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ABSTRACT   

Medical image processing is an important diagnostic tool in the field of medical. Medical images might 

be affected by the noises that manipulate the resolution negatively during screening or transmission. 

These images need to be eliminated so as not to affect the diagnosis success negatively. In medical 

image denoising studies, using the multi-resolution analysis coefficients is a widely appreciated method. 

This study tested the success rate of real and complex valued ripplet-I transform for medical image 

denoising. Thanks to this study, the complex version of the newly suggested ripplet-I transform whose 

real version was used formerly in various studies was used in a medical image denoising application the 

first time. In the study tested with 40 liver images, 40 retinal images and 322 mammographic images, 

peak signal-to-noise ratio (PSNR), mean structural similarity index (MSSIM) and feature similarity index 

(FSIM) were utilized to compare the successes of image denoising. In the wake of study, it was seen that 

the complex valued ripplet-I (CVR-I) transform gave better results than the real valued ripplet-I (RVR-I) 

transform when used in the same image denoising algorithm. This study also examined the effects that 

the changes in scale and thresholding constant values have on the medical image denoising results, thus 

making this study appear as a guideline.  

Keywords:  Real and complex valued ripplet-I transform; Medical image denoising; Thresholding 

constant; Peak signal-to-noise ratio (PSNR); Mean structural similarity index (MSSIM); Feature similarity 

index (FSIM). 

1 Introduction  

Image denoising is a field of image processing upon which many researches were conducted. Important 

developments also took place in this field as parallel with the development of multi-resolution analyses. 

Firstly, the wavelet transform was put forth, creating the basis of multi-resolution analyses and various 

successful denoising applications followed through by using the wavelet transform and different 

algorithms [1-9]. 

The wavelet transform only analyzing in certain aspects has caused a big flaw when representing 

images. To eradicate this flaw, Candes and Donoho put forth the ridgelet transform that can analyze in 
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various aspects [10]. The curvelet transform based on the ridgelet transform and, which has created at 

least as big an impact as the wavelet transform, was defined again by Candes and Donoho [11]. Starck et 

al. suggested that the curvelet transform which later would be known as the first-generation curvelet 

transform gave better results for denoising than the wavelet transform [12]. Following this, it was seen 

that the curvelet transform created better results than the wavelet transform in image denoising 

applications in many studies [13-19].  Along with the curvelet transform having created such big impact, 

its first iteration has created too much and non-used data. This increased the process load and 

decreased the process speed. To eliminate this negative outcome, studies towards the definition of 

second generation curvelet transform was conducted by Candes et al. [20, 21]. 

The biggest disadvantage of the first iterations of multi-resolution analyses is the lack of phase 

information. Lack of phase information inhibits the number of analyzed aspects. Lawton and Lina 

showed the applicability of the wavelet transform in the complex form [22, 23]. Thanks to that Selesnick 

et al. defined the dual-tree discrete complex wavelet transform with two similar models (Kingsbury’s 

and Selesnick’s) a study was put forth towards overcoming the issue of inhibited orientation of the real 

valued wavelet transform [24]. Complex valued wavelet transform gave better results in the denoising 

applications compared to real valued wavelet transform [25-27].    

In 2005, Candes et al. defined the fast discrete curvelet transform based on the second generation 

curvelet transform [28]. This study utilized complex curvelet coefficients. In studies produced by 

Neelamani et al., the complex form of curvelet transform was used [29-31]. In 2010, Yan et al. made 

image restoration using the complex form of the transform [32].   

In 2010, Xu et al. described the ripplet-I transform which is a higher dimensional generalization of the 

curvelet transform (by adding support and degree parameters), designed to represent images or two-

dimensional signals at different scales and different directions [33]. Per this study, the denoising 

application was conducted and the denoising results for some various values of the support, degree 

parameters were compared. After the real valued ripplet-I (RVR-I) transform was put forth, it began to 

be used widely in the literature. Also, in 2014, by using RVR-I coefficients, Gupta et al. realized the image 

denoising [34]. In 2016, Yaşar and Ceylan described the comlex ripplet-I transform [35]. In same year, 

they realized automatic blood vessel extraction in retinal images using complex ripplet-I transform [36].  

During screening or transmission, Medical images might be affected by images that have a negative 

impact on the resolution. These images need to be eliminated so as not to affect the diagnosis success 

negatively. In medical images, denoising aims to obtain the image or protect the originality of the image 

by eradicating the noises that occur during transmission. 

This study helped us realize the medical image denoising application for different scale, support, degree, 

thresholding constant values by using RVR-I and complex valued ripplet-I (CVR-I) transform. The effects 

that the changes in scale, support, degree, thresholding constant values have on denoising were fully 

analyzed, thus making this study appear as a guideline. Thanks to this study, the complex version of the 

newly suggested ripplet-I transform whose real version was used formerly in various studies was used in 

a medical image denoising application the first time. The numerical results in this study were obtained 

from MSc thesis study of Yaşar [37]. 
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2 Methods 

2.1 Ripplet-I Transform 

Ripplet-I transform generalizes curvelet transform by adding two parameters, support (c) and degree 

(d). These new parameters, c and d, provide ripplet-I with anisotropic capability of representing 2D 

singularities along arbitrarily shaped curves [33]. The ripplet function is defined in Equation (1).  
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The element ripplet function 
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 with scale parameter a is defined in the frequency domain in polar 

coordinates [33].  
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The discrete transform takes as input data defined on a Cartesian grid and outputs a collection of 

coefficients. For the scale parameter a, we sample at dyadic intervals. The position parameter b
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, ( )T  denotes the transpose of a vector and j, k1, k2, l   Z. The frequency response of 

ripplet function is given as ( ; , 0d n m n m Z    ) [33]. 
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where W and V satisfy the following conditions 
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Equations given between Equality (1) and (4) define the curvelet transform for values c=1, d=2. 

The goal here is to find a digital implementation of the discrete ripplet-I transform, whose coefficients 

are now given by  
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where 
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 is the shear matrix and 
1 22 ,2j j dc k km        . 

The operations after this stage are conducted as defined earlier by fast discrete curvelet transform [28]. 

The ripplet-I via wrapping are described below with the basic steps. 
1, 2[ , ]j l n nU  reindexing the samples 

array by wrapping around a 2 2j j dc    ( width  c (length)d  ) rectangle centered at the origin [36]. 

Step 1: Compute 2D FFT coefficients to obtain Fourier samples 1 2
ˆ[ , ]f n n . 

Step 2: Interpolation, for each scale and angle pair (j, l), 1 2 1, 2
ˆ[ , ] [ , ]j l n n f n nU . 

Step 3: Wrap result of step 2 around the origin and obtain 
,1 2 1 2[ , ] ( [ , ])j lf n n W U f n n    where the range n1 

and n2 are 
1 1,0 jn L   and 

2 2,0 jn L   respectively. 

Step 4: Implement the inverse 2D FFT for each ,j lf
   to obtain the discrete coefficients. 

2.2 Complex Valued Ripplet-I Transform 

Continuous ripplet-I as just constructed are complex valued. It is easy to obtain real-valued ripplet-I by 

working on the symmetrized version    , ,j jr r   
 

  . Equation (6) refers to the imaginary part of 

the CVR-I transform [35, 36]. 
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The discrete ripplet-I transform coefficients are complex-valued, but a real-valued discrete ripplet-I 

transform with the same redundancy factor can be easily obtained by properly combining coefficients at 

orientations
l and

l  . 

Coefficients of CVR-I can be expressed as follows. 
RCVR I  and 

ICVR I are real and the imaginary 

coefficients, respectively. 

 
R ICVR I CVR I jCVR I    

                                                (7)

 

Figure 1 shows the formation of complex valued ripplet-I coefficients in the real and imaginary 

coefficients.  

 

 Figure 1.  Complex valued ripplet-I coefficients. 
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In Figure 2, images are given showing a real and imaginary ripplet-I coefficient for c=1 and d=3 values of 

Lena’s [38] image and the CVR-I coefficient images obtained by combining these coefficients using 

Equation (7) [35]. 

 
 Figure 2. a) Original Lena image b) Real ripplet-I coefficient (c=1, d=3) c) Imaginary ripplet-I coefficient (c=1, 

d=3) d) CVR-I coefficient(c=1, d=3). 

In this study, the MATLAB codes located in curvelab [39] (fast discrete curvelet transform via wedge 

wrapping) were used by adapting to ripplet-I transform. This study helped us produce RVR-I and CVR-I 

coefficients for different scale, support, degree values. Support and degree parameters defined as the 

generalization of the ripplet-I transform and the curvelet transform make the decompositions used in 

the curvelet transform change. Decompositions used for different scale, support, degree values in the 

study are given in Table 1. 

 Table 1.  Decompositions for different (a) scale, (c) support and (d) degree. 

 
c=1, d=2 c=1, d=3 c=1, d=4 c=1, d=5 

a=4 [1,2,2] [1,2,2] [1,2,4] [1,2,4] 

a=5 [1,2,2,4] [1,2,2,4] [1,2,4,8] [1,2,4,8] 

a=6 [1,2,2,4,4] [1,2,4,4,8] [1,2,4,8,8] [1,2,4,8,16] 

a=7 [1,2,2,4,4,8] [1,2,4,4,8,16] [1,2,4,8,8,16] [1,2,4,8,16,16] 

2.3 Denoising Algorithm 

Generally, a noisy image 
nI  can be denoted as below. Where I is the original image, N is noise and 

rN  

random noise : 

 *n rI I N I sigma N                                                          (8) 

Here, sigma is the noise ratio which is an important factor to specify the amount of noise that will be 

added to the image. If sigma value increases, the image will be much more noisy. In our study, we have 

used three sigma values (15, 25, 35) for random noise.  

Curvelet shrinkage image denoising method is an algorithm for denoising using curvelet coefficients. 

This algorithm can realized using ripplet-I coefficients. In the wavelet domain, there are two common 

shrinkage methods, namely, the hard-thresholding and the soft-thresholding approach. In this study, 

hard-thresholding (Equation 9) is used. 
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Where ( , )T j l  is the threshold function and ( , )kM j l  is a ripplet-I coefficient dependent on scale index j 

and angle index l, and ( , )kM j l


denotes the ripplet-I coefficients processed. The threshold function 

( , )T j l  is defined as [40]. 

                            ( , ) ( , ) .. j lT j l k  
                                                                        (10) 

( , )j l  denotes the average energy distribution of white noise in ripplet-I coefficient on scale j and angle l; 

 is defined as the standard deviation of white noise. k is called as thresholding constant. The 

thresholding constant value is used generally as “3” in studies. Along with this, it is also known that per 

different values of the thresholding constant, the denoising results get affected. Instead of using a stable 

thresholding constant in this study, a number of thresholding constant values were used for the image 

denoising results; increasing or decreasing by “0.1” between a range of “2.1” and “3.4”. 

Denoising processes for the CVR-I transform are realized with the same method. However, the image 

matrix elements obtained by reversing the transform also by using denoised coefficients consist of 

complex numbers. Absolute values of the matrix elements belonging to the re-obtained image after 

denoising were calculated by using Equation (11) and these results were used in PSNR calculations. 
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2 2
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2.4 Used Data 

Medical images can be obtained through various methods such as roentgen, computed tomography, 

magnetic resonance imaging. Target body part, where the medical imaging is applied to, and the image 

properties belonging to this part affect the noise formation and the success rate of denoising. Thus, in 

order to increase the reliability of the results of medical image denoising, many images different from 

one another are used. Three different types of medical images as liver image, retinal image and 

mammographic image were utilized. 

2.4.1 Liver Images 

Liver MR images are an important diagnostic tool in detecting liver diseases such as cyst, hamartoma, 

hemangioma, focal nodular hyperplasia and adenoma. In distinguishing these diseases from each other, 

the contrast differences that occur in images in different phases of liver MR imaging are used. Denoising 

is of paramount importance as it negatively affects the diagnosis rate due to it occurring on the image 

and changing the contrast.    

In this study, 40 liver MR images were used for medical image denoising. Images used in the study were 

gathered from Selcuk University Faculty of Medicine (Department of Radiology). These JPG-format 

images are in size 512×512. 

2.4.2 Retinal images 

Retinal fundus images are used frequently in detecting impairments associated with systematic diseases 

such as diabetic retinopathy, macula diseases and retinal tears. In detecting such diseases, segmentation 

of blood vessel structures or ruptured areas on the general retinal image is required. Noises that will 

occur on retinal images make distinguishing these structures from each other more difficult. 
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In this study, 40 retinal fundus images belonging to the DRIVE [41] database were used for medical 

image denoising. These images are in 584×565 size and JPEG format. DRIVE database images are 

arranged as size of the 512×512. Processes benefitted from the green color space of the images 

belonging to the DRIVE database that has three different color dimensions as red, green and blue. 

2.4.3 Mammographic images 

Mammographic images are used when detecting mammographic abnormalities such as calcification, 

architectural distortion and asymmetry. Mammographic images are different from liver and retinal 

images in terms of the structure. Pixel values belonging to the breast tissue are very close to each other 

in mammographic images. This makes the segmentation of abnormal areas more difficult. Also the pixel 

values belonging to the breast tissue being very close to each other makes distinguishing noises and the 

breast tissue from one another in the image harder as well. 

322 PGM-format mammographic images used in this study for image denoising belong to MIAS [42] 

database. The images areas are defined in size of 512×512 from the images whose original sizes are 

1024×1024. 

2.5 Evaluation Criteria 

PSNR is a common method for comparison of image quality. However, usage of single comparison 

criteria is not a true approach for medical image comparison. For testing the reliability of obtained 

results in this study, two different comparison criteria (MSSIM [43, 44] and FSIM [45]) are used. 

2.5.1 Peak signal-to-noise ratio (PSNR) 

Mean squared error (MSE) calculates the square of the numeric difference between two images. Given a 

reference image f and a test image g, both M×N sized, the MSE between f and g is defined by: 

 2
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1
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i j i j
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PSNR is an objective performance criterion which ensures to score the loss of information operations 

caused in dB. Given a reference image f and a test image g (8 bit), both M×N sized, the MSE between f 

and g is defined by: 

 
2

10( , ) 10.log (255 / ( , ))PSNR f g MSE f g
                                 (13) 

The PSNR value approaches infinity as the MSE approaches zero; this shows that a higher PSNR value 

provides a higher image quality. At the other tip of the scale, a small value of the PSNR implies high 

numerical distinctions between images. 

2.5.2 Mean structural similarity index (MSSIM) 

Structural similarity index (SSIM) of given two images x and y, combines three components. They are 

called luminance distortion term ( , )l x y , contrast distortion term ( , )c x y  and correlation term ( , )s x y . 

While c1, c2 and c3 are constants, these components are denoted as [43]: 
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where x , y , 
2
xs , 2

ys  and ,x ys  are the local mean of x and y, the local variance of x and y, and the 

covariance between x and y, respectively.  

Given 
1( , )S x y and 

2 ( , )S x y are the similarity maps computed by a local window. If
3 2 2c c , SSIM of given 

two images are calculated as: 
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SSIM is processed on local regions using a sliding window [44]. This procedure is implemented from top-

left to bottom-right corner of the images till all image is operated. While M is the number of windows, 

MSSIM is denoted as: 

 1

1
( , ) ( , )

M

j j
j

MSSIM x y SSIM x y
M 
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                                                    (18)

 

The more similar the images are to each other, the closer MSSIM is to 1. 

2.5.3 Feature Similarity Index (FSIM) 

Another novel performance evaluation method is FSIM which is calculated by using a value called phase 

congruence (PC) and a specified similarity measure (S) based on gradient magnitude (GM) and PC. 

Instead of determining sharp changes in intensity of images directly, PC model identifies the features 

where the Fourier components are maximum in phase [45].  

GM is calculated by using Gradient operators like Sobel, Prewitt and Scharr operators. GM of an image 

( , )f x y  is stated as: 

 2 2
x yG G G 

                                                                            (19)

 

where  xG  and 
yG are the partial derivatives along horizontal and vertical directions of the image.  ( )LS x  

is the similarity index which is based on PC and GM, between two images in Equation (20). 

    ( ) ( ) . ( )L PC GS x S x S x
                                                           (20)

 

FSIM is defined as Equation (21) while Ω states the whole image and is the  ( )mPC x  is the PC. 
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3 Experiments and Results 

Medical image denoising application was realized by using RVR-I and CVR-I coefficients in this study. This 

study, primarily, went through the application of random noise possessing three different sigma values 
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(15, 25, 35) on the original images so as to obtain the noised images to be utilized. Noises on the 

obtained RVR-I and CVR-I coefficients were cleaned up with the hard-thresholding shrinkage image 

denoising method. The cleaning process was repeated starting from the thresholding constant 2.1 and 

ending with 3.4 as it increased 0.1 at each go. By using coefficients whose obtained noise had been 

cleaned up, ripplet-I transform was reversed and the images were re-formed. Matrix elements of the 

new image to be obtained by using CVR-I transform consist from complex numbers. Absolute values of 

the image matrix elements were calculated using Equation (11) and the processes utilized these values. 

PSNR, MSSIM and FSIM values between the original image and denoised images were calculated in the 

study as final. To increase the consistency of the results, these processes were repeated for each image 

25 times and their averages were then calculated. 

3.1 Liver Image Denoising 

In the wake of study, the best denoising PSNR results obtained with 40 liver MR images for three 

different sigma values (15, 25, 25) were given in Table 2-4. Upon examining Table 2-4, the most 

successful denoising results were obtained so long as the scale value was “5”. Also it was seen that the 

thresholding constant, which is an important factor in denoising applications, requires to be used 

differently in processes conducted with RVR-I and CVR-I coefficients. The most successful results were 

obtained for the values between “2.8” and “3.4” of thresholding constant in the denoising application 

conducted with RVR-I coefficients for these images. In the denoising application conducted with CVR-I 

coefficients, it was observed that the results obtained between these values were lower compared to 

the application results conducted with RVR-I coefficients. In the denoising application conducted with 

CVR-I coefficients, the most successful results were obtained for the values between “2.2” and “2.6” of 

thresholding constant. Also, the PSNR values obtained within this range were the best results achieved 

in these denoising applications. 

A number of original liver MR images used in the processes, their noise-applied states for three different 

sigma values and their re-obtained states after denoising application for different support, degree 

values are shown in Figure 3. 

Table 2. Results Of PSNR For Liver Images (Sigma=35, A (Scale), C (Support), D (Degree) And K (Thresholding 
Constant)). 

 
Reel valued ripplet-I transform Complex valued ripplet-I transform 

 
c=1, d=2 c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2 c=1, d=3 c=1, d=4 c=1, d=5 

a=7 34.05 (k=3.1) 33.74 (k=3.1) 33.57 (k=3.1) 33.58 (k=3.1) 34.36 (k=2.4) 34.00 (k=2.4) 33.81 (k=2.4) 33.79 (k=2.4) 

a=6 34.32 (k=3.1) 34.17 (k=3.1) 34.13 (k=3.1) 34.12 (k=3.1) 34.63 (k=2.4) 34.45 (k=2.4) 34.42 (k=2.5) 34.41 (k=2.5) 

a=5 34.46 (k=3.2) 34.43 (k=3.2) 34.44 (k=3.2) 34.44 (k=3.2) 34.75 (k=2.5) 34.71 (k=2.5) 34.71 (k=2.5) 34.71 (k=2.5) 

a=4 33.27 (k=3.4) 33.27 (k=3.4) 33.27 (k=3.4) 33.27 (k=3.4) 33.44 (k=2.6) 33.44 (k=2.6) 33.44 (k=2.6) 33.44 (k=2.6) 
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Table 3. Results of PSNR for liver images (Sigma=25, a (Scale), c (Support), d (Degree) and k (Thresholding 
Constant)). 

 
Reel valued ripplet-I transform Complex valued ripplet-I transform 

 
c=1, d=2 c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2 c=1, d=3 c=1, d=4 c=1, d=5 

a=7 35.67 (k=3.0) 35.38 (k=3.0) 35.11 (k=3.0) 35.07 (k=3.0) 35.98 (k=2.4) 35.62 (k=2.3) 35.37  (k=2.3) 35.30 (k=2.3) 

a=6 35.91  (k=3.0) 35.74 (k=3.0) 35.67 (k=3.0) 35.66 (k=3.0) 36.24 (k=2.4) 36.03 (k=2.4) 35.96  (k=2.4) 35.95 (k=2.4) 

a=5 36.08  (k=3.1) 36.05 (k=3.1) 36.05 (k=3.1) 36.05 (k=3.1) 36.36 (k=2.4) 36.34 (k=2.4) 36.34  (k=2.4) 36.34 (k=2.4) 

a=4 35.36  (k=3.3) 35.35 (k=3.3) 35.35 (k=3.3) 35.35 (k=3.3) 35.56 (k=2.5) 35.56 (k=2.5) 35.56  (k=2.5) 35.56 (k=2.5) 

 

 
Figure 3.  a1) Original liver image a2) Noisy image (Sigma=35) a3) Denoising with RVR-I (c=1, d=2) a4) Denoising with 

CVR-I (c=1, d=2) a5) Denoising with RVR-I (c=1, d=3) a6) Denoising with CVR-I (c=1, d=3) a7) Denoising with RVR-I (c=1, 

d=4) a8) Denoising with CVR-I (c=1, d=4) a9) Denoising with RVR-I (c=1, d=5) a10) Denoising with CVR-I (c=1, d=5) b1) 

Original liver image b2) Noisy image (Sigma=25) b3) Denoising with RVR-I (c=1, d=2) b4) Denoising with CVR-I (c=1, 

d=2) b5) Denoising with RVR-I (c=1, d=3) b6) Denoising with CVR-I (c=1, d=3) b7) Denoising with RVR-I (c=1, d=4) b8) 

Denoising with CVR-I (c=1, d=4) b9) Denoising with RVR-I (c=1, d=5) b10) Denoising with CVR-I (c=1, d=5) c1) Original 

liver image c2) Noisy image (Sigma=15) c3) Denoising with RVR-I (c=1, d=2) c4) Denoising with CVR-I (c=1, d=2) c5) 

Denoising with RVR-I (c=1, d=3) c6) Denoising with CVR-I (c=1, d=3) c7) Denoising with RVR-I (c=1, d=4) c8) Denoising 

with CVR-I (c=1, d=4) c9) Denoising with RVR-I (c=1, d=5) c10) Denoising with CVR-I (c=1, d=5). 
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Table 4. Results of PSNR for liver Images (Sigma=15, a (Scale), c (Support), d (Degree) and k (Thresholding 
Constant)). 

 
 Reel valued ripplet-I transform  Complex valued ripplet-I transform 

 
c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 

a=7 38.23 (k=2.9) 37.92 (k=2.9) 37.62 (k=2.8) 37.52 (k=2.8) 38.49 (k=2.3) 38.18 (k=2.3) 37.87 (k=2.2) 37.73 (k=2.2) 

a=6 38.51 (k=3.0) 38.27 (k=2.9) 38.13 (k=2.9) 38.13 (k=2.9) 38.79 (k=2.3) 38.52 (k=2.3) 38.38 (k=2.3) 38.38 (k=2.3) 

a=5 38.66 (k=3.0) 38.60 (k=3.0) 38.61 (k=3.0) 38.61 (k=3.0) 38.93 (k=2.3) 38.86 (k=2.3) 38.86 (k=2.3) 38.86 (k=2.3) 

a=4 38.35 (k=3.0) 38.35 (k=3.0) 38.35 (k=3.0) 38.35 (k=3.0) 38.54 (k=2.4) 38.54 (k=2.4) 38.54 (k=2.4) 38.54 (k=2.4) 

3.2 Retinal Image Denoising 

In the wake of study, the best denoising PSNR results obtained with 40 retinal images for three different 

sigma values (15, 25, 25) were given in Table 5-7. Upon examining Table 5-7, the most successful 

denoising results were obtained so long as the scale value was “5”. Also it was seen that the 

thresholding constant, which is an important factor in denoising applications, requires to be used 

differently in processes conducted with RVR-I and CVR-I coefficients. The most successful results were 

obtained for the values between “2.7” and “3.3” of thresholding constant in the denoising application 

conducted with RVR-I coefficients for these images. In the denoising application conducted with CVR-I 

coefficients, it was observed that the results obtained between these values were lower compared to 

the application results conducted with RVR-I coefficients. In the denoising application conducted with 

CVR-I coefficients, the most successful results were obtained for the values between “2.2” and “2.5” of 

thresholding constant. Also, the PSNR values obtained within this range were the best results achieved 

in these denoising applications. 

A number of original retinal images used in the processes, their noise-applied states for three different 

sigma values and their re-obtained states after denoising application for different support, degree 

values are shown in Figure 4. 

Table 5. Results of PSNR for retinal images (Sigma=35, a (Scale), c (Support), d (Degree) and k (Thresholding 
Constant)). 

 
 Reel valued ripplet-I transform  Complex valued ripplet-I transform 

 
c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 

a=7 32.75 (k=3.1) 32.48 (k=3.0) 32.27 (k=3.0) 32.17 (k=3.1) 33.05 (k=2.4) 32.78 (k=2.4) 32.56 (k=2.3) 32.42 (k=2.4) 

a=6 32.97 (k=3.1) 32.83 (k=3.1) 32.68 (k=3.1) 32.67 (k=3.1) 33.24 (k=2.4) 33.11 (k=2.4) 32.95 (k=2.4) 32.95 (k=2.4) 

a=5 33.04 (k=3.1) 33.00 (k=3.1) 33.02 (k=3.1) 33.02 (k=3.1) 33.30 (k=2.4) 33.25 (k=2.5) 33.27 (k=2.5) 33.27 (k=2.5) 

a=4 32.16 (k=3.3) 32.17 (k=3.3) 32.17 (k=3.3) 32.17 (k=3.3) 32.37 (k=2.5) 32.39 (k=2.5) 32.39 (k=2.5) 32.39 (k=2.5) 
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Figure 4.  a1) Original retinal image a2) Noisy image (Sigma=35) a3) Denoising with RVR-I (c=1, d=2) a4) 

Denoising with CVR-I (c=1, d=2) a5) Denoising with RVR-I (c=1, d=3) a6) Denoising with CVR-I (c=1, d=3) a7) 

Denoising with RVR-I (c=1, d=4) a8) Denoising with CVR-I (c=1, d=4) a9) Denoising with RVR-I (c=1, d=5) a10) 

Denoising with CVR-I (c=1, d=5) b1) Original retinal image b2) Noisy image (Sigma =25) b3) Denoising with RVR-I 

(c=1, d=2) b4) Denoising with CVR-I (c=1, d=2) b5) Denoising with RVR-I (c=1, d=3) b6) Denoising with CVR-I (c=1, 

d=3) b7) Denoising with RVR-I (c=1, d=4) b8) Denoising with CVR-I (c=1, d=4) b9) Denoising with RVR-I (c=1, d=5) 

b10) Denoising with CVR-I (c=1, d=5) c1) Original retinal image c2) Noisy image (Sigma=15) c3) Denoising with 

RVR-I (c=1, d=2) c4) Denoising with CVR-I (c=1, d=2) c5) Denoising with RVR-I (c=1, d=3) c6) Denoising with CVR-I 

(c=1, d=3) c7) Denoising with RVR-I (c=1, d=4) c8) Denoising with CVR-I (c=1, d=4) c9) Denoising with RVR-I (c=1, 

d=5) c10) Denoising with CVR-I (c=1, d=5) 

 

 

 

 

 

 

 



J O U R N A L  O F  B I O M E D I C A L  E N G I N E E R I N G  A N D  M E D I C A L  I M A G I N G ,  V ol u me  4 ,  Is s ue  2 ,  A pri l ,  2 0 1 7  

 

C O P Y R I G H T ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  2 2  

 

Table 6. Results of PSNR for retinal images (Sigma=25, a (Scale), c (Support), d (Degree) and k (Thresholding 
Constant)). 

 
 Reel valued ripplet-I transform  Complex valued ripplet-I transform 

 
c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 

a=7 34.08 (k=3.0) 33.84 (k=3.0) 33.65 (k=2.9) 33.49 (k=2.9) 34.31 (k=2.4) 34.08 (k=2.3) 33.87 (k=2.3) 33.67 (k=2.3) 

a=6 34.29 (k=3.0) 34.13 (k=3.0) 33.99 (k=3.0) 33.98 (k=3.0) 34.48 (k=2.4) 34.35 (k=2.4) 34.21 (k=2.4) 34.20 (k=2.4) 

a=5 34.39 (k=3.0) 34.35 (k=3.0) 34.35 (k=3.0) 34.35 (k=3.0) 34.58 (k=2.4) 34.54 (k=2.4) 34.54 (k=2.4) 34.54 (k=2.4) 

a=4 33.89 (k=3.1) 33.92 (k=3.1) 33.92 (k=3.1) 33.92 (k=3.1) 34.04 (k=2.5) 34.08 (k=2.4) 34.08 (k=2.4) 34.08 (k=2.4) 

 

Table 7. Results of PSNR for retinal images (Sigma=15, a (Scale), c (Support), d (Degree) and k (Thresholding 
Constant)). 

 
 Reel valued ripplet-I transform  Complex valued ripplet-I transform 

 
c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 

a=7 35.98 (k=2.8) 35.76 (k=2.8) 35.59 (k=2.8) 35.45 (k=2.7) 36.10 (k=2.2) 35.89 (k=2.2) 35.71 (k=2.2) 35.55 (k=2.2) 

a=6 36.15 (k=2.8) 35.98 (k=2.8) 35.86 (k=2.8) 35.82 (k=2.8) 36.28 (k=2.2) 36.10 (k=2.2) 35.99 (k=2.2) 35.95 (k=2.2) 

a=5 36.32 (k=2.9) 36.23 (k=2.8) 36.23 (k=2.8) 36.23 (k=2.8) 36.44 (k=2.3) 36.34 (k=2.3) 36.33 (k=2.3) 36.33 (k=2.3) 

a=4 36.22 (k=2.9) 36.23 (k=2.9) 36.21 (k=2.8) 36.21 (k=2.8) 36.33 (k=2.3) 36.33 (k=2.3) 36.31 (k=2.3) 36.31 (k=2.3) 

3.3 Mammographic Image Denoising 

In the wake of study, the best denoising PSNR results obtained with 332 mammographic images for 

three different sigma values (15, 25, 25) were given in Table 8-10. Mammographic images are different 

then liver and retinal images in terms of the structure. The pixel values belonging to the breast tissue are 

very close to each other in mammographic images. This situation makes distinguishing the noises 

applied to images and the breast tissue structures from each other more difficult. Upon examining Table 

8-10, the most successful results were obtained for several different scale values, unlike the other two 

groups where it is constant. But, again, it was gathered from the results obtained for mammographic 

images that the thresholding constant requires to be used differently in processes conducted with RVR-I 

and CVR-I coefficients. The most successful results were obtained for the values between “3.0” and 

“3.4” of thresholding constant in the denoising application conducted with RVR-I coefficients for 

mammographic images. In the denoising application conducted with CVR-I coefficients, the most 

successful results were obtained for the values between “2.3” and “2.7” of thresholding constant. Also, 

the PSNR values obtained within this range were the best results achieved in these denoising 

applications.  

A number of original mammographic images used in the processes, their noise-applied states for three 

different sigma values and their re-obtained states after denoising application for different support, 

degree values are shown in Figure 5.  
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Figure 5.  a1) Original mammographic image a2) Noisy image (Sigma=35) a3) Denoising with RVR-I (c=1, d=2) a4) 

Denoising with CVR-I (c=1, d=2) a5) Denoising with RVR-I (c=1, d=3) a6) Denoising with CVR-I (c=1, d=3) a7) 

Denoising with RVR-I (c=1, d=4) a8) Denoising with CVR-I (c=1, d=4) a9) Denoising with RVR-I (c=1, d=5) a10) 

Denoising with CVR-I (c=1, d=5) b1) Original mammographic image b2) Noisy image (Sigma=25) b3) Denoising 

with RVR-I (c=1, d=2) b4) Denoising with CVR-I (c=1, d=2) b5) Denoising with RVR-I (c=1, d=3) b6) Denoising with 

CVR-I (c=1, d=3) b7) Denoising with RVR-I (c=1, d=4) b8) Denoising with CVR-I (c=1, d=4) b9) Denoising with RVR-I 

(c=1, d=5) b10) Denoising with CVR-I (c=1, d=5) c1) Original mammographic image c2) Noisy image (Sigma=15) 

c3) Denoising with RVR-I (c=1, d=2) c4) Denoising with CVR-I (c=1, d=2) c5) Denoising with RVR-I (c=1, d=3) c6) 

Denoising with CVR-I (c=1, d=3) c7) Denoising with RVR-I (c=1, d=4) c8) Denoising with CVR-I (c=1, d=4) c9) 

Denoising with RVR-I (c=1, d=5) c10) Denoising with CVR-I (c=1, d=5) 
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Table 8. Results of PSNR for mammographic images (Sigma=35, a (Scale), c (Support), d (Degree) and k 
(Thresholding Constant)). 

 
 Reel valued ripplet-I transform  Complex valued ripplet-I transform 

 
c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 

a=7 35.25 (k=3.3) 35.44 (k=3.4) 35.46 (k=3.4) 35.52 (k=3.4) 35.51 (k=2.6) 35.71 (k=2.6) 35.71 (k=2.6) 35.75 (k=2.6) 

a=6 35.11 (k=3.4) 35.35 (k=3.4) 35.46 (k=3.4) 35.59 (k=3.4) 35.32 (k=2.6) 35.58 (k=2.6) 35.66 (k=2.6) 35.82 (k=2.6) 

a=5 34.94 (k=3.4) 35.13 (k=3.4) 35.26 (k=3.4) 35.26 (k=3.4) 35.18 (k=2.6) 35.31 (k=2.7) 35.45 (k=2.7) 35.45 (k=2.7) 

a=4 33.35 (k=3.4) 33.39 (k=3.4) 33.39 (k=3.4) 33.39 (k=3.4) 33.50 (k=2.6) 33.55 (k=2.6) 33.55 (k=2.6) 33.55 (k=2.6) 

Table 9. Results of PSNR for mammographic images (Sigma=25, a (Scale), c (Support), d (Degree) and k 
(Thresholding Constant)). 

 
 Reel valued ripplet-I transform  Complex valued ripplet-I transform 

 
c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 

a=7 36.51 (k=3.2) 36.60 (k=3.2) 36.61 (k=3.2) 36.65 (k=3.2) 36.72 (k=2.4) 36.79 (k=2.5) 36.80 (k=2.5) 36.80 (k=2.5) 

a=6 36.35 (k=3.3) 36.57 (k=3.2) 36.64 (k=3.2) 36.71 (k=3.3) 36.55 (k=2.4) 36.76 (k=2.4) 36.82 (k=2.5) 36.89 (k=2.5) 

a=5 36.34 (k=3.2) 36.46 (k=3.3) 36.61 (k=3.3) 36.61 (k=3.3) 36.59 (k=2.5) 36.64 (k=2.6) 36.81 (k=2.6) 36.81 (k=2.6) 

a=4 35.34 (k=3.4) 35.47 (k=3.4) 35.47 (k=3.4) 35.47 (k=3.4) 35.47 (k=2.6) 35.63 (k=2.6) 35.63 (k=2.6) 35.63 (k=2.6) 

Table 10. Results of PSNR for mammographic images (Sigma=15, a (Scale), c (Support), d (Degree) and k 
(Thresholding Constant)). 

 
 Reel valued ripplet-I transform  Complex valued ripplet-I transform 

 
c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 c=1, d=2  c=1, d=3 c=1, d=4 c=1, d=5 

a=7 38.25 (k=3.0) 38.30 (k=3.0) 38.29 (k=3.0) 38.31 (k=2.9) 38.41 (k=2.4) 38.44 (k=2.3) 38.43 (k=2.3) 38.44 (k=2.3) 

a=6 38.17 (k=2.9) 38.29 (k=3.0) 38.32 (k=3.0) 38.37 (k=3.0) 38.35 (k=2.3) 38.43 (k=2.4) 38.44 (k=2.4) 38.49 (k=2.4) 

a=5 38.17 (k=3.1) 38.22 (k=3.1) 38.32 (k=3.1) 38.32 (k=3.1) 38.36 (k=2.3) 38.38 (k=2.4) 38.46 (k=2.4) 38.46 (k=2.4) 

a=4 37.87 (k=3.1) 38.02 (k=3.2) 38.02 (k=3.2) 38.02 (k=3.2) 38.00 (k=2.5) 38.17 (k=2.5) 38.17 (k=2.5) 38.17 (k=2.5) 

4 Conclusions 

In this study, the medical image denoising application was realized by using RVR-I and CVR-I coefficients. 

Formerly it was known that using complex coefficients from transforms such as wavelet, ridgelet gave 

better results in denoising applications compared to real coefficients. Thanks to this study, it was 

verified that it is also viable for the ripplet-I transform. Table 2-10 shows that the PSNR results obtained 

by using CVR-I coefficients for all the scale, support, degree values gave better results that the ones 

obtained by using RVR-I coefficients. In addition, detailed results of MSSIM and FSIM seem to support 

this case. Table 11 and 12 shows the best MSSIM and FSIM results obtained for different scale, support, 

degree and thresholding constant values in the wake of study by using liver, retinal and mammographic 

images. 
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Table 11. Results of the highest MSSIM (c (Support), d (Degree)). 

 
Liver images  Retinal images Mammographic images 

 
Sigma Sigma Sigma 

 
35 25 15 35 25 15 35 25 15 

RVR-I transform c=1, d=2 0.63148 0.69713 0.77638 0.79777 0.82872 0.86467 0.85890 0.86955 0.88824 

CVR-I transform c=1, d=2 0.64343 0.70187 0.77803 0.80950 0.83505 0.86861 0.87292 0.87376 0.88906 

RVR-I transform c=1, d=3 0.63083 0.69482 0.77355 0.79500 0.82767 0.86419 0.85855 0.86966 0.88824 

CVR-I transform c=1, d=3 0.64140 0.69834 0.77541 0.80839 0.83326 0.86775 0.87211 0.87344 0.88906 

RVR-I transform c=1, d=4 0.63132 0.69343 0.77352 0.79490 0.82762 0.86419 0.85585 0.86966 0.88824 

CVR-I transform c=1, d=4 0.64176 0.69944 0.77542 0.80846 0.83328 0.86775 0.87211 0.87344 0.88906 

RVR-I transform c=1, d=5 0.63133 0.69358 0.77352 0.79490 0.82762 0.86419 0.86280 0.87365 0.88853 

CVR-I transform c=1, d=5 0.64176 0.69940 0.77542 0.80846 0.83328 0.86775 0.87514 0.87732 0.88907 

 

Table 12. Results of the highest FSIM (c (Support), d (Degree)) 

 
Liver images Retinal images Mammographic images 

 
Sigma Sigma Sigma 

 
35 25 15 35 25 15 35 25 15 

RVR-I transform c=1, d=2 0.87287 0.90176 0.93815 0.89022 0.91513 0.94659 0.91049 0.92354 0.94851 

CVR-I transform c=1, d=2 0.88831 0.91388 0.94576 0.89398 0.91743 0.94712 0.91079 0.92558 0.94886 

RVR-I transform c=1, d=3 0.87229 0.90121 0.93723 0.88995 0.91460 0.94650 0.91104 0.92410 0.94867 

CVR-I transform c=1, d=3 0.88792 0.91358 0.94510 0.89372 0.91711 0.94703 0.91125 0.92626 0.94901 

RVR-I transform c=1, d=4 0.87240 0.90126 0.93727 0.89000 0.91463 0.94650 0.91262 0.92498 0.94867 

CVR-I transform c=1, d=4 0.88797 0.91358 0.94509 0.89379 0.91711 0.94703 0.91279 0.92702 0.94901 

RVR-I transform c=1, d=5 0.87240 0.90126 0.93727 0.89000 0.91463 0.94650 0.91349 0.92509 0.94867 

CVR-I transform c=1, d=5 0.88797 0.91358 0.94509 0.89379 0.91711 0.94703 0.91387 0.92723 0.94902 

 

This study helped examine the effects that the change of the scale value has on the medical image 

denoising results. Upon examining Table 2-10, the image denoising algorithm used in study gave the 

best results so long as the scale value was “5” for all the support and degree values in liver and retinal 

images. However in mammographic images, the scale value from which the best results were obtained 

varied.  

This study also examined the effects that the change of the thresholding constant has on the image 

denoising results. This phase suggested that the values to be used generally when processing with 

complex coefficients need to be chosen different from when processing with real coefficients of 

thresholding constant. Upon examining Table 2-10, the best results in the denoising applications 

conducted with real coefficients were obtained for the thresholding constant values between “2.7” and 

“3.4” in the wake of study. In the previously conducted real valued applications, the thresholding 

constant was used in general as “3” and this situation corresponds to the obtained results. Upon 
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examining Table 2-10, it was reached as a result of the study that in the denoising applications 

conducted with complex coefficients, the thresholding constant needs to be of a lower value, namely 

picked between “2.2” and “2.7”.   

According to the study results, it is important to examine the effect that the scale change has on the 

change of the thresholding constant value where the best denoising result is obtained. The thresholding 

constant that which produces the most successful result tends to increase as the scale value in the 

denoising application conducted with RVR-I and CVR-I coefficients for liver, retinal and mammographic 

images decreases. Figure 6 shows the change in the average of the thresholding constant values, where 

the best denoising results are obtained; this change is based on the scale value. 

 

Figure 6. Change in the average of the thresholding constant values, where the best denoising results are 

obtained, based on the scale value a) Denoising with RVR-I coefficients b) Denoising with CVR-I coefficients 

Table 13, shows the best PSNR results obtained for different scale, support, degree and thresholding 

constant values in the wake of study by using liver, retinal and mammographic images. Upon examining 

Table 13, it can be seen that the best results for liver, retinal images were obtained for c=1, d=2 values; 

whereas for mammographic images, the best results were obtained for c=1, d=5 values.  

Upon examining Table 13, it can be seen that the change between the best results obtained for c=1, d=3; 

c=1, d=4; c=1, d=5 values with liver and retinal images is very small. The best results obtained for these 

images having been achieved, as the scale value was “5”, had an effect on the occurrence of this 

situation. Upon examining the decompositions given in Table I, it was observed that as the scale value 

increased, decompositions diversified. The best results obtained for these images having been achieved, 

as the scale value was “5” instead of a bigger value, caused the decompositions to diversify less and the 

best results that were obtained correspondingly to be close to each other. Also for mammographic 

images, the fact that their best results had been obtained for different scale values verifies this change 

as significant. Therefore, the best results for mammographic images were obtained for c=1, d=5 values. 

This being the case suggests that the scale, support and degree value preference should be determined 

based on the image to be denoised.  

Based on the developments made in the field of multi-resolution analysis, there were also developments 

in the field of medical image denoising. The ripplet-I transform was realized by generalizing the curvelet 

transform. Again, in later studies, the ripplet-II transform was realized by generalizing the ridgelet 
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transform. With this study, by using the complex valued ripplet-I coefficients for the first time, the 

medical image denoising application was realized. Later on, conducting the medical image denoising 

application by forming complex coefficients in the ripplet-II transform is viewed as a big contribution to 

the literature. 

Table 13. Results of the highest PSNR (c (Support), d (Degree)) 

 
Liver images Retinal images Mammographic images 

 
Sigma Sigma Sigma 

 
35 25 15 35 25 15 35 25 15 

RVR-I transform c=1, d=2 34.460 36.080 38.656 33.042 34.387 36.322 35.247 36.508 38.254 

CVR-I transform c=1, d=2 34.753 36.363 38.934 33.300 34.579 36.443 35.510 36.719 38.412 

RVR-I transform c=1, d=3 34.434 36.045 38.605 33.005 34.345 36.234 35.444 36.603 38.303 

CVR-I transform c=1, d=3 34.709 36.341 38.862 33.246 34.540 36.340 35.711 36.794 38.445 

RVR-I transform c=1, d=4 34.441 36.051 38.611 33.022 34.348 36.234 35.463 36.640 38.320 

CVR-I transform c=1, d=4 34.710 36.341 38.863 33.270 34.543 36.329 35.713 36.815 38.460 

RVR-I transform c=1, d=5 34.441 36.051 38.611 33.022 34.348 36.234 35.588 36.714 38.373 

CVR-I transform c=1, d=5 34.710 36.341 38.863 33.270 34.543 36.329 35.820 36.892 38.488 
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