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ABSTRACT 

Several applications of Magnetic Resonance Imaging (MRI), in particular dynamic MRI and functional 

MRI (fMRI), require rapid acquisition to measure dynamic processes changes. Experimental data are 

collected in the k-space by following different trajectories to cover the whole space. Complete data 

acquisition necessitates waiting for a fixed time interval: a reduced number of collected trajectories 

allows acquisition time reduction but undersampling occurs, often producing artefacts. In what follows, 

a review of methods for sparse sampling acquisition and reconstruction is presented.  

In particular, a differentiation is done between sparse acquisition methods which do not use any 

restoration algorithm (artefacts are tolerated) and those methods for which a restoration algorithm is 

essential. The first class contains also methods where spatial information is shared between temporal 

images to reduce the collected data. In the second class of methods, a differentiation is done between 

those reconstruction/restoration methods that reduce artefacts independently of the sample shape, and 

those restoration methods that adapt their action by modifying the acquisition trajectories during the 

acquisition, i.e. the chosen trajectories (both in number and directions) are dependent on the sample 

shape. A third emerging class of methods, those including hybrid forms of the second class, are also 

reported. 

1 Introduction 

In conventional MRI, the number of collected data is determined by spatial resolution requirements and 

by the Nyquist criterion for the alias-free field of view (FOV) to obtain an image by fully-sampled k-space 

set. Recently, MRI has developed considerably into the direction of dynamic imaging opening up several 

new applications such as monitoring of contrast agent dynamics [[1]-[4]], mapping of human brain 

neural activity based on blood oxygenation level-dependent (BOLD) imaging contrast [[4]], MR-guidance 

of biopsies [[6]-[8]], monitoring of ablations [[9]-[11]], guidance of intravascular procedures [[12]-15], 

and real-time visualization of cardiac motion [16,17]. Although these developments are generally 

promising their application is limited by the compromise between temporal and spatial resolution. To 

improve temporal resolution many approaches use “undersampling”. 
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The term undersampling indicates that the Nyquist criterion is not satisfied, at least in some regions of 

k-space, i.e. images are reconstructed by using a number of k-space samples lower than that 

theoretically required to obtain a fully-sampled image.  

Undersampling is used for several reasons, such as reducing acquisition time [17-21] and motion 

artifacts [22], achieving higher resolution [23-25], and balancing the trade-off between spatial and 

temporal resolution [26,27]. Normally undersampling implies image artifacts, often in the form of 

aliasing or streak structures. Parallel imaging methods such as sensitivity encoding (SENSE) [28], 

simultaneous acquisition with spatial harmonics (SMASH) [29] and generalized auto calibrating partially 

parallel acquisition (GRAPPA) [30] also can be thought of as undersampling methods in which artifacts 

are removed by using information obtained from multiple RF coils and receivers. But, at the end of the 

process, a complete image is reconstructed through the partial information collected by different 

receivers. 

Time required to fully sample 3D Cartesian k-space is relatively long. Alternative non-Cartesian 

trajectories can provide faster k-space coverage and more efficient gradients usage. When very fast 

volume coverage is required, undersampling strategies can be combined with non-Cartesian trajectories 

for further reduction of the scan time.  

Undersampling can influence the resulting image in different ways depending on the            k-space 

covering paths: Cartesian, radial, spiral, 2D, 3D, etc. (see Figures 1-3).  

 

Figure 1. Sparse sampling in 2D (A-C) and 3D (D-F) settings: Cartesian (A, D), Radial (B, E) and Spiral (C, F) 
samplings. Measured trajectories are represented by continuous lines, missing trajectories are represented by 

dashed/dotted lines. 

This implies that it can occur differently in different k-space regions. For example, when Cartesian 

sampling is used, undersampling occurs because some rows in the k-space rectangular grid are missing 

along the phase encoding direction (see Figures 1A and 1D); in case of radial acquisition, i.e. acquisition 

from projections, undersampling occurs because some radial directions in the   k-space are missing (see 

Figures 1B and 1E).  As will be clarified later, each of these cases requires a specific restoration 

algorithm, but all the methods afford the same problem: to reconstruct an image, suppose a 2D image
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, starting from some collected sparse samples of its Fourier coefficients, 
ˆ |f   while violating 

the Nyquist rate. In this paper, a review of the most effective sparse sampling and restoration strategies 

for solving the previous problem are reported. In particular, a differentiation is done between sparse 

acquisition methods which do not use any restoration algorithm (artifacts are tolerated) and the sparse 

acquisition methods for which a restoration algorithm is essential (this differentiation is defined by a 

temporal transition). The first class of methods contains also those methods that use temporal 

correlation between dynamic images (when temporal resolution is required) as a sort of restoration 

algorithm: some k-space coefficients are collected just once and shared by the whole set of dynamic 

images. The decision to include these methods among those of the first class is that no mathematical 

strategy is used to estimate the missing coefficients: the missing k-space coefficients are supplied from a 

reference image to the whole set of dynamic images. In the last class of methods, a differentiation is 

done between those that adapt their strategy to a given acquisition method, trying to reduce artifacts 

independently of the sample shape, and those that start their action by modifying the acquisition 

trajectories during acquisition, i.e. the acquisition trajectories (both in number and in directions) depend 

on the sample shape. Finally, hybrid methods, that are emerging by those allowing to the second class, 

are presented. 

2 Sparse Methods without Restoration 

The method proposed by Liao et al. [22] uses a variable-density stack of spiral trajectories which varies 

the sampling density both along the kx-ky plane and the kz direction. The method is shown to preserve 

reasonable image quality while reducing the acquisition time by approximately half compared to a fully-

sampled stack of spirals. Vastly undersampled 3D projections are used to increase temporal resolution 

and provide better dynamic information for 3D contrast-enhanced angiography (CE)-MRA. Aliasing 

caused by undersampling in this method often can be tolerated because the vessel-tissue contrast is 

high. In [32] variable density k-space sampling trajectories are used to restrict the violation of the 

Nyquist criterion to the outer part of the k-space. Spiniak et al. [20] use an efficient undersampling 

method for a progressive missile guidance trajectory. The purpose of this work is to examine k-space 

undersampling in conjunction with the shells trajectory. The shells method is a non-Cartesian 3D k-space 

trajectory [33]: fully sampled concentric spherical shells are used for 3D selective RF pulse design [34]. 

The same sampling strategy is used for a single k-space shell acquisition that acts as a spherical 

navigator echo for motion tracking [35]. A full 3D k-space shells acquisition is implemented in [36] and it 

is demonstrated to have motion correction properties in [37].  

Because the shells trajectory does not acquire data on the “corners” of k-space, it offers a volume 

coverage reduction compared to a fully-sampled 3D Cartesian acquisition. This is substantially larger 

than the k-space volume coverage reduction obtained by skipping views in the phase encoded corners 

of a Cartesian 3D acquisition. The shells trajectory samples k-space on the surfaces of a series of 

concentric spheres. In reference [38] interleaved helical spirals sweep on the surface of each shell from 

one pole to another (see Figure 2).  
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Figure 2.  Shells k-space trajectories. Spiral interleaves, coded by continuous and dotted lines respectively, sweep 
from one pole to the other of a spherical surface. In an undersampling scheme, some interleaves are skipped, for 

example that represented by a dotted line. 

The shells acquisition method is a true center-out trajectory in 3D k-space, in that it starts from the 

origin of the k-space and extends progressively to the periphery. An important property of the shells 

trajectory is that a large number of interleaves exclusively collect data from the periphery without 

crossing the center of k-space. Because the number of interleaves varies on a per-shell basis, there is 

flexibility in controlling the sampling density as a function of the k-space radius. These properties 

suggest that the shells trajectory is well suited for undersampling design. The way used to implement 

undersampling for the shells trajectory method is to remove selected interleaves within a shell. This 

method is proven to be an optimal balance between acquisition time reduction, undersampling artifacts 

reduction and edges preservation. 

In PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) [39,40], 

data acquisitions consist in a multiple-shot fast spin-echo approach in which several parallel k-space 

lines are collected in each time of repetition (TR), forming a blade that is then rotated around its center 

and acquisition is repeated to cover the k-space (see Figure 3).  

 

Figure 3. Different PROPELLER k-space sampling patterns. In particular: (A) shows a 6 blades scheme, each 
blade composed by 16 lines; (B) shows a 12 blades scheme, each blade composed by 8 lines. Undersampling is 

realized by skipping dotted blades. 
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The acquisition is radial. PROPELLER imaging is an MRI data acquisition and reconstruction that is 

attracting due to its greatly reduced sensitivity to various source of image artifacts (first of all motion 

artifacts). In ref. [41] PROPELLER is used in undersampled form and the resulting artifacts are studied.    

Other methods utilize information redundancy from temporal correlations of dynamic images as a sort 

of restoration. Keyhole methods [42,43], selective acquisitions [44, 45] and reduced-encoding MR 

imaging by generalized series reconstruction (RIGR) [46] assume temporal variation is primarily from the 

central portion of k-space. In the keyhole fMRI technique [47,48], a full k-space reference image is 

acquired for each cycle and for each activation state. To reduce acquisition time, the strategy for the 

other images in each cycle consists of sampling only a central fraction of the k-space (low k-space data). 

The missing peripheral lines in the k-space (high k-space data) are supplied from the reference images. 

In this way, an approximately 60% in acquisition time per image can be saved for T2
*-weighted gradient-

echo schemes. The resultant keyhole fMRI images retain nearly all the functional information of the 

original high spatial resolution images while substantially reducing the acquisition time [48]. However, 

two potential problems, associated with the keyhole technique, may affect the reconstructed images: 

noise correlation between different images and discontinuities. Because of data sharing, high k-space 

data are the same for all the keyhole images. Therefore, noise between images is correlated. When 

statistical analysis is performed across a series of images to assess significant activations, the shared k-

space data will decrease the effective sampling size and result in a higher noise level. 

Regarding discontinuities, the basic principle of the keyhole technique is to combine the dynamic low k-

space data with the reference high k-space data. Due to the “image to image” signal fluctuation, 

amplitude and phase discontinuities may exist at the junction of the high k-space and the low k-space 

data. These discontinuities may result in artifacts and spatial resolution reduction. A detailed description 

of the effects of the key-hole method can be found in [49]. 

Clinical practice shows that a high spatial resolution is essential for most dynamic imaging applications. 

To this purpose, some technique increases temporal and/or spatial resolution by directly exciting the 

region of interest, such as the zoomed imaging technique [50]. Beyond finding the optimal compromise 

between temporal resolution, spatial resolution and SNR for a specific application, it is desirable to find 

ways to introduce some additional information into the imaging process and so to truly enlarge the 

amount of information available without spending additional measuring time. In this sense, reduced 

field-of-view (rFOV) reconstruction utilizes the fact that only a limited region of an image undergoes 

substantial variation over time [51,52]. The idea of rFOV is to exploit the fact that dynamic changes in an 

image series may be confined to a certain area (rFOV) within the full FOV. This information can be used 

to increase temporal resolution in fluoroscopic imaging without sacrificing spatial resolution. Having 

been demonstrated first for Cartesian sequences [[51]] it is applicable to any segmented k-space 

acquisition scheme as radial [53-55] or spiral imaging [56]. The principal limitation of such a technique is 

that erroneous results will be produced if some of the additional information is wrong or the required 

conditions are not filled, e.g., if dynamic changes of the object outside the rFOV do occur. Because in 

clinical practice it will generally be difficult to strictly satisfy such conditions, it is important to evaluate 

the respective robustness of the different implementations of the rFOV technique. The projection-

reconstruction rFOV approach (PR rFOV) has been demonstrated to be more robust than the other rFOV 
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approaches. The greater robustness is a consequence of the special aliasing properties of projection-

reconstruction imaging and is considered to be crucial for clinical applications. 

Both Keyhole and rFOV methods are based on the fact that the information from relatively stationary 

regions in object space is considered to be redundant. 

The method UNFOLD (UNaliasing by Fourier-encoding the Overlaps using the temporaL Dimension) 

[57,58] supposes that data have to be collected both in spatial and in temporal directions: the same 

image has to be reconstructed more times to reproduce temporal variations occurring inside it. UNFOLD 

uses the t axis of k–t space to resolve information normally encoded along the k axes. In some dynamic 

applications in which the time axis is not efficiently exploited by conventional encoding, such a 

reorganization of k–t space can lead to a significant decrease in acquisition time for the temporal 

frames. In this case, spatial aliased versions of the same image (each image having a determined phase 

shift offset) are collected: spatial aliasing is eliminated by separating overlapped information through 

the temporal Fourier transform. This can lead to a temporal resolution improvements by nearly a factor 

of two in cardiac-triggered imaging, and by as much as a factor of eight in fMRI. Image reconstruction 

process requires aliasing elimination (through temporal Fourier transform) before the spatial Fast 

Fourier Transform. Depending on the situation, the acquisition time reduction of a temporal frame can 

be translated into a reduction of the total imaging time, into an improvement of the spatial or temporal 

resolution, or into an increase in the spatial coverage. The reduction can also be used to allow a faster 

pulse sequence to be replaced by a slower one while preserving time resolution. This method cannot be 

used to improve spatial resolution when temporal data are not necessary or not available.  

Temporal acceleration can be achieved with the k-t broad-use linear acquisition speed-up technique (k–t 

BLAST), which uses training data as prior information along with the interleaved sampling function [59]. 

Conceptually, UNFOLD and k-t BLAST reduce the information redundancy by economically using k–t 

space (the combination of k-space with a time axis [60]). Originally, k-t BLAST has been used with 

Cartesian k-space trajectories [59,60], due to the simplicity of describing and correcting for the aliasing 

produced by rectilinear sampling patterns. After that, it has been also presented as a non-Cartesian 

sampling/reconstruction method [61]. However, spiral readouts are appropriate for certain applications 

[62] because they have good flow properties and are time efficient, which enables further increases in 

spatial and/or temporal resolution when combined with under sampling techniques. Shin et al. [63] 

solve elegantly the problem for spiral trajectories. An improvement to the UNFOLD method is proposed 

in [64] where UNFOLD is combined with the under sampled 3D stack of spirals acquisition [65] to 

increase spatial coverage for high resolution fMRI. 

3 Sparse Methods with Restoration 

3.1 Sample Independent Acquisition/Restoration Methods 

A first group includes those methods where the redundancy sources are inherent properties of the 

image but the image properties (for example sparseness or symmetries) are not used while performing 

data acquisition.  

Placidi et al. [66] describe an algorithm which is effective in reducing truncation artifacts due to missing 

k-space samples in MRI. The algorithm works first by filling the incomplete matrix of coefficients with 
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zeroes and then adjusting, through an iterative process, the missing coefficients by performing a 

reduction of the undersampling artifacts before the image reconstruction through a Fourier Transform 

method [67]. Then, this set of coefficients is used as a basis for a superresolution algorithm that 

estimates the missing coefficients by modeling data as a linear combination of increasing and decreasing 

exponential functions, through the Prony’s method. The Prony’s method consists on the interpolation of 

a given data set with a sum of exponential functions: the MRI signals can be well represented as a sum 

of exponential functions and the missing data can be extrapolated by this representation. The algorithm 

performs very well, both for Cartesian missing rows scheme (phase-frequency acquisitions) and for 

radial-missing angle (acquisition from projections) undersampling, but it requires some computational 

overhead. A simpler variation of this method is reported in [68] where a simple constraint for iterative 

reconstruction, capable to deal with any sparse acquisition method, is used. The methodology herein 

suggested is based on the attempt to fill in the missing complex k-space values iteratively, making the 

assumption that the image has to be zero outside a compact support. This approach transforms the 

original problem into an interpolation problem in the complex domain. The novelty is that it deals with 

iterative interpolation in the k-space based on the elimination of the artifacts from an extended support 

of the reconstructed image.  The results, simulating different sparse acquisition strategies (Cartesian, 

radial, and spiral sampling), are not significantly different from those obtained from other, more 

complicated, iterative methods [66]. Residual artifacts are reduced by using the method reported in 

[69]. 

During the last few years, the emerging theory of compressive (or compressed) sensing (CS) [70-74] has 

offered great insight into both when and how a signal may be recovered to high accuracy (or, for some 

instances, exactly) even when sampled significantly below the Nyquist rate. 

CS requires the measurement of a relatively small number of “random” linear combinations of the signal 

values (much smaller than the number of signal samples nominally defining it). However, because the 

underlying signal is compressible, the nominal number of signal samples is a gross overestimate of the 

“effective” number of “degrees of freedom” of the signal. As a result, the signal can be reconstructed 

with good accuracy from relatively few measurements by a convex constrained optimization procedure. 

In MRI the sampled linear combinations are simply individual Fourier coefficients (k-space samples) and 

CS can be used. In that setting, CS is claimed to be able to make accurate reconstructions from a small 

subset of k-space, rather than an entire k-space grid. The original paper by Candès et al. [70] is 

dedicated at random undersampling of Fourier coefficients that is the practical situation of MRI. In order 

to reconstruct a complete image from the undersampled problem, the simpler strategy assumes that 

the Fourier coefficients at all of the unobserved frequencies are zero (thus reconstructing the image of 

“minimal energy” under the observation constraints). This method does not perform very well because 

the reconstructed image, has severe non local artifacts caused by angular undersampling [70]. A good 

reconstruction algorithm, it seems, would have to guess the values of the missing Fourier coefficients, 

i.e. to interpolate  1 2
ˆ ,f   . However, the prediction of Fourier coefficients from their neighbours are 

very delicate, due to the global and highly oscillatory nature of the Fourier transform. The prediction can 

be more efficiently done through convex optimization. To recover f from partial Fourier samples, a 

solution f* is found for the optimization problem 
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min
TV

g  subject to ĝ (ω)= f̂ (ω) for all ω    (1) 

Where 
TV

g represents the total-variation norm of a 2D object g that, for discrete data  1 2,g t t , 0

 1t , 2t N-1, has the following form 

                       
1 2

2 2

1 1 2 2 1 2

,

, ,
TV

t t

g D g t t D g t t                       (2) 

and 

   1 1 2 1 2, 1,D g g t t g t t   ,    2 1 2 1 2, , 1D g g t t g t t    

As it is, this technique allows just to reduce artifacts with respect to zero filling of the missing Fourier 

coefficients (with the exception of the first example reported in [70]). To allow an accurate 

reconstruction, though in presence of a certain undersampling degree, it is necessary to fill three 

requirements:  

Transform sparsity: the desired image should have a sparse representation in a known transform 

domain (i.e., it must be compressible by a transform coding). 

Incoherence of undersampling artifacts: the artifacts in linear reconstruction caused by k-space 

undersampling should be incoherent (noise like) in the sparsifying transform domain. 

Nonlinear reconstruction: the image should be reconstructed with a nonlinear method that enforces 

both sparsity of the image representation and consistency of the reconstruction with the acquired 

samples.  

The first condition ensures the unknown image can be represented with a lower number of coefficients 

than that required by Nyquist criterion. MR images meet the first condition. The second condition 

ensures the position of the sampled coefficients is casual, i.e. they are collected without a specific, 

deterministic, pattern: this allow the undersampling artifacts have to be distributed as uncorrelated 

noise. Incoherence is important: MR acquisition can be designed to achieve incoherent undersampling. 

The third condition is ensured by the presented non-linear reconstruction method. More details on this 

very promising method applied to MRI can be found elsewhere [73,74]. Though very promising, CS can 

be efficiently applied if the undersampling is not too different from the Nyquist’s rate. In fact, most CS 

applications, especially within medical imaging, have centred on the l1-minimization problem due to the 

fact that the corresponding l0-minimization problem is untractable. An interesting recent improvement 

of CS regards the proposal of an innovative Homotopic l0-Minimization [75]. In this paper [75], Trzarsko 

et al. describe a method for reconstructing MR images at sampling rates even further below that which 

are achievable using l1-based CS methods by directly attacking the ideal l0-minimization problem. The l0-

minimization problem is described along with both its applied and theoretical implications. Moreover, a 

practical scheme is presented for addressing the l0 quasi-norm based on homotopic approximation using 

a wide class of deformable sparse priors, and an efficient semi-implicit numerical scheme for 

computation is described. The authors demonstrate both the problem tractability and the goodness of 
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their results, when compared to the classical l1-based CS methods, in spite of a reduction of the used 

samples for reconstruction.  

Knopp et al. [76] present interesting results about the iterative reconstruction from non-uniform k-space 

sampled data though data sparsity is not reflecting CS requirements. In particular, they discuss about 

the effectiveness of using non-equispaced FFT to reconstruct images directly from radial or spiral 

directions, through a generalization of the gridding process [77]. Very accurate results are obtained by 

using an iterative method to estimate density compensation weights, taking the result of gridding as a 

starting point. The best gridding results are obtained using the more expensive Voronoi weights. 

However, substantial improvement of the reconstruction quality is achieved during a small number of 

iterations for all used trajectories and weights. It should be very interesting to use the method they 

proposed for image reconstruction from severely undersampled data. 

Also Block et al [78] afford the problem of severely undersampled radial data in an iterative way with 

the usage of a total variation (TV) constraint for the final image to reduce the strike artifacts produced 

by radial undersampling: also in this case the sparse samples do not fill the CS requirements.  The 

reconstruction is obtained as a non-linear optimization problem, solved through the conjugate gradient 

method. The conjugate gradient method is an iterative two-step scheme, which is repeated until a 

satisfying solution has been found. First, a search direction is estimated and, second, a line search into 

that direction is performed until the minimum of the functional in this direction has been identified. The 

search direction is obtained by calculating the gradient at the actual estimate and by superposing it with 

the prior search direction scaled by a factor that guarantees the conjugacy of successive search 

directions. At every step of the algorithm, the actual image estimate is mapped to the frequency 

domain. It is then compared how well the estimate fits to the measured data by calculating the 

difference. If the estimate is good enough, then the residuum vector contains only small entries, 

otherwise it contains large entries. In this case, the algorithm needs to know how to modify the image 

estimate in order to improve the match of the samples in the frequency domain. This information is 

obtained by mapping the residuum back to the image space. The reconstruction of an undersampled 

radial image through optimization still leads to streaking artifacts: the procedure does not measure the 

accuracy of the estimate at any other position in k-space than at the positions of the measured k-space 

coefficients. Being an underdetermined problem, more than one solution exist. To overcome this 

limitation, a penalty function is introduced into the optimization problem, based on the total variation 

constraint. The basic assumption of this idea is that the object consists of areas with constant (or only 

mildly varying) intensity, which applies quite well to medical tomographic images. If the object is 

piecewise constant, then the best representation of all image estimates that match at the spoke 

positions should be given by the one with the lowest derivatives at all pixel positions, that is the one 

minimizing the total variation, represented as the summation of the modules of the image second order 

derivatives (as discussed by the authors, the choice for the best derivative order still remain a debated 

argumentation). The obtained results are quite good regarding artifacts reduction, but some blurring 

occurs.  

3.2 Sample Adaptive Acquisition/Restoration Methods 

Different approaches are based on driving the acquisition process in order to adapt the collected signals 

to the sample shape. As first example of these methods, Contreras et al. [79] propose a sparse sampling 
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method for MRI non-destructive analysis of woods logs, taking advantage of the log cylindrical symmetry 

by acquiring transverse 1-D projections with a helical and undersampled pattern. Linear interpolation is 

used to estimate the skipped data and slice images are reconstructed by filtered back-projection. The 

sequence is improved using selective multi-pass scanning, without major variations of the scan time. The 

technique is particularly useful for tree logs, since they present several characteristics that can be used 

to reduce the long scan time, but similar techniques can be also studied for MRI in humans.  

Placidi et al. [80-82] present an adaptive acquisition technique for MRI from projections, first defined in 

the image space  [80] and then in the k-space  [81,82], to reduce the total acquisition time by collecting 

just the most informative projections, without any a-priori information about the sample, but using 

information about the sample collected while acquisition proceeds. This is possible through the 

calculation of a function, called the entropy of a projection, which is able to measure the information 

content of the projections during the acquisition process, useful to discover sample internal symmetries, 

smooth or regular shape. In the k-space method [82] the entropy function is defined on the power 

spectrum of the projections. The process starts by measuring the projections at four regular 

orientations: 0°, 45°, 90°, and 135°. Then the evaluation of the information content of these four initial 

projections is performed, followed by the selection of new angles where the information content is 

maximum. The entropy of the power spectrum of each of these starting projections is evaluated and the 

next projection is measured between the two where the entropy function has a maximum. The 

procedure is repeated until the difference in entropy remained above a given threshold. The method 

makes it possible to reduce the total acquisition time, with little degradation of the reconstructed 

image, adapting itself to the arbitrary shape of the sample (being able to catch eventual internal 

symmetries, low dynamic range and regular shape). The choice of, approximately, the most informative 

projections is made during the acquisition process, taking into account the information content of the 

previous projections. The method allows the acquisition of a near optimal set of projections, close to the 

most informative set of projections composed by the minimum number of projections, but not the 

optimal one. In fact, though very effective in reducing the acquisition time and undersampling artifacts, 

this method suffers from the following limitations: some important projections can be excluded from 

the acquired set, especially in the proximity of entropy function minima or maxima; some redundant 

projections can be collected, especially in the proximity of entropy function sharp variations. An 

effective application of the previous adaptive acquisition method has been also presented as a medical 

image compression strategy [83].  

The method described in [84] considers the problem of measuring exactly the most informative set of 

projections by collecting a-priori information about the sample through the preliminary measurement of 

two circular paths at different distances from the k-space centre. The idea behind the algorithm is that 

the power spectrum of a standard MR image is mainly distributed along particular radial k-space 

directions. These directions often terminate before the k-space border has been reached. Some of them 

do not start from the k-space centre and extend to the k-space border. In order to take into account 

these opposite situations, a set of preliminary circular trajectories are collected. The circular trajectories 

allows the interception of the most important projections. By analyzing the collected data, it is possible 

to establish the desired set of projections before the image acquisition starts. For this reason, the 

acquisition process consists of the preliminarily collection of two concentric circular trajectories having 
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the centre in the image k-space centre.  The directions of the most informative projections can then be 

set by using the information acquired from the power spectra of these paths of coefficients. In 

particular, from the logarithm (used to reduce differences in scale) of the power spectra of the collected 

trajectories, the mean values are calculated and maxima above the mean value, in both curves, are used 

to indicate the presence of the most informative radial directions. The set of these angular directions is 

considered to be the optimal, most informative, set of projections to be collected in a standard way. 

Thought they require some preliminary time to collect the necessary information about the optimal 

angle set before the acquisition of radial projections started and, in some case, specialized hardware, 

the adaptive algorithms allow both the improvement in image quality and the reduction of the number 

of k-space coefficients with respect to other, non-adaptive, methods. Near optimal acquisition 

parameters are priory studied and set by using a numerical MRI simulation algorithm [85].  The adaptive 

methods proposed in [80-84] use a restoration/reconstruction method based on FFT and nearest 

neighbor interpolation [86]. Nearest neighbor interpolation is justified by the fact that close measured 

projections are very similar because of the used adaptive acquisition methods.  

In principle, both sampling/reconstruction strategies, CS and the adaptive, appear reasonably, but it 

seems that they have to be considered separately. The question arising in the last period is to verify the 

possibility of using the characteristics of CS in an adaptive way. The advantage would be twofold. 

Classical CS, being a completely random sampling strategy that not uses information about the sample 

shape, needs that a minimum, fixed, number of samples is collected in order to avoid undersampling 

artifacts: the use of information about the sample shape furnished by an adaptive acquisition technique 

could reduce the number of necessary samples and to reach a near optimal, image dependent, value. 

On the other side, by verifying that for the adaptively collected samples the previously reported CS 

requirements (constraints) are satisfied, a CS non-linear reconstruction procedure could be used on 

these samples in order to obtain otimal image reconstruction. The possibility of using an hybrid, 

adaptive-CS, sampling strategy is, for the first time, proposed in [87], where it has been verified that the 

adaptively, radially collected, samples verify the CS constraints and a L1-norm based non-linear 

reconstruction can be used to obtain very accurate image reconstruction. After that, in [88,89], an 

alternative adaptive-CS method is presented  that combines random sampling of Cartesian trajectories 

with an adaptive 2D acquisition of radial projections. It is based on the evaluation of the information 

content of a small percentage of the k-space data collected randomly to identify radial blades (similar to 

those used in PROPELLER [39,40]) of k-space coefficients having maxi-mum information content. The 

information content of each direction is evaluated by calculating an entropy function defined on the 

power spectrum of the projections. Besides that, the images are obtained by using a non linear 

reconstruction strategy, based on the homotopic L0-norm [75], on the sparse data. The method 

overcomes classical weighted CS in image quality, though a lower number of collected samples is used. 

The use of homotopic L0-norm minimization makes possible to obtain better reconstructions than by 

simple L1-norm. The same method is also applied on cardiac MRI data in [90] and very impressive results 

are obtained. Though the adaptive-CS method is capable to reduce the number of necessary samples 

below that required by classical CS, this number is still far to be optimal and can be further reduced. 

Work is currently in progress in order to verify how to reduce this number and how to apply the 

adaptive CS also to other sampling strategies (for example, pure cartesian, or spiral).     
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4 Conclusions 

Recently MRI has developed considerably into the directions of dynamic imaging and fMRI opening up 

several new fields of application, in particular referring to real-time imaging. Although these 

developments are generally promising their application can be limited by the compromise between 

temporal and spatial resolution. In order to improve temporal resolution, many sampling approaches 

use undersampling.  

A review of the most effective methods for sparse sampling acquisition and reconstruction, with the aim 

of reducing the undersampling artifacts, have been presented. In particular, methods have been 

classified in two classes: those acquisition methods which do not use any restoration algorithm and 

those methods for which a restoration algorithm is essential. 

A first consideration which can be made is that methods allowing to the second class are more 

complicated than those allowing to the first class but, in general, they perform better. Further 

considerations regard the last class of methods. In fact, it has been divided in two sub-classes: those 

reconstruction/restoration methods that reduce artifacts independently of the sample shape, and those 

acquisition/reconstruction/restoration methods that adapt their action by modifying the trajectories 

during the acquisition, i.e. the chosen trajectories (both in number and directions) are dependent on the 

sample shape. To the first subclass of methods allows also Compressed Sensing, a very breakthrough 

technique which, for some extends, appears as counterintuitive: images can be almost exactly 

reconstructed by a sparse set of its Fourier coefficients, below the Nyquist requirements, if they are 

compressible and the collected coefficients are casually collected in the k-space plane. The second 

subclass contains some adaptive methods: they allow a strong reduction of the collected data if the k-

space paths are collected through the most informative directions (coefficients with maximum energy). 

Both CS and Adaptive methods require the images to be compressible, but they are completely different 

regarding the acquisition directions: in the first data are collected casually, in the second data are 

collected along the “most informative” directions, where energy is maximum. Hybrid methods, 

adaptive-CS strategies, are currently under investigation in order to obtain near optimal image 

reconstruction (as ensured by CS) with a reduced number of collected samples (as ensured by an 

adaptive sampling strategy). 
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