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ABSTRACT 

With the increasing interest in smart devices and convenient remote control, the need for accurate 
wireless means of control has become imperative. This gives rise to the growing research interests in the 
area of gesture and finger movement detection. In this paper, a suitable design exploring some techniques 
involved in hand and finger movement detection, using depth-sensing infrared cameras embedded on 
Xbox Kinect Module is presented. First, 3-D images are generated and filtered along the z-axis, then two 
distinct techniques; Haar-Like Features, and Deep Learning using a Convolution Neural Network (CNN), 
are performed on the images to detect hands movement. In order to evaluate the robustness of the 
proposed technique, useful metrics like, Precision, Recall, F1-Score and Accuracy are used to evaluate the 
efficiency of the technique. Results show that while the deep learning model showed the most accurate 
results with a weighted accuracy of 1.0 (due to the absence of noise in the images), a weighted accuracy 
of 0.97 is observed for the Haar-Like features. Finally, the Haar-like features technique appears to run 
faster due to its static nature whereas, the deep learning model is quite slow in terms of running time. 
Overall, these findings point to the conclusion that the deep learning model is a better technique for 
detecting hands movements despite its longer running time.  

Keywords: Finger movement detection, Haar-Like features, Deep Learning, Z-axis filtering, Accuracy, 
Precision, Recall, F1-score, Weighted average, 3-D Images, Depth Sensor, Infrared (IR) Images, 
Convolutional Neural Network (CNN). 

1 Introduction 
Globally, there has been an exponential growth in the number of electronic devices currently in use for 
various applications including fingers movement detection, and the littlest convenience could be the 
deciding factor in preference. Companies in the electronics industry are always open to customer-centric 
innovations that could give the slightest edge against competitors. This need for innovation fuels this 
design to create an infrared-based sensor for finger movement detection. While steering away from 
solutions geared towards detecting finger movement by extensive use of hardware, this design utilises 
the infrared depth couple in the Xbox Kinect sensor for input and then processes the generated images 
with a z-axis filtering algorithm, a template matching process, which uses a neural network trained feature 
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recognition model to detect and recognise captured hands. Based on the theoretical background, it is 
expected that successful detection and recognition will occur with good enough accuracy as compared to 
other methods. The response time is expected to be slower as the image processing algorithms could be 
computationally expensive. 

In this design, infrared technology is used to detect hand and finger movements with no attached or 
handheld hardware piece. This solution could find several applications in gaming, vehicle control, wireless 
control of most electronic devices, and data analysis. More specifically, the design is aimed at detecting 
finger movement using infrared technology. The key objectives are; to detect hands and fingers by 
processing depth images from the infrared camera using Haar-like features object detection algorithm, to 
detect hands and fingers by processing depth images from the infrared camera using a convex hull 
formation and detection algorithm, to detect hands and fingers by processing depth images from the 
Infrared camera using a pre-trained deep learning model, and to select the best of the three algorithms 
using testing accuracy, precision, recall and F1 score. Furthermore, this design includes the 
implementation of three algorithms (Haar-like features, convex hull formation, and deep learning model) 
that can recognise hands and fingers given depth infrared images as input. Finally, the evaluation of the 
accuracy of the investigated algorithms is demonstrated to show the performances of the algorithms. 

2 Related Work 
Hand gestures are a common way people communicate, from simple pointing gestures to signify direction 
to more complex gestures in sign language. This has made a big field out of hand and finger gesture 
recognition as giving computers a way to recognise this basic way of communication would have many 
useful applications. Several researchers have made several contributions to find better ways for 
computers to recognise hand gestures shown by humans. Haar-like features, as proposed by Viola and 
Jones in [1], uses the Adaboost learning algorithm to generate classifiers by selecting critical visual 
features called Haar-like features in the image and then finds matches in smaller rectangular 
representations of the image called ‘integral images’. This evolutionary method has allowed researchers 
to develop several object detection systems that provide good accuracy and speed.  

Chen et al [2] implemented a real-time hand detection system using Haar-like features for hand posture 
detection and syntactic analysis based on a stochastic context-free grammar for gesture recognition. 
While this paper highlights the high accuracy Haar-like features offer for hand posture detection, it also 
points out that it cannot be used for gesture recognition because of the transition states of gestures. 
Hence, the use of Haar-like features in this design is limited to hand and finger detection and other static 
detection methods outlined in [3]. 

“The convex hull Cℋ (S) of a set ‘S’ is the smallest convex set that contains ‘S’[4], this statement describes 
a convex hull, the importance of convex hull generation is clear in the processing of images. Selecting the 
outer borders of an object such as a hand can detect distinct parts of the hand for further processing. Ren 
et al [5] used the convex hull method to detect fingers from images generated by infrared depth sensors 
by first using a novel method for detecting gestures called Finger Earth Mover’s Distance (FEMD). After 
the sensor detects the hand, the generated information is converted to ‘signatures’ before the FEMD 
technique is then applied. Finger detection is achieved by either threshold decomposition or near-convex 
shape decomposition. 
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Also, Bergh et al [6] used a convex hull algorithm to get the centre of the hand in images. Infrared depth 
sensors were mounted on a robot that got directions in the form of pointing gestures from users. As it 
captures the gestures as 3D images by the sensor, their proposed model estimated the orientation of the 
hand by determining the wrist position regarding the centre of the hand (convex hull algorithm). After a 
successful orientation estimation, the model then recognised the hand posture by classifying the image 
based on the Average Neighbourhood Margin Minimisation (ANMM). Finally, the pointing direction was 
determined based on the hand posture and orientation. 
Guan-Feng et al [7] used a 3D depth camera to detect the user and z-axis filtering to segment the hand. 
Further processing was then done on the segmented hand as a hand contour (convex hull) is formed using 
only the boundary pixels from the image of the hand. Gesture recognition is then done by using contour 
points to get convex defects in subsequent images. Evidently, the use of the convex hull algorithm allows 
for flexible processing because the hull provides information about the hand and different methods could 
draw data from the information.  

Deep learning [8], as an AI technique, involves the use of a back-propagation algorithm to generate 
predictive models based on data supplied, thus, implying that models that detect hands can be created 
and trained by supplying several images of hands [9]. Oyedotun and Khashman [10] in their paper 
developed a system for detecting all 24 hand gestures in Thomas Moeslund’s gesture recognition 
database [11] using a deep learning model. They also showed that more biologically oriented deep neural 
networks like CNN learned the hand gesture alphabet with good accuracy and relatively lower error rates.  

A related work by Hussain et al [12] achieved gesture recognition by the use of VGG16 [13], a pre-trained 
CNN. The developed classifier recognised hand shape through transfer learning [14] over the VGG16 and 
traced detected hands using a skin colour detection algorithm if the motion was dynamic. Drawing a 
conclusion from reviewed papers, deep learning models achieve high accuracy rates for dynamic sets of 
data such as hand and finger movement and are hence a good technique for gesture recognition.  

Discussing other techniques of hand and finger movement detection, Cheng et al [15] achieved similar 
results in a more minimalistic manner. Avoiding the use of a depth camera, the researchers used an 
Infrared LED and Infrared Receiver. This pair of sensors detected finger movement regarding time and fed 
the raw signal to a system that used a mathematical model in combination with a decision tree to 
determine the proper gesture being made. A similar but more complex approach was taken by Liu et al 
[16] where a Passive Infrared (PIR) sensor array was used to collect input with pseudo-random coded 
Fresnel lenses. The sensor arrays used compressed infrared sensing to detect only the spatial-temporal 
changing motion and then interpreting the information by using ‘Vector Quantisation’ to recognise the 
semantic of arm gesture.  

Similarly, Megalingam et al [17] set-up an Infrared LED-Receiver sensor array embedded in a tablet and 
detected hand movement on the tablet by recording ulnar deviation (in the palm). With a similar use of 
simple infrared materials, Metzger et al [18] utilised a single Infrared proximity sensor in their wearable 
solution to the problem. The device, after being mounted on the ear and controlled using finger gestures, 
would detect an object/finger as a pulse, and multiple pulses would signify multiple fingers. The 
underlying technology implied that the input depended on the number of fingers that passed the sensor 
and not the direction of gesture as in previous methods. While these methods offer fast response time 
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and low computational cost and power, they, however, do not provide holistic information about the 
hand and fingers in this case.  

Unlike the hardware solutions to gesture recognition, there are solutions that utilize truly wireless 
technology (mainly Infrared cameras and Infrared-based depth-sensing modules) while maintaining 
similar low power costs. Based on this, Erden and Çetin [19] achieved gesture recognition using a PIR 
sensor and an RGB camera. While the PIR sensor detected hand gesture using the Jacquard distance for 
the Winner Takes All (WTA) algorithm comparison, the RGB camera was to detect if the object recognised 
by the PIR sensor was, in fact, a hand. This approach tackled the problem of providing holistic information 
by separating functions and assigning them to separate sensors.  

Furthermore, Ionescu et al [20, 21] used depth-sensing Infrared cameras (composed of an Infrared 
Designer and Infrared Receiver). The technique used was a novel space slicing technique which captured 
the reflected light from the sensors in ‘slices’ of space and calculated depth through a reconfigurable 
hardware unit that combined the slices by calculation to form a depth image. Further filtration of the 
image based on depth would then isolate the hand position in the image. Another interesting approach 
to the use of infrared cameras was taken by Sato et al [22] where their implementation uses a ready-made 
Infrared Camera as input, detects hands in a process called ‘binarization’, and then uses template 
matching (determining search windows in the image for each hand region and searching for matching 
fingertip templates in that region, the template used for the fingertips is a rectangle with a semi-circle at 
the top) for fingertip detection. The centre of the hand is found by morphological erosion operation of an 
extracted hand region. This method can successfully capture and detect a hand.  

Xia and Fujimura [23] took a different approach in their paper where gestures are recognised using a 
sequence of real-time depth image data gained by the sensing hardware. The head of the user is detected 
using vertical and horizontal histograms while the hand of the user is detected by using depth elimination 
based on the aspect ratio (z-axis filtering). This approach, however, has a drawback, as it is restricted to 
only single users as a time. Implementations using depth cameras [24] provide high accuracy and holistic 
data but are computationally expensive when compared to cruder infrared methods, as they require real-
time processing of feed from the depth sensor. 

There also exist implementations that are uniquely different from the usual methods, one example is 
using an Infrared transmitter remote stick that constantly transmits a signal to a receiver placed in the 
vicinity [25]. The constant input from the receiver was then programmed to detect variations in the 
Infrared transmitter’s position. The researcher then gave a set of variations that could be interpreted by 
the system. Hence, once a message is recognised from the input, it would initiate an action. This 
implementation would be faster and have good accuracy. However, it is not fully contactless as a 
secondary device is used for transmission. And an approach that does not make use of Infrared technology 
but images processing algorithms and computer vision (AI) is taken by Utsumi et al [26], where multiple 
RGB cameras capture the object, and the resulting images are then classified using a certain algorithm.  

To make daily tasks easier and more efficient, engineering, as a mother discipline, has used a wide variety 
of scientific concepts. One of these applications is the case of IR technology for motion tracking. IR 
technology is based on the utilisation of Infrared waves. Its main application is the creation of a wide 
range of IR sensors. Several IR sensors exist and can range from simple IR blasters and receivers to depth-
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perceptive IR cameras. Given the wide variety and their functions, how is it possible to use an IR sensor 
to detect the location of the hand and then the movement of fingers? 

In order to solve this problem, the Infrared depth sensor couple as used by [5, 20-23, 25, 27] would be 
utilised. After getting the depth image, three distinct methods of image processing would obtain hand 
and finger movement; Haar-like features [1, 2], Convex hull detection [4-7, 28], and Deep learning model 
generation [9, 10, 12-14].  

3 Materials and Method 
The finger movement detection system presented in this study comprises of three main units; the 
processing unit, the input unit, the output unit. The processing unit comprises the CPU in which the code 
is activated, while the code provides the implementation of the designed algorithm. Finally, the processing 
unit interfaces with both input and output units, this makes it a central unit. 

The input unit consists of the Xbox Kinect module and any other computing device used in writing the 
programs in the CPU. During the actual use of the system, the input unit consists of the Xbox Kinect 
module alone. The Xbox Kinect module is equipped with an infrared-depth couple and an RGB camera; 
this helps in generating the 3-D images used for finger detection. The output unit consists of a monitor 
screen alone, which displays the images used by the system and output of detected hands and fingers. A 
diagrammatic explanation of the structure is shown in Figure 1. 

In this design, finger movement is achieved using an incremental model of development, as seen in Figure 
2, one phase has to be completed before the next. This sub-chapter states each phase involved in the 
implementation phase and explains how it is done. The methods involved in implementation are software 
methods and would exist in codes and commands written in the Python Programming Language. Figure 3 
shows the general process flow of the implementations. 
 

 
Figure 1: Physical Structural Setup of the Finger Movement Detection System 
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Figure 2: Incremental Development Model of Design 

 

 
Figure 3: Process flow of Finger Movement Detection Algorithm 

3.1 Setup and Configuration 
To make this design work properly, it must be set up and configured properly. To configure this system, 
all necessary frameworks are installed; ROS [29] and Xbox Kinect 360 SDK, then communication between 
the sensors is established. To ensure proper synchronisation, data is transmitted from the sensor to the 
processing unit. The data obtained from the infrared sensor is reduced by a method called Z-Axis Filtering, 
which involves cutting off parts of a generated depth image beyond a specified depth. This process helps 
reduce the amount of information to be processed while making the hand the major object in scope. 
While this technique is for collecting real-time data for processing, to develop the models, a dataset of 
2000 infrared images [30] was used in training and testing. 
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3.2 Static object detection algorithm using Haar-like Features 
Considering a native RGB image, Haar-like features are generated features that are a representation of 
pixel intensities up to a particular location in an image, this implies that Haar-like features can be 
calculated fast and easily since they are only mathematical sums based on the concept of integral images 
[1]. Because of the speed and lightweight of Haar-like features, it is majorly used as an algorithm for image 
object detection, this use case is similar to this design since all hands can be classified as objects.  

To use this technique, the Haar-like features algorithm is deployed to select eigenvectors from a dataset 
of infrared images of a hand and then store this data in a cascade (Haar-cascade). The Haar-cascade is 
then employed in identifying selected eigenvectors in subsequent images to determine if a hand exists or 
not. 

3.3 Dynamic object detection using a convolutional neural network  
Being born from machine learning in AI and based on ANN, deep learning is an algorithm that uses multiple 
layers to identify high-level features in data [31]. Deep learning algorithms can be used in any field where 
data of past events applies to generate predictive models with high levels of accuracy. To be implemented 
in this design, a deep learning model is trained to detect hands and fingers in infrared images by feeding 
a large enough dataset of hand images. A deep learning model is used to extract features from several 
sample infrared images of hands and then recognise these features in subsequent images. The model can 
be trained to identify hands and fingers distinctly. 

3.4 Comparison of Techniques 
To compare the different techniques of hand detection, it is important to select appropriate metrics that 
cover both strengths and weaknesses of all techniques being tested. The following detection and 
classification metrics have thus been selected. The confusion matrix gives a depiction of the True Positives 
(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) [32]. For two sets of data, the 
confusion matrix is shown in equation (1). The accuracy is the ratio of correct detections to total 
detections; the formula is given in equation (2). The precision is the ratio of true positives to selected 
elements and is given in equation (3). The recall is the ratio of true positives to total positives and is given 
in equation (4). The F1-mean score, given in equation (5), is the harmonic mean between precision and 
recall. For testing under various sets of data, the weighted score, given in equation (6), gives an average 
score that lies heavily on the weights or count of the different sets.  

 

 �𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹
𝑇𝑇𝐹𝐹 𝑇𝑇𝐹𝐹�       (1) 
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𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

              (2) 

 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇 +𝑇𝑇𝑇𝑇

               (3) 

 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

     (4) 
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𝑖𝑖=1

   (6) 

4 Results and Discussion 

4.1 Static Object Detection Using Haar-Like Features 
Hands were detected using Haar-Like Features, which was written in Python programming language. The 
results include but not limited to the successful detection of hands in different positions. Each distinct 
position had to be trained into the detection model as an XML file before being loaded into the python 
code. A sample of a real-time image is as shown in Figure 4. The python code to run the model which 
implements the Haar-like feature detection is wireless. Figure 5 shows the Confusion Matrix for using 
Haar-like features. The Precision, Recall, F1-score and weighted scores are calculated using equations (2-
6) in Table 1. The confusion matrix from equation (1) generated for the results of the metrics is given in 
equation (7). 

 

 
Figure 4: Hand Detection Using (Haar Cascades) Haar-Like Features 
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Table 1: Metrics for Haar-Like Features 

Classification Report for Haar-Like Features 
Gesture Class Precision Recall F1-score Support 

Palm_Forward (1) 0.99 0.99 0.99 211 
Index_Forward (2)        0.96 0.97 0.96 217 
Fist (3)      0.94 0.95 0.94 195 
Fist_Turned (4) 0.95 0.95 0.95 191 
Thumb_Up (5) 0.99 0.97 0.98 187 
Middle_Finger_Front (6) 0.95 0.97 0.96 194 
OK (7) 0.97 0.97 0.97 186 
Palm_Side (8) 0.98 0.98 0.98 199 
C (9) 0.97 0.97 0.97 220 
Point_Down (10) 1.00 1.00 1.00 200 
micro avg        0.97 0.97 0.97 2000 
macro avg        0.97 0.97 0.97 2000 
weighted avg        0.97 0.97 0.97 2000 

 

 

Figure 5: Scatter Plot of Precision, Recall and F1-Score for Haar-Like Features 

4.2 Dynamic object detection using a convolutional neural network (CNN) 
The CNN was trained using the ‘leapgestrecog’ dataset of 20,000 infrared images downloaded from Kaggle 
[30] to recognise hands under 10 different classes; Palm_Forward, Index_forward, Fist, Fist_Turned, 
Thumb_Up, Middle_Finger_Front, OK, Palm_side, C and Point_Down. The generated model which was 
trained using 10 Epochs and 14,000 steps per epoch was created using python script. Obtained results for 
accuracy and loss are as shown in Figure 8 and Figure 9, respectively, with their accompanying details in 
Table 2 and Table 3, respectively. Table 4 shows the results of the metrics (Precision, Recall, and F1-Score) 
of the deep learning model for each class of data. The confusion matrix generated in the form of equation 
(1) from the results of the metrics is as shown in equation (8). The Precision, Recall, F1-score and weighted 
scores are calculated as shown in Table 4, using equations (2-6). 
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Table 2: Training Results of CNN (Accuracy) 

Model Accuracy 
Epoch Train Test 

1 0.9311 0.9983 
2 0.9975 0.9987 
3 0.9989 0.9998 
4 0.9982 0.9997 
5 0.9995 0.9997 
6 0.9994 0.9997 
7 0.9989 0.9988 
8 0.9996 1 
9 0.9997 0.9995 

10 1 1 
 

Table 3: Training Results of CNN 

Model Loss 
Epoch Train Test 

1 0.2306 0.0066 
2 0.0111 0.0061 
3 0.0048 0.0003328 
4 0.0107 0.0006637 
5 0.002 0.003 
6 0.0026 0.0037 
7 0.0078 0.0082 
8 0.0033 4.859E-05 
9 0.0012 0.0013 

10 0.0000041542 0.000091735 
 

 

Figure 6: Graph of Model Accuracy (Accuracy vs Epoch Number) 
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Figure 7: Graph of Model loss (loss vs Epoch Number) 

 

Figure 8: Graph of Model Accuracy (localised) 

 

Figure 9: Graph of Model loss (localized) 
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⎥
⎤

          (8) 

 

Table 4: Metrics for Deep Learning Model 

Classification Report 
Gesture Class Precision Recall F1-score Support 
Palm_Forward (1) 1.00 1.00 1.00 211 
Index_Forward (2)        1.00 1.00 1.00 217 
Fist (3)      0.99 1.00 1.00 195 
Fist_Turned (4) 1.00 0.99 1.00 191 
Thumb_Up (5) 1.00 1.00 1.00 187 
Middle_Finger_Front (6) 1.00 1.00 1.00 194 
OK (7) 1.00 1.00 1.00 186 
Palm_Side (8) 1.00 1.00 1.00 199 
C (9) 1.00 1.00 1.00 220 
Point_Down (10) 1.00 1.00 1.00 200 
micro avg        1.00 1.00 1.00 2000 
macro avg        1.00 1.00 1.00 2000 
weighted avg        1.00 1.00 1.00 2000 

 
 

 

Figure 10: Scatter Plot of Precision, Recall and F1-Score for Deep Learning Model 
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4.3 Discussion of Results 
The result of using the Haar-Cascade shows that hands are detected with small bounding boxes (Figure 4) 
but only when the hand is stable for a few seconds. This implies that the algorithm may not be suitable 
for dynamic frames or gesture recognition. Also, for each distinct position of the hand (fist, palm, palm 
open, two fingers up, etc.), a distinct model had to be trained to ensure detection. The confusion matrix 
shows the TP, TN, FN and FP’s of the results when the algorithm was tested with random data. From the 
confusion matrix, it can be observed that the algorithm obtained the most difficulty in differentiating fists 
from turned fists, ‘OK’ gesture from ‘C’ gesture and ‘Index_forward’ from ‘Middle_Finger_Front’. This can 
be attributed to the similarity of these gestures. Table 1 shows the calculated Precision, Recall and F1 
score for the results of the test, and with an overall average of 0.97, the algorithm performs brilliantly in 
detecting and classifying hands, while Figure 5 gives a graphical representation of the data. 

The result of using a CNN (Deep Learning Model) gave good results because the model was trained around 
a diverse set of infrared images and with a total of 20,000 images, the dataset was split into test and train 
samples. The model is trained on 12,600 samples and validated on 5,400 samples in 10 epochs, running 
all samples in each epoch, and the results (Accuracy and Loss) of training after each epoch can be seen in 
Table 2 and Table 3, respectively. From the tables, the accuracy is observed to increase for each epoch 
until the fourth epoch due to over fitting of the model. The model changes trend at the sixth and seventh 
epoch which is a good sign as it shows that the model is learning. The final three epochs show a steady 
increase in accuracy.  
 

Figure 6 is a visual representation of the model accuracy at each epoch and Figure 7 is a visual 
representation of the model loss at each epoch, while Figure 8 and Figure 9 show the localised 
representations in the absence of outliers. The confusion matrix in equation (8) shows that the model is 
near perfect in classifying the hands under the given labels, having only one FN and FP. This is because 
the noise in the input data is reduced to a minimum since the images are infrared and have undergone Z-
axis filtering. Table 4 gives the values of calculated Precision, Recall and F1-Score based on the Confusion 
Matrix, and with an overall average of 1.00, the deep learning model is perfect for predicting such data, 
while Figure 10 gives a graphical representation of this data. 

From the results of all three techniques, the deep learning model is observed to be the best, scoring 
almost perfect scores in all measured metrics. While the deep learning model was slower than the static 
techniques, it was more accurate than both. The deep learning model has a weighted average Precision 
score of 1.00, weighted average recall score of 1.00 and weighted average F1-score of 1.00 while the Haar-
like feature algorithm has a weighted average Precision score of 0.97, weighted average recall score of 
0.97, and weighted average F1-score of 0.97. 

5 Conclusion  
Given the selected techniques of hand detection (Haar-like features and Deep Learning Model), and 
infrared images as input, the techniques are implemented in fulfilment of the set design objectives. The 
implementations are then evaluated based on a set of standard metrics (accuracy, precision, recall and 
F1-score). The results show that the deep learning model works best for hand detection and classification 
with a weighted average precision of 1.0, weighted average recall of 1.0, weighted average F1-score of 
1.0 and accuracy of 100% mainly due to the absence of noise in the input images (infrared). Findings show 
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that the Haar-Like features had lower accuracy metrics than the Deep Learning model, with a weighted 
average precision of 0.97, weighted average recall of 0.97, weighted average F1-score of 0.97 and 
accuracy of 97%. However, this technique boasts a faster running time than the Deep Learning model. 
Overall, the Deep Learning model is comparatively favoured because the difference in speed is not 
noticeable enough to be a major deciding factor as opposed to the difference in terms of accuracy.  

Future work would consider the development of a suitable hybrid model that has the accuracy of the deep 
learning model and the speed of the Haar-like features model for optimal results at all times. In addition, 
due to limited interest in this field, available datasets with holistic information (infrared and colour depth 
images alongside accurate detection labels and classes) are grossly insufficient for larger scaled modelling. 
Hence, there is a need for accurate and holistic datasets of infrared depth images of hands specifically for 
training and testing models that would achieve better results. 
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