 0.750 - 

3 Abràmoff et al., [77] MESSIDOR-2 0.968 0.87 - 0.980 

4 Gulshan  et al., [78] 
EYE-PACS1 0.975 0.934 - - 

MESSIDOR-2 0.961 0.939 - - 

5 Gargeya & Leng [80] 
MESSIDOR 2 0.93 0.87 - 0.94 

E-OPTHA 0.90 0.94 - 0.95 

Identification of Age Related Macular Degeneration (AMD) is a crucial task. Silent nature of the disease, 
during intermediate stage, results in asymptotic severity leading to complete vision loss. Features learnt 
from pre-trained neural networks can help in effective diagnosis of AMD at intermediate stage. Burlina et 
al., [81] have checked appropriateness of this technique for classification of AMD. Overfeat Features (OF) 
are extracted from pre-trained deep convolutional neural network (DCNN) on a generic dataset ImageNet. 
Resized images are fed into DCNN for learning OF features.  Most imperative prognostic retinal image area 
for AMD diagnosis is the central part of retina. This information is utilized by extracting features appended 
from multiple concentric square grids. Linear Support Vector Machine (LSVM) is trained with extracted 
features. Efficiency of model is scrutinized using NIH AREDS dataset. The dataset is divided into two classes 
i.e. EIPC (equal number of images per class) and MIPC (maximum number of images per class). 
Performance is evaluated on both classes of dataset as presented in Table 9. 

Burlina et al., [82] have provided a comparison of disease prediction between human and algorithm. 
Classification problem is divided into four categories. Class 1 corresponds to no AMD, class 2 incorporates 
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early stage AMD cases, class 3 encompasses intermediate stage AMD, and class 4 denotes advanced form 
of AMD. The Comparison shows that algorithm’s results are in close proximity to those of physician as 
depicted in Table 9.. 

3D optical coherence tomography (OCT) imaging modality is the most common among imaging modalities 
in the field of ophthalmology. OCT images combined with electronic medical records (EMR) give a rich 
dataset for training of deep neural networks. Lee et al., [83] have followed the same footings for AMD 
detection. They implemented Vgg16 deep neural network for efficient classification of AMD using OCT 
images. Network consists of 21 layers, including convolutional layers and max pooling layers, each with a 
ReLu activation unit. Automatically extracted OCT images are used for training and testing of network. 
Weights are initialized using Xavier algorithm and optimized by stochastic gradient descent. Input images 
are first downsized and histogram equalized and then fed into network. Results are shown in Table 9. 

Table 9 Performance measures for grading AMD severity 

Sr. 
No  Dataset AMD 

Class SN SP Acc AUC Kappa 

1 Burlina et al., 
[81] 

EIPC - 0.942-0.964 0.899-0.920 0.921-0.942 - - 

MIPC - 0.909-0.957 0.901-0.956 0.919-0.950 - - 

2 Burlina et al., 
[82] 

NIH AREDS 

4 - - 0.794 - 0.6962 

3 - - 0.815 - 0.7226 

2 - - 0.934 - 0.8482 

3 Lee et al., [83] 3D OCT 
Images - 0.9264 0.9369 0.9345 0.9745 - 

 

4.2.2 Unsupervised Methods 

Unsupervised Deep neural networks have proved effective for classification of retinal diseases such as: 
AMD and DR. This approach has been suggested by Arunkumar & Karthigaikumar [8]. Generalized 
regression neural network (GRNN) is used for reduction of feature vector dimension. This is done to 
improve compute time efficiency. Model is able to extract intricate features because it includes stacked 
Restricted Boltzman Machine (RBM) in its layers. Input images are first preprocessed to remove noise and 
adjust contrast. Effectiveness of system is checked on ARIA dataset. Results are recorded in Table 10.  

Table 10 Performance measures for classification of different retinal diseases 

 Dataset SN SP Acc 
Arunkumar & 

Karthigaikumar [8] 
 

ARIA 0.7932 0.9789 0.8762 

 
5 Discussion 

Supervised learning approach is better compared to unsupervised approach because network learns the 
mapping efficiently due to presence of ground truth data. This can also be observed from all performance 
measures recorded in the above section.  Most of the progress in deep learning based retinal image 
analysis has been witnessed in segmentation of retinal vasculature. Among all the DNN based algorithms 
which utilize intensity level pixel information,  Li et al., [68] have provided the maximum AUC of 0.9879. 
However, use of only intensity level information undermines the efficiency of algorithm because 
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neighboring pixels always have a certain correlation factor. The blood vessel segmentation methodology 
proposed by Liskowski & Krawiec [67] has provided the best performance metrics. As they utilized 
contextual information along with intensity level information of pixels therefore their model 
outperformed other retinal blood vessel segmentation techniques. It achieved maximum AUC of 0.9928 
which is higher than best to date AUC recorded by other traditional approaches. Instead of following a 
tedious approach i.e. one by one retinal landmark detection, DNNs can be used for simultaneous 
extraction of retinal landmarks from retinal images. This approach is presented by Tan  et al., [72]. DNN 
have not yet been much explored for retinal pathology detection. Prentašić & Lončarić [74] have provided 
state-of-the-art results for detection of exudates. The method proposed by Shan & Li [75] for micro-
aneurysm detection through SSAE achieved an AUC of 0.9620. DNN is still an underexplored technique in 
the field of retinal pathology detection. Lee  et al., [83] have proved efficacy of DNN for grading of AMD 
in 3D OCT images by recording an AUC of 0.9745. Supervised DNN approach have also been employed for 
efficient grading of DR. Colas et al., [79], Pratt et al., [76], Gulshan  et al., [78], Gargeya & Leng [80] are 
examples of this effort. Among all of them, Abràmoff et al., [77] have achieved the maximum AUC of 0.980 
for grading of DR. 

6 Conclusion 
Automated extraction and classification of retinal pathology is an active research area, which is now 
employed in practice for many ophthalmologic screening tests [90]. The retinal image analysis through 
deep neural networks is a nascent field. Although research has been conducted in extraction of retinal 
landmarks and pathologies but epitome of this technique is yet to be witnessed. Moreover, unsupervised 
learning based DNNs have not seen much progress. Deep learning techniques can be efficiently applied 
for segmentation of dot and blot hemorrhages, cotton wool spots, hard exudates, soft exudates, drusen 
etc. There is no restriction on number of layers and architecture of neural network, network architecture 
is chosen heuristically in accordance with problem domain. The variants of Deep Neural Networks like 
AlexNet, LSTM, VggNet, and GoogleNet can be used for extraction of retinal anatomical structures. 
Although Vgg-16 is used by Lee  et al., [83] for 3D OCT retinal image analysis; however, there is no 
precedence of its use in case of color fundus images. All these networks are very deep and they have 
capability of extracting much more complex features than those extracted by traditional methods and 
with better performance measures. This property makes DNN capable of replacing traditional 
ophthalmologic screening practices.   
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