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ABSTRACT   

The issue of speed and accuracy is one major challenge in the area of Spectrum hole detection in Cognitive 
Radio Network(CRN), owing to some of the techniques used in the previous past, noise is sometimes 
recorded against spectrum hole, and this is mostly due to the method adopted , the need for a more 
compact procedure as become necessary. An Algorithm for Spectrum Hole Detecting using Convex 
Optimization and Tensor analysis in Cognitive Radio Network seeks to present a way out of it. The tensor 
analysis will provide an infinite representation  Spectrum data from the wideband, while Convex 
optimization will help split the large data by grouping it into various spectrum segment, based on the 
objective function, this grouping will help improve on the speed of Spectrum hole detection. Principal 
Component Analysis(PCA) checks the level of correction using orthogonal transformation, the use of  Eigen 
Values and Eigen Vectors will further help linearize the function by finding the roots. Covariance matrix 
will help further check how the variable varies together. It describes the dimension of the spectrum data. 
Diagonisation is used to extract the matrix with the spectrum data using singular value decomposition; 
finally, Bayesian inference will optimise decision making for spectrum data. 

Keywords: Cognitive Radio, Tensor, Spectrum hole, Convex optimization, Covariance Matrix, Eigen       
Vector, Principal Component Analysis 

1 Introduction 
Reliable and fast wireless data transmission is becoming a global phenomenon and also a significant 
consideration in our lives, such as the internet, online shopping, and social networking. This has caused 
an increase in the demand for the radio frequency spectrum. However, conservative spectrum allocation 
policies have created a shortage of vacant spectrum bands (channels) FCC. The US frequency allocation 
given in indicates that there is little room for any new assignment in the most useful frequency bands 
(<3GHz) for wireless communications. 

On the other hand, recent studies conducted by the Federal Communications Commission (FCC) in the 
United States and Ofcom in the United Kingdom [3] have found that the average utilization in licensed 
frequency bands is as low as 5%. This is also indicated by the spectrum measurements carried out in our 
laboratory within a range of 1MHz to 1 GHz, which show large swathes of the inactive spectrum (Figure. 
1). Based on these measurements, the FCC concluded that there are two basic scenarios to improve the 
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spectrum efficiency of the licensed bands. In the first scenario, where the spectrum is fully utilised, the 
spectrum efficiency can be improved in terms of bits per second per Hertz (bps/Hz), by using better radio 
access technologies. In Spectrum Prediction in Cognitive Radio Networks: A Bayesian Approach [1] 

Given this fact, new insights into the use of radio spectrum have challenged the traditional static spectrum 
allocation policy. Actual measurements have revealed that most of the allocated spectrum is mostly 
underutilized. Similar views on the underutilization of allocated spectrum were reported by the Spectrum-
Policy Task Force appointed by Federal Communications Commission's (FCC) Spectral efficiency can be 
increased significantly by giving opportunistic access of the frequency bands to unlicensed users. Cognitive 
Radio (CR) has been proposed as a way to improve spectrum efficiency by exploiting the unused spectrum 
in dynamically changing environments. The CR  technology is based on an innovative radio design 
philosophy  which involves smartly sensing the swaths of radio spectrum  and then determining the 
transmission characteristics (e.g., symbol rate, power, bandwidth) for cognitive radio users (CR  up until 
recently, most research has been concentrated on improving spectrum efficiency in bps/Hz by practising 
better radio access technologies.  

Cognitive Radio (CR) is an emerging technique to increase the practical usage of the spectrum. Due to the 
rapid development in some wireless devices and gadgets, there is a scarcity in the radio frequency band. 
This led to the spectrum sensing concept of identifying the unused spectrum holes. Spectrum sensing can 
be defined as the ability to detect the presence or absence of a licensed user in the channel, while the 
most challenging task is to sense in shallow SNR regime [2] 

In current communication networks, the average spectrum utilization is between 15% to 85%. Cognitive 
Radio (CR) is a solution to increase the spectrum utilization and ultimately, the network capacity leading 
to generating new revenue streams with a higher quality of service. With the growing demand for higher 
capacity in wireless networks due to the rapid growth of new applications such as multimedia, the 
network resources such as spectrum should be used more efficiently to fulfil the need for both quantity 
and quality of service. 

1.1 Cognitive Radio: Approach to Increase Spectrum Efficiency 
One major finding from the measurements reported is that a large portion of the radio spectrum is not in 
use for significant periods in certain areas.  Hence, there are many spectrum holes. It is defined as a set 
of frequency bands assigned (licensed) to a user (this user is referred to as a primary user), but, at a 
particular time and a specific geographic location, the frequency band is not being used by that user. 

Moreover, the report also showed that users heavily access most of the unlicensed spectra and therefore 
have a high spectrum utilization thanks to the possibility of open access with relaxed regulations. These 
observations lead us to a critical idea: the spectrum utilization can be drastically increased by allowing 
secondary users access to the spectrum holes that are unutilized by the primary user at a certain time and 
space. The Cognitive radio has been proposed as a means to achieve such dynamics. A cognitive radio 
senses the spectral environment over a full frequency band and exploits this information to 
opportunistically provide wireless links that can best meet the demand of the user, but also of its radio 
environments.  

CR facilitates the secondary user (SU) to build transmission links in unoccupied PU channels such that 
there is no/minimum interference to PUs. The CR possesses the following functionalities: spectrum 
sensing; spectrum access; spectrum allocation and management among different SUs. The SU's 
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transmission modes can be generally categorized into two modes: interference avoidance (white space) 
mode and the Interference management (black and grey space) mode. The interference avoidance mode 
is often termed as interweaving access. In interweave access, the SU finds spectrum holes (white space) 
by sensing the radio frequency spectrum as illustrated in figure 1 [1] 

 

 

 

 

  

 

 

 

 

 

 Figure 1: Spectrum measurements. [4] 

One of the most critical discoveries from the measurements reported is that a large portion of the 
scenario, where the spectrum usage is relatively low over time, the spectrum efficiency can be improved 
by increasing the access efficiency, i.e. allowing access of unlicensed (secondary) devices to the licensed 
(primary) frequency bands.  Up until recently, most research has been concentrated on improving 
spectrum efficiency in bps/Hz. There has, however, been an increase in research effort directed towards 
increasing access efficiency through spectrum sharing. One of the critical enabling technologies in this 
push is cognitive radio (CR), which. CR enables the secondary user (SU) to build transmission links in vacant 
PU channels such that there is no/minimum interference to PUs.  

The realisation of such an operation requires the CR to have the following functionalities:  spectrum 
sensing; spectrum access; spectrum allocation and management among different SUs; and reconfigurable 
hardware. 

1.2 Speed and Accuracy in Spectrum Sensing  
Wideband spectrum sensing is one of the most challenging components of cognitive radio networks. It 
should be performed as fast and accurately as possible. Speed is also a significant concern in cognitive 
radio, [8] 

Since it takes split seconds for reallocation based on the availability of several Secondary users in the 
queue. Some of the most essential elements of the cognitive radio concept is its ability to measure, sense, 
learn, and know the parameters associated with the radio channel characteristics, the availability of 
spectrum and power, the radio's operating environment, user requirements and applications, available 
network infrastructures) and nodes, local policies and other operating restrictions. In cognitive radio 
terminology, the primary users are defined as the users who have higher priority or legacy rights on the 
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usage of a specific part of the spectrum. On the other hand, secondary users, which have a lower priority, 
utilise this spectrum in such a way that they do not cause interference to primary users. Therefore, 
secondary users need to have cognitive radio capabilities, such as sensing the spectrum reliably to check 
whether a primary user is using it and to change the radio parameters to exploit the remaining part of the 
range. 

Speed can be enhanced when priorities are set, and objective five functions are spelt out[9]  

This channel is also used by the primary users and must be vacated immediately when the primary users 
arrive. Due to the nature of cognitive radio, the operating frequency change continuously; this is referred 
to as a dynamic radio range property. The research on spectrum sharing techniques considers the channel 
as a basic spectrum unit. In many of the research about spectrum sharing, researchers found the 
assumption that the secondary users know the location and transmission power of the primary users to 
calculate the interferences appropriately. 

1.3 Cognitive Radio  
Cognitive Radio is considered as a solution to overcome the spectrum scarcity in the present 
communication scenario.  Spectrum sensing is a significant activity that is used by the CR to understand 
the spectrum occupancy of PU. Several methods are proposed in the literature to sense the spectrum 
hole. A CR user develops a spectrum pool consisting of all the spectrum holes in a range of spectrum and 
chooses the optimum one for its future usage. Channel capacity can be increased by using the proper 
spectrum sharing policy. CR users are supposed to operate within tiny time slots for spectrum sensing and 
to communicate with other users. Spectrum sensing, spectrum decision and spectrum sharing will take 
considerable time delays. If it takes more time for these activities, then the time available for data 
communication will be less, and the throughput of the system will also come down. Spectrum prediction 
will be an alternate approach to save sensing time. Spectrum prediction in cognitive radio networks is a 
challenging problem that involves several sub-topics such as channel status prediction, PU activity 
prediction, radio environment prediction, and transmission rate prediction.  Prediction based spectrum 
sensing, prediction based spectrum decision and prediction based spectrum mobility have been presented 
in the literature. Prediction based sensing is explored in this paper. In this case, the channel predicted to 
be busy can be omitted by the SU form sensing so that there will be time-saving and energy saving. In CR 
networks, since SUs are sensing and observing the spectrum all the time, they can learn the usage pattern 
of the spectrum and use such information to predict the future status of the spectrum. [1]   

  Spectrum Sensing Model Spectrum sensing is one of the essential processes performed by cognitive radio 
systems. It allows the SUs to learn about the radio environment by detecting the presence of the PU 
signals using one or multiple techniques and decide to transmit or not in its frequency band, as shown in 
figure 2. Where n=1….N, N is the number of samples, y(n) is the SU received signal, s(n) is the PU signal, 
w(n) is the additive white Gaussian noise (AWGN) with zero mean and variance, and h is the complex 
channel gain of the sensing channel. H0 and H1 denote the absence and the presence of the PU signal, 
respectively. The PU signal detection is performed using one of the spectrum sensing techniques to decide 
between the two hypotheses H0 and H1. The detector output, also called the test statistic, is then 
compared to a threshold to make the sensing decision about the PU signal presence. The sensing decision 
is performed as [3][4] 
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                   w(n),                    Ho: PU  absent 

y(n)=   

                 h * s(n) + w(n) ,   H1: PU  Present 

Where n=1….N, N is the number of samples, y(n) is the SU received signal, s(n) is the PU signal, w(n) is the 
additive white Gaussian noise (AWGN) with zero mean and variance, and h is the complex channel gain of 
the sensing channel. H0 and H1 denote the absence and the presence of the PU signal, respectively.  The 
PU signal detection is performed using one of the spectrum sensing techniques to decide between the 
two hypotheses H0 and H1. 

 

 

 

 

Figure 2 Block Diagram Flow Process for CR 

2 Tensor 
Tensor is a multi-way extension of a matrix, and Tensor A multi-dimensional array will be used to 
decompose frequency and also model the system for accuracy, tensors are geometric objects which 
illustrate the linear relations between geometric vectors, scalars, and other tensors. Simple examples of 
such relationships are the dot product, the cross product, and the linear maps. The Geometric vectors, 
often used in physics and engineering applications, and scalars themselves are also tensors.  Figure 3 and 
4 are a more sophisticated example is the Cauchy stress tensor T, which has a direction v as input and 
then produces the stress T(v) on the surface normal to this vector as the output, thus expressing a 
relationship between these two vectors, shown in the figure 3 below. Let denote unit vectors in the x, y 
and z-direction.  The hat indicates a magnitude of unity 

The position vector  (the arrow denotes a vector that is not a unit vector) is given as 

 

Figure 3   3D Tensor diagram 
 

Figure  4  3D Vector Diagram 

Taking a look at how tensor can be represented, an example is positive normal stress puts a body in 
tension, and negative normal stress puts the body in compression.  Shear stresses always put the body in 
shear. 

 An instance can be considered for tensor differential if 𝑥𝑥𝑖𝑖 is the coordinate of a point in 𝑛𝑛-dimensional 
space 𝑑𝑑𝑑𝑑𝑖𝑖 are component of a contravariant vector. If  𝑥𝑥1,𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 𝑜𝑜𝑜𝑜 𝑥𝑥𝑖𝑖  are coordinates in 𝑋𝑋 -
coordinate system and  𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛,𝑜𝑜𝑜𝑜 𝑥𝑥𝑖𝑖are coordinate in 𝑌𝑌- coordinate system.  
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If   𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)              (1) 

   𝑑𝑑𝑥𝑥𝑖𝑖 = 𝜕𝜕𝑥𝑥
𝑖𝑖

𝜕𝜕𝜕𝜕1
𝑑𝑑𝑑𝑑1 + 𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜕𝜕2
𝑑𝑑𝑑𝑑2 +⋯+ 𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜕𝜕𝑛𝑛
𝑑𝑑𝑑𝑑𝑛𝑛 

   𝑑𝑑𝑥𝑥𝑖𝑖 = 𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗
𝑑𝑑𝑑𝑑𝑗𝑗 

It is the law of transformation of the contravariant vector. So 𝑑𝑑𝑑𝑑𝑖𝑖  are components of a contravariant 
vector.  

If  𝜕𝜕∅
𝜕𝜕𝜕𝜕𝑖𝑖

 is a covariant vector where ∅ is a scalar function.  

𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 or 𝑥𝑥𝑖𝑖are coordinates in 𝑋𝑋-coordinate system and 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 𝑜𝑜𝑜𝑜 𝑥𝑥𝑖𝑖 are coordinates 
in 𝑌𝑌-coordinate system.  

Consider ∅�𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛� = ∅(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) 

   𝜕𝜕∅ = 𝜕𝜕∅
𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕1 + 𝜕𝜕∅
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2 + ⋯+ 𝜕𝜕∅
𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕𝑛𝑛 

   𝜕𝜕∅
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝜕𝜕∅
𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕1

𝜕𝜕𝑥𝑥𝑖𝑖
+ 𝜕𝜕∅

𝜕𝜕𝜕𝜕2
𝜕𝜕𝜕𝜕2

𝜕𝜕𝑥𝑥𝑖𝑖
+ ⋯+ 𝜕𝜕∅

𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝑥𝑥𝑖𝑖
 

   𝜕𝜕∅
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝜕𝜕∅
𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
       𝑜𝑜r    𝜕𝜕∅

𝜕𝜕𝑥𝑥𝑖𝑖
= 𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕∅
𝜕𝜕𝜕𝜕𝑗𝑗

 

It is the law of transformation of the component of the covariant vector. So 𝜕𝜕∅ 
𝜕𝜕𝜕𝜕𝑖𝑖  

is a component of the 

covariant vector  

2.1 Covariant Tensor of Rank Two  
For this instance Let 𝐴𝐴𝑖𝑖𝑖𝑖(i,j =1,2,…,n) be 𝑛𝑛2 functions of coordinates 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 in 𝑋𝑋-coordinate system. 
If the quantities 𝐴𝐴𝑖𝑖𝑖𝑖  are transformed to 𝐴𝐴𝑖𝑖𝑖𝑖  in 𝑌𝑌-coordinate system having coordinates 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛, then 
according to the law of transformation,  

𝐴𝐴𝑖𝑖𝑖𝑖 =
𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝜕𝜕1

𝜕𝜕𝑥𝑥𝑗𝑗
𝐴𝐴𝑘𝑘1                                                                               (2) 

Then𝐴𝐴𝑖𝑖𝑖𝑖 called components of the covariant tensor of rank two 

3 Procedure Taken for the Research 
This research will employ Mathematical modelling, and Software design approaches, The algorithm for 
realising this work will follow the under listed order of fundamental is the order of realisation of this work. 

1. Tensor 
2. Convex optimization 
2.       Principal Component Analysis 

3.       Eigen Values and Eigen Vectors 

4.       Covariant Matrix 

5.       Singular Value Decomposition 

6.       Bayesian Inference 
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3.1 Splitting Frequency 
Wideband and Ultra-wideband have wide range of spectrum, spectrum data will be a daunting task to 
measure, accuracy and time is an issue for concern, owing to the possibility of a large number of data 
samples in the terminal sub-band channels of the wideband spectrum,   developing a fast and accurate 
spectrum detecting technique is very important, tensor analysis will be useful for representing these 
massive quantities of data before detection.  Due to the extensive data associated wideband, different 
levels of decomposition is necessary. 

 

 

 

 

 

 
 

Figure  5  Top-Down Frequency Decomposition  

The diagram in figure 5 is a top-down arrangement that shows how a spectrum can be split into a different 
range of frequencies to accommodate the wide range of spectrum within a wideband. While figure 6 is an 
analogy showing how wideband can be split into different sub-bands 

 

 

 

 

 

 

 

 

Figure 6   diagram showing analogy of wideband is broken down to many sub-bands,   

In representing the frequency spread of the wideband, this work adopts the properties of the tensors in 
tagging frequency position against energy as its usually represented in Power Spectrum Density (PSD), 
which can handle an infinite number of representation. 

3.2 Power Spectral Density 
Power Spectral Density (PSD), is defined as the frequency response of a random or periodic signal. It shows 
where the average power is distributed as a function of frequency. 
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The PSD is deterministic, and for certain types of random signals, it is independent of time 1. This is very 
useful because the Fourier transform of a random time signal is itself random, and therefore is of little 
use calculating the transfer relationships (i.e., determining the output of a filter when its input is random). 

The PSD of a random time signal, given as x(t) can be expressed in one of two methods that are equivalent 
to each other 

1. The PSD is the average of the Fourier transform's magnitude squared, over an extensive 
time interval 

   











= −

−∞→ ∫
2

2

2
1 dtetx
T

EfS ftj
T

TTx
π)(lim)(

                                                                 (3) 

2. The PSD is the Fourier transform of the autocorrelation function. 

dteRfS ftj
T

T
xx

πτ 2−

−∫= )()(
 

{ })(*)()( ττ += txtxERx  

∙ The power can be calculated from a random signal over a given band of frequencies as follows: 

 1. Total Power in x(t):  ∫
∞

∞−
== )()( 0xx RdffSP

 

 2. Power in x(t) in range f1 - f2:  ∫ ==
2

1
12 0

f

f
xx RdffSP )()(

 
          
 

This power spectral density (PSD), or simply the power spectrum, of a signal, is the representation of the 
spread of signal power as a function of frequency. Power Spectrum Density is used to measure the signal 
level of the spectrum data; the spectrum data will be represented on the various tensor slice. 

3.3 Preliminary Data 
Preliminary data was gotten using Periodogram simulation lab in Matlab, and it was used to generate 
data, as displayed by graph in figure 7, 8 and 9, these are Periodogram used to represent frequency plot 
of energy level against frequency.  Power spectral density is used in identifying the approximate location 
of the spectrum hole. This will be improved upon with the help of the thresholding technique to get the 
exact location 

Figures 7, 8 and 9  are the graphs of wideband signals, and the figure has protruded point which indicates 
the area where the highest energy level , the points will be further decomposed and split to help simplify 
the process. Note figure 10 is a plot showing thresholding of a sub-band. 

 

 

 

2)()()( fHfSf x=  
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Figure 9 Periodogram Power spectral 
density 3 

 

Figure 10 Periodogram Power 
spectral density with constraint  1 
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Figure 7 Graph of Periodogram Power 
spectral density 1 

 

Figure 8 Periodogram Power spectral 
density 2 
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Frequency Power Frequency Power Frequency Power Frequency Power Frequency Power Frequency Power 

    0.0033 
    0.0066 
    0.0100 
    0.0133 
    0.0166 
    0.0199 
    0.0232 
    0.0266 
    0.0299 
    0.0332 
    0.0365 
    0.0398 
    0.0432 
    0.0465 
    0.0498 
    0.0531 
    0.0564 
    0.0598 
    0.0631 
    0.0664 
    0.0697 
    0.0730 
    0.0764 
    0.0797 
    0.0830 
    0.0863 
    0.0896 
    0.0930 
    0.0963 
    0.0996 
    0.1029 
    0.1063 
    0.1096 
    0.1129 
    0.1162 
    0.1195 
    0.1229 
    0.1262 
    0.1295 
    0.1328 
    0.1361 
    0.1395 
    0.1428 
    0.1461 
    0.1494 
    0.1527 
    0.1561 
    0.1594 
    0.1627 
    0.1660 
    0.1693 
    0.1727 
    0.1760 
    0.1793 
    0.1826 
    0.1859 
    0.1893 
    0.1926 
    0.1959 
    0.1992 
    0.2025 
    0.2059 
    0.2092 
    0.2125 
    0.2158 

  -68.0124 
  -63.7203 
  -63.3896 
  -59.7945 
  -70.6357 
  -62.6848  
 -64.6324 
  -67.8683 
  -54.6270 
  -61.4575 
  -60.8351 
  -60.5575 
  -63.8667 
  -66.4383 
  -69.7666 
  -63.2633 
  -60.2411 
  -62.3088 
  -56.5846 
  -68.2973 
  -65.2242 
  -57.4201 
  -76.0218 
  -56.5606 
  -71.8076 
  -59.1226 
  -60.2307 
  -63.9425 
  -58.5296 
  -61.0405 
  -70.3289 
  -63.2537 
  -58.7235 
  -61.1657 
  -63.7523 
  -64.8368 
  -67.1263 
  -74.3089 
  -63.5413 
  -58.5854 
  -60.9775 
  -60.1377 
  -58.2753 
  -65.1592 
  -63.2326 
  -57.0811 
  -59.7747 
  -64.3464 
  -66.3173 
  -75.3411 
  -57.0930 
  -63.0944 
  -59.5607 
  -72.9259 
  -57.8639 
  -65.3424 
  -57.4137 
  -60.6974 
  -64.5482 
  -77.0964 
  -63.2238 
  -75.0828 
  -60.8279 
  -65.4016 
  -62.4642 

    0.2191 
    0.2225 
    0.2258 
    0.2291 
    0.2324 
    0.2357 
    0.2391 
    0.2424 
    0.2457 
    0.2490 
    0.2523 
    0.2557 
    0.2590 
    0.2623 
    0.2656 
    0.2689 
    0.2723 
    0.2756 
    0.2789 
    0.2822 
    0.2855 
    0.2889 
    0.2922 
    0.2955 
    0.2988 
    0.3021 
    0.3055 
    0.3088 
    0.3121 
    0.3154 
    0.3187 
    0.3221 
    0.3254 
    0.3287 
    0.3320 
    0.3354 
    0.3387 
    0.3420 
    0.3453 
    0.3486 
    0.3520 
    0.3553 
    0.3586 
    0.3619 
    0.3652 
    0.3686 
    0.3719 
    0.3752 
    0.3785 
    0.3818 
    0.3852 
    0.3885 
    0.3918 
    0.3951 
    0.3984 
    0.4018 
    0.4051 
    0.4084 
    0.4117 
    0.4150 
    0.4184 
    0.4217 
    0.4250 
    0.4283 
    0.4316   

  -64.6777 
  -57.7271 
  -59.4798 
  -63.3936 
  -71.2143 
  -57.6382 
  -62.7363 
  -79.5291 
  -60.2172 
  -64.9404 
  -65.2638 
  -57.3546 
  -68.5535 
  -56.3661 
  -56.1146 
  -65.4437 
  -66.8126 
  -63.4329 
  -60.4598 
  -63.6830 
  -68.2009 
  -75.2738 
  -56.2375 
  -59.4837 
  -57.7663 
  -60.8057 
  -65.3100 
  -59.1619 
  -72.0362 
  -68.0809 
  -66.0693 
  -58.1231 
  -60.2765 
  -57.4853 
  -55.3816 
  -57.6197 
  -55.2362 
  -49.1054 
  -52.8879 
  -59.9341 
  -68.1865 
  -62.7150 
  -60.5955 
  -60.5362 
  -54.7313 
  -66.6511 
  -58.4703 
  -62.7369 
  -62.2333 
  -60.7257 
  -68.2646 
  -62.8774 
  -61.8436 
  -62.7692 
  -63.9667 
  -62.9822 
  -62.9607 
  -72.0461 
  -66.8793 
  -82.1818 
  -64.4438 
  -58.8795 
  -67.3196 
  -67.3859 
  -54.0376   

    0.4350 
    0.4383 
    0.4416 
    0.4449 
    0.4482 
    0.4516 
    0.4549 
    0.4582 
    0.4615 
    0.4648 
    0.4682 
    0.4715 
    0.4748 
    0.4781 
    0.4814 
    0.4848 
    0.4881 
    0.4914 
    0.4947 
    0.4980 
    0.5014 
    0.5047 
    0.5080 
    0.5113 
    0.5146 
    0.5180 
    0.5213 
    0.5246 
    0.5279 
    0.5313 
    0.5346 
    0.5379 
    0.5412 
    0.5445 
    0.5479 
    0.5512 
    0.5545 
    0.5578 
    0.5611 
    0.5645 
    0.5678 
    0.5711 
    0.5744 
    0.5777 
    0.5811 
    0.5844 
    0.5877 
    0.5910 
    0.5943 
    0.5977 
    0.6010 
    0.6043 
    0.6076 
    0.6109 
    0.6143 
    0.6176 
    0.6209 
    0.6242 
    0.6275 
    0.6309 
    0.6342 
    0.6375 
    0.6408 
    0.6441 
    0.6475     

-58.6489 
  -63.5167 
  -63.1784 
  -59.6923 
  -63.5276 
  -60.4034 
  -59.3305 
  -71.2839 
  -70.8024 
  -55.4131 
  -75.8376 
  -66.1869 
  -58.6427 
  -59.9192 
  -75.3531 
  -60.1404 
  -58.8223 
  -66.8632 
  -56.8382 
  -64.0037 
  -73.3670 
  -61.5093 
  -67.0520 
  -59.8618 
  -54.7398 
  -60.3426 
  -70.1913 
  -59.0398 
  -64.5315 
  -58.1558 
  -63.0071 
  -59.3460 
  -56.0338 
  -63.7075 
  -58.2717 
  -63.1613 
  -71.4085 
  -69.8794 
  -63.0006 
  -55.2003 
  -56.0437 
  -62.5005 
  -57.6602 
  -70.8719 
  -69.7574 
  -62.6192 
  -58.0100 
  -56.8321 
  -58.9874 
  -60.2209 
  -47.7033 
  -39.7459 
  -52.4537 
  -53.9625 
  -61.2897 
  -61.9293 
  -60.9614 
  -66.6353 
  -62.8998 
  -60.6996 
  -54.7544 
  -69.1537 
  -63.0661 
  -68.0638 
 -62.3672  

    0.6508 
    0.6541 
    0.6574 
    0.6607 
    0.6641 
    0.6674 
    0.6707 
    0.6740 
    0.6773 
    0.6807 
    0.6840 
    0.6873 
    0.6906 
    0.6939 
    0.6973 
    0.7006 
    0.7039 
    0.7072 
    0.7105 
    0.7139 
    0.7172 
    0.7205 
    0.7238 
    0.7271 
    0.7305 
    0.7338 
    0.7371 
    0.7404 
    0.7438 
    0.7471 
    0.7504 
    0.7537 
    0.7570 
    0.7604 
    0.7637 
    0.7670 
    0.7703 
    0.7736 
    0.7770 
    0.7803 
    0.7836 
    0.7869 
    0.7902 
    0.7936 
    0.7969 
    0.8002 
    0.8035 
    0.8068 
    0.8102 
    0.8135 
    0.8168 
    0.8201 
    0.8234 
    0.8268 
    0.8301 
    0.8334 
    0.8367 
    0.8400 
    0.8434 
    0.8467 
    0.8500 
    0.8533 
    0.8566 
    0.8600 
     1.2949 

  -54.7599 
  -62.0849 
  -69.0151 
  -59.7298 
  -66.6766 
  -61.9197 
  -62.8936 
  -60.0756 
  -74.8513 
  -66.1512 
  -63.3449 
  -62.4482 
  -63.1162 
  -58.4851 
  -73.7983 
  -57.6075 
  -64.7007 
  -65.4389 
  -60.7913 
  -62.0475 
  -63.0583 
  -61.8235 
  -64.7633 
  -62.1087 
  -61.9486 
  -57.9910 
  -66.4739 
  -61.7862 
  -62.4410 
  -72.9678 
  -64.6985 
  -66.7556 
  -70.3988 
  -68.9479 
  -66.7712 
  -64.9808 
  -60.7439 
  -60.6472 
  -63.8818 
  -60.4352 
  -66.0002 
  -66.0506 
  -57.9623 
  -64.7242 
  -68.7141 
  -64.9666 
  -67.5324 
  -61.1417 
  -66.9222 
  -61.4947 
  -56.1715 
  -64.5166 
  -72.0578 
  -57.1570 
  -64.8675 
  -60.0820 
  -63.6253 
  -61.5750 
  -63.0807 
  -63.6845 
  -63.0185 
  -90.7922 
  -68.7794 
  -75.6093 
  -64.5761   

    0.8633 
    0.8666 
    0.8699 
    0.8732 
    0.8766 
    0.8799 
    0.8832 
    0.8865 
    0.8898 
    0.8932 
    0.8965 
    0.8998 
    0.9031 
    0.9064 
    0.9098 
    0.9131 
    0.9164 
    0.9197 
    0.9230 
    0.9264 
    0.9297 
    0.9330 
    0.9363 
    0.9396 
    0.9430 
    0.9463 
    0.9496 
    0.9529 
    0.9563 
    0.9596 
    0.9629 
    0.9662 
    0.9695 
    0.9729 
    0.9762 
    0.9795 
    0.9828 
    0.9861 
    0.9895 
    0.9928 
    0.9961 
    0.9994 
    1.0027 
    1.0061 
    1.0094 
    1.0127 
    1.0160 
    1.0193 
    1.0227 
    1.0260 
    1.0293 
    1.0326 
    1.0359 
    1.0393 
    1.0426 
    1.0459 
    1.0492 
    1.0525 
    1.0559 
    1.0592 
    1.0625 
    1.0658 
    1.0691 
    1.0725 
     1.2916 

  -64.3586 
  -67.5175 
  -70.8929 
  -62.6825 
  -65.2664 
  -62.5539 
  -62.7829 
  -58.2590 
  -63.8885 
  -57.4035 
  -63.9255 
  -60.2164 
  -61.8184 
  -59.2813 
  -61.8391 
  -57.9839 
  -71.2326 
  -61.7776 
  -62.2408 
  -59.2225 
  -63.8286 
  -61.6746 
  -68.4276 
  -63.9500 
  -60.6760 
  -64.0969 
  -67.9528 
  -58.1070 
  -74.7542 
  -68.3077 
  -59.0771 
  -61.9220 
  -59.7458 
  -68.0597 
  -69.3697 
  -67.0716 
  -62.1931 
  -59.6382 
  -70.0904 
  -67.7038 
  -61.2145 
  -63.4884 
  -57.8645 
  -57.6306 
  -66.7457 
  -60.6668 
  -62.1234 
  -62.8264 
  -60.9429 
  -56.9078 
  -44.9638 
  -59.1152 
  -56.8783 
  -58.2315 
  -62.0727 
  -64.3671 
  -58.5105 
  -61.2156 
  -65.7243 
  -61.9880 
  -61.8521 
  -58.1641 
  -60.8006 
  -66.0229 
  -71.2011 

    1.0758 
    1.0791 
    1.0824 
    1.0857 
    1.0891 
    1.0924 
    1.0957 
    1.0990 
    1.1023 
    1.1057 
    1.1090 
    1.1123 
    1.1156 
    1.1189 
    1.1223 
    1.1256 
    1.1289 
    1.1322 
    1.1355 
    1.1389 
    1.1422 
    1.1455 
    1.1488 
    1.1521 
    1.1555 
    1.1588 
    1.1621 
    1.1654 
    1.1688 
    1.1721 
    1.1754 
    1.1787 
    1.1820 
    1.1854 
    1.1887 
    1.1920 
    1.1953 
    1.1986 
    1.2020 
    1.2053 
    1.2086 
    1.2119 
    1.2152 
    1.2186 
    1.2219 
    1.2252 
    1.2285 
    1.2318 
    1.2352 
    1.2385 
    1.2418 
    1.2451 
    1.2484 
    1.2518 
    1.2551 
    1.2584 
    1.2617 
    1.2650 
    1.2684 
    1.2717 
    1.2750 
    1.2783 
    1.2816 
    1.2850 
    1.2883    

  -72.9718 
  -60.9877 
  -62.3058 
  -60.1250 
  -71.4327 
  -82.0991 
  -65.9897 
  -62.2241 
  -72.7133 
  -64.1454 
  -61.5283 
  -61.0063 
  -58.7389 
  -61.4926 
  -67.3417 
  -58.1062 
  -58.6922 
  -78.7460 
  -57.6501 
  -63.9622 
  -59.7888 
  -66.7986 
  -65.6203 
  -56.9194 
  -59.8322 
  -64.8635 
  -74.4397 
  -56.8542 
  -71.5921 
  -71.1076 
  -62.8709 
  -64.1743 
  -57.6795 
  -58.9483 
  -66.2912 
  -60.9561 
  -65.9365 
  -82.1751 
  -59.0900 
  -61.0498 
  -57.4254 
  -59.3106 
  -67.4526 
  -58.2108 
  -65.7881 
  -58.4864 
  -66.4000 
  -65.7744 
  -63.6673 
  -60.9447 
  -60.0327 
  -63.6701 
  -61.8175 
  -59.1733 
  -56.1840 
  -60.5183 
  -64.0376 
  -70.0883 
  -65.3084 
  -62.2863 
  -60.4126 
  -60.0369 
  -57.3396 
  -61.0038 
  -71.0445 

Table 1 Frequency against PSD 
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3.4 Procedure for Realising Algorithm 
The Algorithm will follow a particular trend and procedure, the flowchart in figure 11 represents the flow 
process for the algorithm, the large spectrum data from a wideband will undergo various processes before 
the spectrum hole can be detected as shown in figure 11. 

 

Figure 11 Flowchart showing the procedure for the algorithm 
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When a constraint is introduced, the result will further narrow the search area, and this will further 
increase the possibility of detection as shown in figure 10  the red line is for thresholding and converging 
the search area. 

 The diagram in 12 is a single slice diagram while figure 12 is a combination of many slices which can be 
referred to as Tensor, this provides a unique representation for any instance of the frequency range,  

 
 

Figure 12  Diagram of a Front Slice Figure 13 Several Slices with Hyperspaces with 
Row  and Column 

 

The space within the slice in figure 14 is called Hyperspace, and this has increased facility for frequency 
representation. In representing them, the tensors are defined based on a specific order 

 

 

 

 

 

 

 

 

 

 
 

Figure 14 HyperSpace and Super Box 

 

 

 

 

Tensor coordinates can be represented by   
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Figure  15  Tensor showing coordinate on Tensors 

The demonstration here shows how the representation is done  in tensor , the components for this are 
row,column,Slice,Tensor,Superbox. Figure 12, 13, 14 and 15 are graphical examples of  the process of 
representing  events using Tensors. Data command is given as follows 

Data=TensorA(row,column,Slice,Tensor,Superbox) 

Data=TensorA(4,11,4,1,1) 

The command TensorA(4,11,4,1,1) represent various position  

Data=TensorA(5,2,1,1,1) 

 Lets represent a spectrum data   using random data. 

a = randn(1,5) 

a = randn(1,5) 

a =   0.5377    1.8339   -2.2588    0.8622    0.3188 

b = randn(1,5) 

b = -1.3077   -0.4336    0.3426    3.5784    2.7694 

c = randn(1,5) 

c = -1.3499    3.0349    0.7254   -0.0631    0.7147 

a covariant of all the spectrum data call be explored   in matlab using this command 

a_cov = a *. a' 

a_cov = a *. a' 

one major advantage of using covariant matrix is that it can transpose noise signal which cancel out 
completely. Exhibiting the command in matlab  

 >> a_cov = a * a' 

a_cov =   9.5996 
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A further extension of the data could generate a random number 5 by 5 with the following command a = 
randn(5,5) 

This random number is assign to a  as 

a =   -0.2050    0.6715    1.0347    0.8884    1.4384 

        -0.1241   -1.2075    0.7269   -1.1471    0.3252 

         1.4897    0.7172   -0.3034   -1.0689   -0.7549 

         1.4090    1.6302    0.2939   -0.8095    1.3703 

         1.4172    0.4889   -0.7873   -2.9443   -1.7115 

This method could be used for data  for  b and c 

>> b = randn(5,5) 

b = 

   -0.1022   -0.0301   -0.8637    1.5326   -1.0891 

   -0.2414   -0.1649    0.0774   -0.7697    0.0326 

    0.3192    0.6277   -1.2141    0.3714    0.5525 

    0.3129    1.0933   -1.1135   -0.2256    1.1006 

   -0.8649    1.1093   -0.0068    1.1174    1.5442 

>> c = randn(5,5) 

c = 

    0.0859   -0.6156   -1.4023    1.4193    0.6966 

   -1.4916    0.7481   -1.4224    0.2916    0.8351 

   -0.7423   -0.1924    0.4882    0.1978   -0.2437 

   -1.0616    0.8886   -0.1774    1.5877    0.2157 

    2.3505   -0.7648   -0.1961   -0.8045   -1.1658 

Exploring the tensor properties  for infinite data representation , this is done by  invoking the tensor 
command in Matlab below zero is assigned to tensor data. 

Exploring the tensor properties of for infinite data representation , by invoking the tensor command in 
Matlab below zero is assigned to tensor data Considering a tensor of order (5,5,7) 

>> data_tensor = zeros(5,5,7) 

Initialising the first slice of the tensor 1 to zero 

data_tensor(:,:,1) = 

     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
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     0     0     0     0     0 
     0     0     0     0     0 
Initialising the first slice of the tensor 2 to zero 

data_tensor(:,:,2) = 

     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
Initialising the first slice of the tensor 3 to zero 

data_tensor(:,:,3) = 

     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
Initialising the first slice of the tensor 4 to zero 

data_tensor(:,:,4) = 

     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
Initialising the first slice of the tensor 5 to zero 

data_tensor(:,:,5) = 

     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
Initialising the first slice of the tensor 6 to zero 

data_tensor(:,:,6) = 

     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
Initialising the first slice of the tensor 7 to zero 
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data_tensor(:,:,7) = 

     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
Assigning Slice 1 data to a, using the command below 

>> data_tensor(:,:,1) = a 

data_tensor(:,:,1) = 

   -0.2050    0.6715    1.0347    0.8884    1.4384 
   -0.1241   -1.2075    0.7269   -1.1471    0.3252 
    1.4897    0.7172   -0.3034   -1.0689   -0.7549 
    1.4090    1.6302    0.2939   -0.8095    1.3703 
    1.4172    0.4889   -0.7873   -2.9443   -1.7115 
Assigning data to tensors slice 1 

>> data_tensor(:,:,1) 

ans = 

   -0.2050    0.6715    1.0347    0.8884    1.4384 
   -0.1241   -1.2075    0.7269   -1.1471    0.3252 
    1.4897    0.7172   -0.3034   -1.0689   -0.7549 
    1.4090    1.6302    0.2939   -0.8095    1.3703 
    1.4172    0.4889   -0.7873   -2.9443   -1.7115 
Slice 2 is initialised with zeros 

>> data_tensor(:,:,2) 
 

answer = 
 

     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
Slice 3 is assign to  b data 

>> data_tensor(:,:,3) = b 

 data_tensor(:,:,3) = 

   -0.1022   -0.0301   -0.8637    1.5326   -1.0891 
   -0.2414   -0.1649    0.0774   -0.7697    0.0326 
    0.3192    0.6277   -1.2141    0.3714    0.5525 
    0.3129    1.0933   -1.1135   -0.2256    1.1006 
   -0.8649    1.1093   -0.0068    1.1174    1.5442 
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The tensor here shows that slice 4 is assigned zeros 

data_tensor(:,:,4) = 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 >> data_tensor(:,:,3) 

ans = 
   -0.1022   -0.0301   -0.8637    1.5326   -1.0891 
   -0.2414   -0.1649    0.0774   -0.7697    0.0326 
    0.3192    0.6277   -1.2141    0.3714    0.5525 
    0.3129    1.0933   -1.1135   -0.2256    1.1006 
   -0.8649    1.1093   -0.0068    1.1174    1.5442 
>> data_tensor 

data_tensor(:,:,1) = 
   -0.2050    0.6715    1.0347    0.8884    1.4384 
   -0.1241   -1.2075    0.7269   -1.1471    0.3252 
    1.4897    0.7172   -0.3034   -1.0689   -0.7549 
    1.4090    1.6302    0.2939   -0.8095    1.3703 
    1.4172    0.4889   -0.7873   -2.9443   -1.7115 
data_tensor(:,:,2) = 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
data_tensor(:,:,3) = 

   -0.1022   -0.0301   -0.8637    1.5326   -1.0891 
   -0.2414   -0.1649    0.0774   -0.7697    0.0326 
    0.3192    0.6277   -1.2141    0.3714    0.5525 
    0.3129    1.0933   -1.1135   -0.2256    1.1006 
   -0.8649    1.1093   -0.0068    1.1174    1.5442 
 

4 Convex Optimization 
Convex optimization is a subfield of optimization that studies the problem of minimizing convex functions 
over convex sets. Convex optimization is used to split frequencies into sub-bands; this will help in directing 
one to the most likely position where the available spectrum hole exists, convex optimization will help 
minimize the time taken for detection. The convexity makes optimization easier than the general case 
since the local minimum must be a global minimum, and first-order conditions are sufficient conditions 
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for optimality. The general mathematical programming problem can be formulated by determining the n 
variables   

Minimize     𝑓𝑓0𝑥𝑥 

𝑓𝑓0𝑥𝑥 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙        

Subject to 𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1 … … ..      (4)𝑚𝑚,  

this is a condition for convex optimization 

ℎ𝑖𝑖(𝑥𝑥) ≤ 0,     𝑖𝑖 =  1 … … … … … … .𝑝𝑝 

In problem formulation, convex optimization is used   with x as the variable                                  

𝑥𝑥 = (𝑥𝑥1 … … … … … … … … … . 𝑥𝑥𝑛𝑛).    

That optimizes function for the variables under test is 

𝐹𝐹(𝑥𝑥) = F(x1………………………. xn) 

Which is called objective function, note that this is the constraint for optimization 

𝑔𝑔(𝑥𝑥) = 𝑔𝑔(𝑥𝑥1 … … … … … 𝑥𝑥𝑛𝑛) ≥ 0           𝑖𝑖 = 1 … … … … … … … … ..l    

subject to linear and/or nonlinear inequality constraints 

𝑔𝑔(𝑥𝑥) = 𝑔𝑔(𝑥𝑥1 … … … … … 𝑥𝑥𝑛𝑛) = 0           𝑖𝑖 = 𝑙𝑙 + 1 … … … … … …𝑚𝑚 

and to m — I linear and/or nonlinear equality constraint  When the objective function and the m 
constraints are linear, the mathematical programming problem is a linear programming problem.  

When either the objective function or one or more of the constraints are nonlinear, the programming 
problem is nonlinear. In considering the nonlinear programming problem we prefer always to think of a 
minimizing problem, but this implies no loss of generality since, 

A generic optimisation problem (in minimisation form) is specified as   

Min  f0(x)  optimisation problem  𝑓𝑓0(𝑥𝑥) =≤ 0   𝑖𝑖 = 1 … … … . .𝑚𝑚  

h1(𝑥𝑥) = 0   𝑖𝑖 = 1 … … … . .𝑝𝑝  

The optimisation problem aims to  find the x that minimises   

f0(x) while satisfying  𝑓𝑓0(𝑥𝑥) =≤ 0   𝑖𝑖 = 1 … … … . .𝑚𝑚   and     h1(𝑥𝑥) = 0   𝑖𝑖 = 1 … … … . .𝑝𝑝  

The variable x∈R is called the optimisation variable and the function f0: Rn                   R 

is known as the objective function. 

The inequalities 𝑓𝑓1(𝑥𝑥) =≤ 0, are referred to as inequality constraints and the functions,  

f0: Rn               R. are called inequality constraint functions. 

The equalities hi(x) = 0 are called equality constraints and the functions hi(x): Rn                 R 

R are known as equality constraint functions. 

The domain D of the optimisation problem is the set of points for which the 
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objective and constraint functions are defined. A point x∈D x 2 D is called a feasible point if all 
constraints are satisfied. The optimisation problem is feasible if there is at least one feasible point. 

A feasible solution x* is called a globally optimum solution if  𝑓𝑓0(𝑥𝑥∗) =≤ 𝑓𝑓0(𝑥𝑥).   

For all feasible x, A feasible solution x is called a locally optimum solution if there 

exists an ɛ >0 such that 𝑓𝑓0(𝑥𝑥∗) =≤ 𝑓𝑓0(𝑥𝑥)  for all feasible x that satisfies. ǁx-x*ǁ2≤ɛ 

A fundamental property of convex optimisation problems is that any locally optimal point is also globally 
optimal. 

This work will adopt the front slice technique since it works with the property of matrix and for easy 
representation, Figure 16 is a single slice which contains rows and column, this will help in describing the 
position of energy level against frequency within the block. 

Frontal slice technique is used since it works with the property of matrix and for straightforward 
representation, as shown in figure 16. 

  

 

 

             
       

 

 

Figure 16    Various Tensor Slices and Fibres (Frontal slices: X::k (or Xk) 

The inner product of two same-sized tensors  is given below 

(𝑥𝑥,𝑦𝑦) = �
𝐼𝐼1

𝑖𝑖1=1

�
𝐼𝐼2

𝑖𝑖2=1

… … … … �
𝐼𝐼𝑁𝑁

𝑖𝑖𝑖𝑖=1

𝑥𝑥𝑖𝑖1 𝑖𝑖2……𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖1𝑖𝑖2…….𝑖𝑖𝑁𝑁                                    (5) 

                               

4.1 Principal Component Analysis 
The Spectrum data Principal component analysis (PCA) is a statistical procedure that uses an orthogonal 
transformation to convert a set of data acquired from the spectrum taking into account observations of 
possibly correlated variables (entities each of which takes on various numerical values) into a set of values 
of linearly uncorrelated variables called principal components. If there are n observations with p variables, 
then the number of distinct principal components is min(n-1,p). 

This transformation is defined in such a way that the first principal component has the most significant 
possible variance (that is, it accounts for as much of the variability in the data as possible), and each 
succeeding component, in turn, has the highest variance possible under the constraint that it is orthogonal 
to the preceding components. The resulting vectors (each being a linear combination of the variables and 
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containing n observations) are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling 
of the original variables. 

4.2 Eigen Values & Eigenvectors 
After using the method of Principal Component Analysis to locate the exact possible area where the hole 
could be located based on the pattern derived from the PCA to in linear algebra, an eigenvector or 
characteristic vector of a linear transformation is a non-zero vector that changes by only a scalar factor 
when that linear transformation is applied to it. 

Let the Eigenvector represent a range of spectrum data, these stream of data on a plot will have a range 
of coefficients that will further describe their characteristics. 

This stream of spectrum data could be represented as vector 𝑣⃗𝑣   while the vector is taken as 𝜆𝜆 

This means we could have a stream of data as 

 𝜆𝜆 = 𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3 + 𝜆𝜆4 + ⋯… . . 𝜆𝜆𝑛𝑛 … …                                                  (6) 

Eigenvectors (for a square m× m matrix S)   𝑆𝑆𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣                 

𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣 

Then we can conjugate to get 𝐴𝐴𝑣⃗𝑣=𝜆𝜆𝑣⃗𝑣 

If the entries of A are real, this becomes 𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣 

This proves that complex eigenvalues of real-valued matrices come in conjugate pairs  

Now transpose to get 𝑣⃗𝑣𝑡𝑡𝐴𝐴𝑇𝑇 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆. Because A is a symmetric matrix, we now have 𝑣⃗𝑣𝑡𝑡𝐴𝐴 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆 

Multiply both sides of this equation on the right with 𝑣⃗𝑣, i.e. 𝑣⃗𝑣𝑡𝑡𝐴𝐴𝑣⃗𝑣 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆𝑣⃗𝑣 

On the other hand multiply𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣 on the left by 𝑣⃗𝑣𝑡𝑡 to get 𝑣⃗𝑣𝑡𝑡𝐴𝐴𝑣⃗𝑣 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆𝑣⃗𝑣 

 ⇒ 𝑣⃗𝑣𝑡𝑡𝜆𝜆𝑣⃗𝑣 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆𝑣⃗𝑣 ⇒ 𝜆𝜆 = 𝜆𝜆 ⇒ 𝜆𝜆 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

0 If A is an n x n symmetric matrix, then any two eigenvectors that come from distinct eigenvalues 
are orthogonal.        𝐴𝐴𝑣⃗𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑣⃗𝑣𝑖𝑖 

⮚ Left multiply with 𝑣⃗𝑣𝑗𝑗𝑇𝑇 to 𝐴𝐴𝑣⃗𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑣⃗𝑣𝑖𝑖 ⇒ 𝑣⃗𝑣𝑗𝑗𝑇𝑇𝐴𝐴𝑣⃗𝑣𝑖𝑖 = 𝑣⃗𝑣𝑗𝑗𝑇𝑇𝜆𝜆𝑖𝑖𝑣⃗𝑣𝑖𝑖 
⮚ Similarly 𝑣⃗𝑣𝑖𝑖𝑇𝑇𝐴𝐴𝑣⃗𝑣𝑗𝑗 = 𝑣⃗𝑣𝑖𝑖𝑇𝑇𝜆𝜆𝑗𝑗𝑣⃗𝑣𝑗𝑗 

⮚ From the above two equations (𝜆𝜆𝑗𝑗 − 𝜆𝜆𝑖𝑖)𝑣⃗𝑣𝑖𝑖𝑇𝑇𝑣⃗𝑣𝑗𝑗 = 0  ⟹ 𝑣⃗𝑣𝑖𝑖𝑇𝑇𝑣⃗𝑣𝑗𝑗 = 0 
∴ 𝑣⃗𝑣𝑗𝑗 and 𝑣⃗𝑣𝑖𝑖 are perpendicular, as also illustrated by the graph in figure 17. 

 

 

 

 

 Figure 17  Eigen Value and Eigen Vector Representation 
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Variance(x)= 1
𝑛𝑛
∑𝑛𝑛𝑖𝑖=1 �𝑥𝑥𝑖𝑖 − 𝑥𝑥�2 

4.3 Eigen Values & Eigenvectors Application 
Exploiting the properties Eigenvalues of real symmetric matrices which are real, Eigenvalues will further 
help to simplify the  process by finding the root of the complex function, and the spectrum data is 
considered the vector 𝑣𝑣���⃗  in this case 

𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣 

Then we can conjugate to get 𝐴𝐴𝑣⃗𝑣=𝜆𝜆𝑣⃗𝑣7 

If the entries of A are real, this becomes 𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣 

This proves that complex eigenvalues of real-valued matrices come in conjugate pairs  

Now transpose to get 𝑣⃗𝑣𝑡𝑡𝐴𝐴𝑇𝑇 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆. Because A is a symmetric matrix, we now have 𝑣⃗𝑣𝑡𝑡𝐴𝐴 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆 

Multiply both sides of this equation on the right with 𝑣⃗𝑣, i.e. 𝑣⃗𝑣𝑡𝑡𝐴𝐴𝑣⃗𝑣 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆𝑣⃗𝑣 

On the other hand multiply𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣 on the left by 𝑣⃗𝑣𝑡𝑡 to get 𝑣⃗𝑣𝑡𝑡𝐴𝐴𝑣⃗𝑣 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆𝑣⃗𝑣 

⇒ 𝑣⃗𝑣𝑡𝑡𝜆𝜆𝑣⃗𝑣 = 𝑣⃗𝑣𝑡𝑡𝜆𝜆𝑣⃗𝑣 ⇒ 𝜆𝜆 = 𝜆𝜆 ⇒ 𝜆𝜆 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

If A is an n x n symmetric matrix, then any two eigenvectors that come from distinct eigenvalues are 
orthogonal. 

𝐴𝐴𝑣⃗𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑣⃗𝑣𝑖𝑖 

Left multiply with 𝑣⃗𝑣𝑗𝑗𝑇𝑇 to 𝐴𝐴𝑣⃗𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑣⃗𝑣𝑖𝑖 ⇒ 𝑣⃗𝑣𝑗𝑗𝑇𝑇𝐴𝐴𝑣⃗𝑣𝑖𝑖 = 𝑣⃗𝑣𝑗𝑗𝑇𝑇𝜆𝜆𝑖𝑖𝑣⃗𝑣𝑖𝑖 

Similarly 𝑣⃗𝑣𝑖𝑖𝑇𝑇𝐴𝐴𝑣⃗𝑣𝑗𝑗 = 𝑣⃗𝑣𝑖𝑖𝑇𝑇𝜆𝜆𝑗𝑗𝑣⃗𝑣𝑗𝑗 

From the above two equations (𝜆𝜆𝑗𝑗 − 𝜆𝜆𝑖𝑖)𝑣⃗𝑣𝑖𝑖𝑇𝑇𝑣⃗𝑣𝑗𝑗 = 0 

        ⟹ 𝑣⃗𝑣𝑖𝑖𝑇𝑇𝑣⃗𝑣𝑗𝑗 = 0 

∴ 𝑣⃗𝑣𝑗𝑗 and 𝑣⃗𝑣𝑖𝑖 are perpendicular 

4.4 Covariance Matrix 
Covariance Matrix will be used in explicitly detecting hole location in the spectrum, and this is after all the 
convergence has been realised. 

Employing a Power spectral Density map (PSD), the general representation of a  covariance is given in 
equation 7  below 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 1
𝑛𝑛
∑𝑛𝑛𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)                                               (7) 

❖ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥, 𝑥𝑥) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) 
❖ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦, 𝑥𝑥) 
❖ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 1

𝑛𝑛
∑𝑛𝑛  
𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦) 

Lets assume a spectral Data plot in figure 18,19, 20 and 21,  note that y axis represent the Energy 
level while the x axis represent the frequency. 
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       Figure 18   Plot showing Spectrum data                                       Figure 3.19  Point of Likelihood 

The plot in figures 18,19, 20 and 21 show a scattered graph of spectrum data, and this further shows how 
hole location can be extracted, this platform will make it possible for covariance method to locate a point 
with a high possibility of a spectrum hole. 

In Figure 3,18, the location for the spectrum hole using the relativity from the mean. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦) =
1
𝑛𝑛
�
𝑛𝑛

𝑖𝑖=1

�𝑥𝑥𝑖𝑖 − 𝑥𝑥� �𝑦𝑦𝑖𝑖 − 𝑦𝑦�     (8) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) =
1
𝑛𝑛
�
𝑛𝑛

𝑖𝑖=1

(𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦) 

 

Figure 3.20 Calculating the mean in Covariance 

 

Figure 3.21 Extracting feature using Covariance 
method  

𝐶𝐶𝐶𝐶𝐶𝐶 (∑) = [𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1,𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1,𝑥𝑥2) ⋯  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1,𝑥𝑥𝑚𝑚)  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2,𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥2) ⋯  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2,𝑥𝑥𝑚𝑚)   
⋮  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚,𝑥𝑥1)   ⋮  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚,𝑥𝑥2)   ⋮  ⋯   ⋮  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑚𝑚)   ] 

𝐶𝐶𝐶𝐶𝐶𝐶 (∑) =
1
𝑛𝑛 �
𝑋𝑋 − 𝑋𝑋��𝑋𝑋 − 𝑋𝑋�𝑇𝑇;𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋 = [𝑥𝑥1 𝑥𝑥2   ⋮  𝑥𝑥𝑚𝑚 ]                                             (9) 

5 Conclusion 
This work came up with a procedure that uses Convex Optimization for Spectrum Hole Detection in 
Cognitive Radio Network Using Tensor Analysis. It explores the multi-variant capability of tensor and 
convex optimization Scheme for efficient and adaptive thresholding in identifying and classifying spectrum 
holes from the concept of tensors which will be used in spectrum hole identification. Other corresponding 
techniques were also explored like Principal Component Analysis, Eigen Value and Eigen Vector, with 
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these Speed of spectrum identification, will be improved upon based on the convergence technique to be 
adopted 

Accuracy, which is a vital issue in spectrum hole detection, will be enhanced by advancing the use of the 
above-listed techniques in detection of spectrum holes. These techniques will then be improved upon via 
convex optimization in order to increase the speed and accuracy of decision making 
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