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ABSTRACT 

Segmentation of highly infiltrating glioblastoma multiforme (GBM) in BrainMR Images has been highly 

challenging as the grey levels of tumor and peritumoral vasogenic edema are quite homogenous and 

hence identifying a suitable scheme for isolating GBM from the background has been troublesome.This 

paper proposes a novel segmentation and contouring scheme, using shape sensitive derivative strategy 

for segmentation and energy minimizing contours for enhancing the edges of the GBM, under 

investigation. The efficiency of the algorithm has been tested with the aid of extracted tumor features,  

the Shape Features -circularity, irregularity, Area, Perimeter, Shape Index, Intensity features – Mean, 

Variance, Standard Variance, Median Intensity, Skewness, and Kurtosis, Texture features –Contrast, 

Correlation, Entropy, Energy, Homogeneity, cluster shade, sum of square variance. It is obvious, though 

this algorithm consumes more computational time, it segments the edges effectively and preserve the 

shape facilitating accurate extraction or estimation of the features further and provides stable and 

reproducible results. All the classification Schemes, with combined DA and SVM with Higher Rank 

Features and LDA techniques exhibited appreciable improvement  in terms of sensitivity, specificity, 

positive Predictive value and negative Predictive value, because of the accuracy of shape sensitive 

derivative segmentation algorithm and energy minimizing contour algorithm. 

Keywords: Magnetic Resonance Brain images, class separable shape sensitive segmentation, Energy 

Minimizing Contours, Image Enhancement. 

1 Introduction 

 Segmentation of Brain structures, for estimation of various parameters, is one of the primary steps, 

towards the design of efficient image based Clinical Decision Support Systems (CDSS).  The main aim of 

segmentation in CDSS is to recognise homogeneous regions within an image as distinct features and 

enable them to be classified as different objects. [1] The segmentation process can be based on finding 

the maximum homogeneity in grey levels within the regions identified. One of the common problems 

encountered in image segmentation is choosing a suitable approach for isolating different objects from 

the background. [2] The segmentation does not perform well if the grey levels of different objects are 
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quite similar as in the case of B mode Magnetic Resonance. The presence of speckling artefacts further 

increases the complexity of the system. It is expected that an ideal segmentation scheme will enhance 

the boundary differences between the objects and their background making the parameter estimation 

task easier and accurate. [3] Other issues related to segmentation involve choosing good segmentation 

algorithm, measuring their performance, and understanding their impact on the scene analysis system. 

Classical image segmentation techniques are based on two pixel characteristics: discontinuities and 

similarities. Discontinuity is an approach to partition the image based on abrupt changes in intensity (or) 

gray level. Similarity is an approach based on partitioning an image into regions according to a set of 

pre-defined criteria. [4] Many of the classical techniques like Region growing, a procedure that groups 

pixels (or) sub regions into larger regions have been applied to try to solve this problem with variable 

outcomes. Such techniques tend to be unreliable when segmenting a structure that is surrounded by 

others with similar image intensity (e.g., low-contrast structures). More sophisticated techniques, like 

level set method (LSM) is a numerical technique for tracking interfaces and shapes. The advantage of 

the level set method is that one can perform numerical computations involving curves and surfaces on a 

fixed Cartesian grid without having to parameterize these objects), use more powerful computations for 

tracking the evolution of moving surface. [5] An initial approximation of the solution evolves until it gets 

the limits of the region of interest. In this paper, the shape sensitive derivative approach which 

quantifies the sensitivity of the problem when the domain under consideration is perturbed by changing 

the material property at a specific point has been utilized. The problem of segmentation of Magnetic 

Resonance images has been achieved via optimization of a cost function by asymptotic expansion. 

Optimal shape estimation plays a vital role in feature estimation and pattern recognition techniques. 

The segmented images are contoured using energy minimizing contours. This novel scheme has been 

tested on Brain images for estimating the features for providing enhanced Obstetric care. Experiments 

were carried out with first, second and third trimester Brain images and found to produce stable and 

reproducible results. 

2 Derivative Based Image Segmentation Algorithm 

Feature segmentation of Magnetic Resonance images is a multi-disciplinary challenge including 

expertise in signal and image processing, optimization theory and requires a detailed anatomical 

knowledge of the subject under study. Wide variety of segmentation schemes can be found in the 

literature and these can be broadly categorized as Boundary-based, Region based, Shape Model 

approaches and thresholding schemes. Boundary based algorithms extract the region of interest based 

upon the intensity variation at the edges as they expect the ROI to have some perfect demarcation at 

the edges. These algorithms can further be grouped into optimum boundary based schemes; active 

contours based algorithms and level sets [6]. Another group of segmentation schemes are the region 

based methods which extract the region of interest based on the similarity measure. A seed pixel is 

initialized first and the predefined similarity measure is used to evaluate the degree of similarity 

between the pixels. A number of region based schemes are present in the literatures which are based on 

clustering, graph cut, fuzzy connectedness, MRF, watersheds and optimum partitioning (Mumford-Shah, 

Chan-Vese). Another classification of the segmentation algorithms are the Shape Model approaches [2] 

[7]. These algorithms play a vital role in real time applications are focused much in the recent years by 

researchers. They tend to extract out the features based upon the prior knowledge of the shape of the 
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feature to be extracted. Some of the Shape based approaches cited in the literature are manual tracing 

methods, Live wire techniques, Active Shape and Active Appearance approaches and atlas-based 

methods [8] [9] [10]. 

The introduction of the Topological Derivative allows to quantify the sensitivity of cost function when 

domain under consideration is perturbed, and it indicates the best place where perturbation could be 

introduced. The topological shape sensitive derivative is computed for an appropriate functional 

associated to the image indicating the cost endowed to specific image segmentation [8]. 

The image segmentation algorithm based on this derivative can be proposed as follows. Let ℐ (𝛺) = 

ℐ(φ(Ω)) be the cost function to be minimized and φ (𝛺) the solution of an associated variational problem 

(VP) defined in the domain (𝛺). For a small parameter є ≥ 0, let 𝛺є be the perturbed domain obtained by 

the insertion of heterogeneity on the parameters governing the associated VP. This heterogeneity has 

been defined in a small ball of radius є centred at any point 𝑥 of the domain 𝛺. Furthermore, let φє be 

the solution of the VP defined in the perturbed domain 𝛺є. Then, for small values of parameter є the 

topological sensitivity provides an asymptotic expansion of ℐ (𝛺є) (it is a series of functions which has the 

property of truncating the series after a finite number of terms provided an approximation to a given 

function). 

   ℐ(ΩЄ) =  ℐ(Ω) +  𝑓(Є)𝐷𝑇(𝑥̂) +  𝑜(𝑓(Є))                                                          (1) 

Where, ℐ (𝛺є) is the shape derivative of cost function in relation to the parameter є,  f (є) is the positive 

function going monotonically to zero with є and DT (𝑥) is the Topological derivative. This derivative can 

be seen as a first order correction on    ℐ (𝛺) to estimate ℐ (𝛺є). Since f (є) is positive, the heterogeneity 

must be introduced at any point  𝑥  where DT is negative in order to reduce the value of the cost function 

ℐ.  The topological derivative can be easily obtained and this segmentation method appears robust even 

in the presence of very large noise in the image data. Initially we present the formulation of the 

segmentation problem. In particular, we define the cost functional associated to a specific segmentation 

of the image data. We also define the variational problem (VP) which characterizes function φ. The 

proposed segmentation algorithm and numerical approximation used to find an approximated solution 

of the associated VP [8]. 

2.1 Problem Formulation 

The image data is normally characterized by a two-dimensional matrix of pixels or a three dimensional 

matrix of voxels, which is the brightness level or grey level intensity at that point. Thus, to each image 

element is associated an intensity. The original image data can be described by a real valued functions v 

which is constant at image element level, then, 

                                                    𝜐 ∈ 𝒱 = {𝑤 ∈ 𝐿2(Ω)}                                                                         (2)                                                 

Where, 

𝒱 - Close subspace of domain. 
w - Constant at image element level. 
L - Limit point of the domain. 
𝛺 - An open bounded domain in ℝn, n = 2, 3.  
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In addition let us define the set as classes C, 

       𝐶 = {𝑐𝑖 ∈ ℝ ∶ i = 1,··· Nc}                                                                         (3)    

Where, Nc is the number of predefined classes in which the original image υ will be segmented.                 

ci -Represents the intensity that characterizes the  ith class. The image segmentation problem can be 

stated as following: Given the image data υ ∈ 𝒱  find the segmented image u*∈ 𝑈such that minimizes a 

functional ℐ: U → ℝ endowed to the cost of a specific segmented image and being U defined as, 

                                                        𝑈 =  {u ∈ 𝒱: 𝑢(𝑥) ∈ 𝐶∀𝑥 ∈ 𝛺}                                                                   (4) 

The degree of match between an image and segmentation can be best estimated using Mumford and 

Shah functional measure.  Hence by Mumford and Shah functional, the cost functional J associated to a 

segmented image 𝑢 ∈ 𝑈can be given by, 

      ℐ(Ω) =  
1

2
∫ 𝕂∇φ. ∇φ𝑑Ω

Ω
+  

1

2
∫ (φ −  (υ– 𝑢))2

Ω
𝑑Ω                                   (5) 

Where field φ is solution of the following variational problem: Find φ ∈ H1(Ω)such that, 

          𝑎(φ, η) =  𝑙(η)∀𝜂 ∈ H1(Ω)                                                                       (6) 

With the Bilinear form a (·, ·) - H1(𝛺) × H1(𝛺) → R. 

Linear form l (·) - L2(𝛺) →R. 

 

The bilinear and linear form of the variational problem can be redefined as 

     𝑎(φ, η) =  ∫ 𝕂∇φ. ∇η d Ω
Ω

 + ∫ φη dΩ
Ω

                                                          (7)  

     𝑙(η)  =  β ∫ (υ–  u)η dΩ                                                                        
Ω

(8) 

Where, β is the parameter chosen experimentally and 𝕂 is the diffusivity of second order tensor field 

which is constant at image element level. The existence and uniqueness of the solution φ of the 

variational problem can be estimated through Lax-Milgram theorem. 

Associated to φ is defined the function φє solution of a perturbed variational formulation. The 

perturbation has been characterized by changing the segmented image u with a new one uT which is 

identical to u at every point of the domain 𝛺 except in the small region Bє centered at point 𝑥 ∈𝛺.  

In Bє, uT assumes one of the values 𝑐𝑖 ∈ 𝐶. Formally,  

𝑢𝑇(𝑥) = 𝑢(𝑥)∀𝑥 ∈ 𝛺\𝐵є̅̅̅̅  

  𝑢𝑇(𝑥) =  𝑐𝑖. 𝑐𝑖 ∈ 𝐶 ∀𝑥 ∈ 𝐵є 

Therefore, the perturbed cost functional becomes 

 ℐ(𝛺є)  =  ½ ∫ 𝕂𝛻𝜑є . 𝛻𝜑є𝑑𝛺
𝛺

+  ½ ∫ (𝜑є– ( 𝜐– 𝑢𝑇))2
𝛺

𝑑𝛺                (9) 

Where field φєis solution of the perturbed variational problem: Find φє∈ 𝐻1(𝛺) such that: 

            𝑎(𝜑є, 𝜂)  =  𝑙є(𝜂)    ∀𝜂 ∈ 𝐻1(𝛺)                                                      (10) 
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With l(∙) : L2(𝛺)→ℝ defined as: 

   𝑙є(𝜂)  =  𝛽 ∫ (𝜐– 𝑢𝑇)𝜂𝑑𝛺                                                                
Ω

(11)  

Satisfying the same properties established by expressions (9-11). Moreover, from these properties the 

following estimate holds, 

         ‖𝜑є– 𝜑‖𝐻1(𝛺) ≤ 𝐶|𝐵є|½                                                                   (12) 

Where, C is the Constant independent of є and | Bє | is the Lebesgue measure of Bє. 

In mathematics, the Lebesgue measure, named after Henri Lebesgue, is the standard way of assigning a 

length, area or volume to subsets. It has used throughout real analysis, in particular to define Lebesgue 

integration. Sets which can be assigned a volume are called Lebesgue measurable, the volume or 

measure of the Lebesgue measurable set A is denoted by λ (A). A Lebesgue measure of ∞ is possible, 

but even so, assuming the axiom of choice, not all subsets of Rn are Lebesgue measurable. Lebesgue 

measure is often denoted dx, but this should not be confused with the distinct notion of a volume form. 

2.2 Computation of the Const Function 

The topological derivative allows us to quantify the sensitivity of the problem when the domain under 

consideration is perturbed by introducing a hole, an inclusion or a source term in a small region Bє (Bє is 

a ball of radius є). The topological derivative is given by the following limit (є→0), [11] 

      𝐷𝑇(𝑥̂ ) = 𝑙𝑖𝑚
є→0

ℐ(𝛺є)−ℐ(𝛺)

𝑓(є)
                                                               (13) 

Using the Topological-Shape Sensitivity Method, the topological derivative can be also written as: 

        𝐷𝑇(𝑥 )  =  𝑙𝑖𝑚
є→0

1

𝑓′(є)

𝑑

𝑑є
ℐ(𝛺є)                                                        (14) 

Where the derivative of the cost function with respect to the parameter є may be seen as its classical 

shape derivative. Applying Renold Transport Theorem and simplifying using tensorial equations, the 

localized cost function for segmentation can be obtained as 

        𝐷𝑇(𝑥) =  ½(𝑐𝑖– 𝑢) [(φ(𝑥̂) − (𝑣– 𝑢)) + (φ(𝑥) − (𝑣 − 𝑐𝑖))2(1 – 𝛽)φ(𝑥̂)] ∀𝑥 ∈           (15) 

The topological derivative at any point x̂ ∈𝛺 only depends on the value at that point of the function φ 

solution of the variational problem given by (6) defined in the non-perturbed domain 𝛺, on the image 

data v, on the actual segmented image u and on the perturbation given by one of the intensity values 

characterizing the Nc classes 𝑐𝑖 ∈ 𝐶in which the image data v will be segmented. Moreover, from (1) and 

since f (є) is positive, by introducing a perturbation at any point x̂ where DT (x̂) is negative we will obtain 

a cutback on the cost function value. Then, DT can be taken as an indicator function defining the best 

places where the perturbations could be introduced. Since the solution φ of the variational problem 

given by (23) cannot, in general, be known explicitly an approximate solution is mandatory. To this end 

the Finite Element Method will be adopted for the numerical experiments to be shown later. The finite 

element method (FEM) is a numerical technique for finding approximate solutions of partial differential 

equations (PDE) as well as of integral equations [12]. 
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The solution approach is based either on eliminating the differential equation completely (steady state 

problems), or rendering the PDE into an approximating system of ordinary differential equations, which 

are then numerically integrated using standard techniques such as Euler's method, Runge-Kutta etc. 

Using the simplest finite element given by linear quadrilateral (for two-dimensional image data) or by 

linear parallelepiped (for three-dimensional image data) with nodal points coincident with the centres of 

the image elements an approximate solution φh of φ will be easily obtained for any image data v ∈  𝒱  

and segmented image u∈U. Using this solution, a finite element approximation of the topological 

derivative takes the form, 

    𝐷𝑇ℎ(𝑥̂) =  ½(𝑐𝑖– 𝑢ℎ)[(𝜑ℎ(𝑥̂) − (𝑣ℎ − 𝑢ℎ)) +  (𝜑ℎ(𝑥̂) − (𝑣ℎ − 𝑐𝑖)) +  2(1 – 𝛽)𝜑ℎ(𝑥̂)] ∀𝑥̂ ∈ 𝛺      (16) 

Where vh and uh are the finite element interpolation at point x̂ of the functions v and u respectively. 

Furthermore, considering that the topological derivative depends on ci let us denote by 𝑐𝑖̂ the class ci 

which minimizes DT
h(x̂) that we will also denote by𝐷𝑇ℎ(𝑥)̂ . As mentioned before, according to the 

topological asymptotic expansion in (1), for an image data v ∈  𝒱  we must find the segmented image u* 

∈U which minimizes the cost functional ℐ by successively choosing the class that produces the most 

negative values of the topological derivative [12]. 

2.3 Contouring Scheme 

The contour approaches [13] are widely used in practical exploitation of data from images because they 

effectively use specific prior information about objects and this makes them inherently efficient 

algorithms. Furthermore, active contours apply processing algorithms selectively to regions of the 

image, rather than processing the entire image [8]. In general, the energy function of contour model 

(snake) [14] can be given by 

           𝐸 =  ∫ [
1

2
[𝛼|𝑥(𝑠)|2 +  𝛽|𝑥(𝑠)|2] +  𝐸𝑒𝑥𝑡(𝑥(𝑠))𝑑𝑠]

1

0

                                          (17) 

Where,  is the tension,  is the rigidity factor, Eext   is the external energy and x(s) are the snake points. 

The energy of the image is positive in homogeneous regions and non-zero at the sharp edges. The edge 

function can be modeled as  

             𝑔(|𝑣̅𝑢|) =  
1

1 + |𝐺𝜎 ∗ 𝑈|𝑝
                                                               (18) 

Where g is a positive decreasing function, U is the image to be segmented, Gσ is the 2-D Gaussian kernal 

and ‘P’ is an integer (normally chosen to be 2). These equations can be solved to obtain the new snake 

coordinate points X and Y. 

          𝐱〈𝑖+1〉 =  (𝐀 +  
1

∆
I)

−1
(

1

∆
𝐱〈𝑖〉 +  𝑓𝑥(𝐱〈𝑖〉, 𝐲〈𝑖〉)                                           (19) 

                𝐲𝐱〈𝑖+1〉 =  (𝐀 +  
1

∆
I)

−1
(

1

∆
𝐲𝐱〈𝑖〉 +  𝑓𝑦(𝐱〈𝑖〉, 𝐲〈𝑖〉)                                         (20) 

where A is the first order differential of the edge magnitude along X-axis and Y-axis respectively. These 

equations can be solved to arrive at the new vector which controls the moment of the snake. 
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3 Results and Discussion 

The performance of shape sensitive derivative approach and region growing are compared here. The 

characterization of the lesion into benign and malignant is done based on the characteristics of the 

contour and features of the segmented lesion.   

 

 
Figure 1: Original and Segmented glioma images 

Ten MR image data sets, comprising four true positive glioblastoma multiforme and six true negative, 

which are benign lesions, of T1 contrast T2weighted and FLAIR sequences has been analysed for 

Statistical parameters, sensitivity, specificity, positive predictive value and negative predictive value, to 

evaluate the efficacy of the proposed segmentation method. The geometric features like irregularity of 

the boundary carries information regarding tumor growth rate prognosis. Such shape based features 

acting as input to the classifier determine the accuracy of the classification. The accuracy of these shape 

based features depends on the efficiency of segmentation to preserve the characteristics boundary of 

ROI. The statistical evaluation indices used to evaluate the features are estimated as sensitivity = 

number of TP/number of cancer cases; specificity= number of TN/number of non-cancer cases; positive 

predictive value (PPV) = number of cancer cases/ (number of TP+FP cases); and negative predictive value 

(NPV) = number of non-cancer cases/ (number of FN+TN).  It is expected that the classification efficiency 

is the mere reflection of the statistical significance of the feature used for classification.  It is perspective 

that the hybrid approach is exhibiting the highest performance index.  

Table 1: Statistical Performance Indices 
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The numerical values of the sensitivity, specificity, positive and negative predictive values of LDA and 

DA+SVM classifiers for both of the segmentation schemes are shown in table 1. The original axial plane 

MR images lesions and the segmented lesions before and after morphological operations are shown in 

figure 1. From the graphical illustration in figure 2, it is obvious that the classification DA + SVM 

overrides LDA 

 
Figure 2: Classification efficiency  

4 Conclusion 

The lesions in the MR images were characterized into benign and malignant ones using shape based 

features extracted from the segmented lesions. The performance of region growing and sensitive 

derivative approaches were compared in preserving the geometrical features of the contour. The 

feature extracted from the segmented lesions were used as input to LDA and DA+SVM classifiers. Shape 

sensitive derivative approach will preserves the characteristics of the lesion boundary than region 

growing. The sensitivity, specificity, positive and negative predictive values of shape sensitive derivative 

segmentation method is more than the region growing. The DA+SVM has better classification ability 

than LDA.  
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