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ABSTRACT 

ElectroCardiogram(ECG) is used to measure  and diagnose electrical activity of heart. R peak detection 
from ECG signal is our main concern. It is the basic mark for the identification of different arrhythmias. 
In this paper, R wave  extraction is performed by using Wavelet Transform. The wavelet transform has 
risen over late years as an effective time– frequency analysis and it is efficiently analyze complex non 
stationary signals. In this research, R wave is extracted accurately then heart beat is analyzed by the 
detection of RR intervals. R wave extraction is performed and implemented in the most familiar 
multipurpose tool, MATLAB .In this research,99.9% accurate R peak is detected by this type of approach. 
By accurate detection of R peak, cardiac diseases can easily be identified such as Sinus tachycardia, Sinus 
bradycardia, Supraventricular tachycardia (SVT), Atrial fibrillation (AF), Ventricular tachycardia and Heart 
block.  
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1 Introduction 
Electrocardiogram (ECG) represents the electrical movement of the heart demonstrating the contraction 
and Relaxation of heart muscle.ECG is the diagnostic tool for the identification of electrical activities of 
heart. R peak detection form ECG signal is responsible for its identification. If arrhythmias are not 
treated properly then it cause sudden cardiac death[1]-[2]. 

In the previous couple of decades a few methods and techniques are evolved   for ECG analysis  and 
arrhythmia detection to enhance its accuracy and sensitivity. These methods include Wavelet coefficient 
[3], Autoregressive Modeling [4], RBF Neural Networks [5], selforganizing map [6], and fuzzy c-means 
clustering techniques [7]. Figure1 shows the typical ECG waveform with R-R interval and basic waves 
such as P,Q,R,S,T and U[8] 
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Figure 1: ECG signal generation using MATLAB  and its Real image 

In the literature, ECG signal processors operate at different frequency ranging from 0.25 Hz to 400 kHz 
[9]–[12]. ECG Signal detection includes elimination of different noises like baseline drift [10]-[14], 
waveform detection [15]-[17],feature extraction [18],and heart rate classification[19]-[28]. 

Among the several techniques investigated in the literature are included time domain analysis [29]–[32], 
statistical approach [33]–[35], hybrid features [36], [37], frequency-based analysis [38], and time–
frequency analysis [39]–[41] for feature extraction of ECG signals. These feature extraction tools are 
combined with classification algorithms such as linear discriminants [29], [30], [42], neural networks 
[35], [39], [41], neurofuzzy approach [43], and support vector machines (SVMs) [33], [34], [36], [44]-[48] 
to provide efficient detection and analysis of cardiac abnormalities. 

Heart Rate classification techniques were also used by several researchers, some of them have used 
waveform features extraction techniques [19]-[26] and some have used wavelet transform [23]-[24] 
method for its extraction. 

Wavelet analysis is used to eliminate noise from ECG signal and it also used to identify possible 
cardiovascular abnormalities. It is used for stationary as well as non stationary signals. it gives both 
frequency and time domain information of signal during its processing. In fact, it covers quite a large 
area as it also deals with continuous and discrete domain signals. 

2 Wavelet Transform 

2.1 The Continuous Wavelet Transform 
A wavelet is simply a small wave has energy concentration in time for the analysis of transient, non 
stationary or time-varying phenomena as shown in figure 2. 

                                                        

Figure 1: Mother Wavelet 
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Equation (1) highlights the continuous wavelet transform[49]. 
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Where β  acts to translate the function across ( )x t  and variable α  acts to vary the time scale of 

probing functionΨ . 

(i) If α >1 then  the wavelet function ,Ψ , is stretched along time axis  
(ii) If  0<α <1 then  it contacts the wavelet function ,Ψ . 
(iii) If α <0  then  the wavelet function ,Ψ , flipped along  time axis. 

If  β =0 and α =1 then wavelet is in its natural form,which is termed as mother wavelet as shown in 

figure(2) and its expression is shown in equation (2). 

(1,0) ( )tΨ ≡ Ψ                            (2) 

The wavelet shown below ,in figure(3) , is the popular Morlet wavelet which is defined by equation(3) 
and it is implemented using MATLAB. 
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Figure 2: Morlet Wavelet using MATLAB 

Maxican hat wavelet is defined by equation (4).Figure 4 shows its implementation using MATLAB. 

( ) ( )x t Analysis Syntheis= +∑                                        (4) 
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Figure 3: Maxican Hat Wavelet using MATLAB 
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Figure 5 shown below describe the Haar wavelet using MATLAB. 
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Figure 4: Haar Wavelet using MATLAB  

2.2 The Discrete Wavelet Transform 
The Continuous Wavelet Transform is highly redundant.The basic analytical expression for the Discrete 
Time Wavelet Transform(DWT) is expressed in equation(5). 

/2( ) ( , )2 (2 )i i

i j
x t d i j t j
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= Ψ −∑ ∑                                               (5) 

Here scaling function is used to compute the DWT.Scaling function is defined by equation (6). 
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In the DWT, the wavelet can be defined from the scaling function as defined in equation (7). 

( ) 2 ( ) (2 )
n

t d n t nϕ
∞

=−∞

Ψ = −∑                                    (7) 

Where d(n) is a series of scalers that are related to equation(5) 

In most cases Discrete time wavelet transform based analysis is best described by filter banks. Figure 6 
highlights the analysis part of DWT filter bank and Figure 7 describes the synthesis part of filter bank by 
using Discrete time wavelet transform. 
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Figure 6: Analysis part of  DWT filter bank Figure 5: Synthesis Part of Filter 
bank using DWT 

Designing the filter in a wavelet filter bank is quite challenging. A main concern is to reconstruct the 
original signal after passing through the analysis and synthesis part by using Low pass and high pass 
filters. Here first Signal is analyzed and it is passes through synthesis part and then it is added using 
summation block and original signal is recovered as defined by equation 8. 

( ) ( )x t Analysis Syntheis= +∑                                                (8) 

3 Methodology 
Wavelet Transform Method: 

Flow Chart for R-wave detection using Wavelet Transform is demonstrated in Figure 8. 
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 Figure 8: Block Diagram to Detect R-wave using Wavelet Transform 

4 Results 
 By Applying Wavelet Transform Method 

Figures[9-16]  show the implementation of  Wavelet Transform algorithm for R-wave detection .Figure 9 
shows the original Real Time  ECG signal generation using MATLAB.. Here Low pass and High Pass filter is 
designed to remove to get rid of the baseline wander and muscle noise and then Filtered signal is passed 
through Band Pass Filter. Derivative filter is applied on Filtered signal to highlight the QRS complex for 
the detection of R-wave. Derivative signal is passed through moving Average filter after taking its square 
to further removes the remaining noise.And Then Threshold Filter is applied to find Peaks of R-wave 
from ECG signal [13] and R-R interval is determined.Figure 16 describes the R-wave detection from ECG 
signal using Wavelet Transform algorithm.  

and Figure 10 describes the R-wave detection using MATLAB and then Heart rate is calculated from R-R 
interval as by following Equation (9)as shown in Figure 17. 

                             (9) 

Figure 9 shows the Real time ECG signal generation using MATLAB. 
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Figure 6: Real Time ECG signal Generation 

Figure 10 shows the Smooth ECG signal generation using MATLAB. 
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Figure 7:Smooth  ECG signal Generation using Wavelet Transform 

Figures 11 describes the Clean ECG generation after passing through Wavelet and denoise it by wavelet 
decimation operation. 
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Figure 8: Clean ECG signal using Wavelet by MATLAB 

Figure 12 shows the behavior of Clean ECG signal after passing through the low filter[50].Here pan-
Tompkins techniques are used for filteration to get rid of baseline wander and muscle noise. 
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Figure 9: Low Pass Filtered ECG Signal 

Figure 13 shows ECG behavior after high pass filtration to discard high frequency noise. 
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Figure 10: High pass filtered ECG Signal 

Figure 14 shows that  Filtered ECG signal is derivated using derivative filter to highlight the QRS complex 
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Figure 11: ECG Signal after passing through Derivative Filter 

Figure 15 explains that derivative ECG signal is squared to highlight the dominant peaks form QRS 
complex for accurate detection of R peaks. 
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Figure 12: Squared ECG Signal 
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Now R peak is detected when squared ECG signal is passed through moving average filter as shown in 
figure 16.Here R peaks are detected accurately by applying algorithm developed by Pan-Tompkins[50] . 
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          Figure 13: R peak detection after moving Average filter 

Figure 17 shows the heart rate (BPM) calculated from R-R interval by pre-processing of ECG signal. 

 

Figure 17: Heart Rate detection using MATLAB 

Table I highlights the behavior of R-wave detection using MATLAB by the implementation of WAVLET 
TRANSFORM accurately. Here R peak location, its amplitude and R-R interval is calculated and analyzed. 

Table 1: R peak detection using Wavelet Transform 
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5 Discussion 
After implemented Wavelet transformation method using MATLAB,we can easily detect R wave.R-R 
interval and heart rate can also be analyzed by finding R wave. And it is easily concluded that R-Wave 
detection using WAVLET TRANSFORM gives us more accurate and efficient result as it is proved by the 
visualization of ECG signal as shown in Figure 1. 

6 Identification of Arrhythmias 
Table  2  highlights the classification of Arrhythmias based on BPM .We can easily identified cardiac 
diseases after finding heart rate from ECG signal by above mentioned Equation(9) 

Table 2: Arrhythmias classification on the basis of BPM 

Name of  Arrhythmia Heart Rate(BPM) 
Sinus tachycardia >100 
Sinus bradycardia < 60 
Supraventricular 
tachycardia (SVT) 

140-240 

Atrial fibrillation (AF) 160-180 
Ventricular tachycardia 120-200 

Heart block 20-40 
 

7 Conclusion 
R-wave is detected from ECG signal which are obtained from  Wavelet Transform. It is concluded that 
Wavelet Transformation provide us accurate and efficient result regarding R-peak detection and its 
results are 99.9% accurate.R-R interval is also calculated form R-Peak detection using MATLAB . With 
this algorithm, abnormalities of the ECG are obtained from the extracted feature.Heart rate is also 
calculated from R-R intervals and several arrhythmias are also identified from the Heart rate,including 
Sinus tachycardia, Sinus bradycardia, Supraventricular tachycardia (SVT), Atrial fibrillation (AF), 
Ventricular tachycardia and Heart block. 

Hence Wavelet Transform is the best method for the detection of R-Peak from Real time ECG signal 
generated from MATLAB as it is less time consuming and more efficient. 
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